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ABSTRACT

This paper presents results from a numerical study on

electromagnetic stirring using rotating and traveling mag-

netic fields. Direct simulations of the flow in a cylindrical

container were performed using a spectral-element/Fourier

discretization of the magnetohydrodynamic equations in the

low-frequency/low-induction limit.

In addition to the application of the single fields, the

superposition with either well separated or equal frequencies

was studied. Although a deeper investigation is still to be

done, our results confirm that the latter case results in a

strongly three-dimensional flow promising favorable mixing

properties when compared with the other configurations.

INTRODUCTION

Electromagnetic flow control is important in crystal

growth and metallurgic processes. We are interested in the

latter, where various types of time-varying fields are applied

to enhance the mixing of the melt. For an overview on this

topic we refer to (Tsavaras and Brody, 1984), (Davidson,

1999) and (Stefanescu, 2002).

Typically, rotating or traveling magnetic fields (in short

RMF and TMF) are used for stirring. In the first case, the

configuration resembles an AC electric motor where the ro-

tating field causes a torque acting on the rotor. In stirring

the role of the rotor is adopted by the melt. Consequently,

the RMF drives a swirling motion. In closed containers this

primary flow is accompanied by a weak meridional circula-

tion driven by the Bödewadt layers developing at the end

walls (Davidson, 1992). During the solidification of alloys

the RMF promotes the so-called columnar-to-equiaxed tran-

sition and thus leads to a finer, nearly isotropic material

structure (Roplekar and Dantzing, 2001, Eckert et al. 2005).

Unfortunately it turned out that the RMF-driven flow fails

to homogenize the melt in the whole volume and may even

cause adverse side effects such as increased macrosegregation

(Nikrityuk et al. 2006a).

An alternative approach is to use traveling fields, which

– like a linear motor or induction pump – cause a trac-

tion into a specified direction. In a cylindrical container

the TMF generates a meridional circulation in the form of

a toroidal vortex. Although flow control by traveling fields

is widespread, scientific investigations are virtually limited

to the laminar regime and its stability (Ramachandran et

al. 2000, Grants and Gerbeth, 2004, Medina et al., 2004,

Yesilyurt et al., 2004).

The circumstance that the bulk flow is azimuthal for the

RMF and meridional for the TMF has inspired a number

of attempts to enhance mixing by using a combination of

these fields, e.g. (Denisov et al., 2003) and (Taniguchi et al.,

2003). Except for preliminary results reported by Cramer

et al. (2003) and Stiller et al. (2006), known scientific in-

vestigations are restricted to the axisymmetric laminar case

(Gelfgat et al. 1999, Abricka et al. 2002).

In the present study we consider the turbulent flow driven

by rotating and traveling fields as well as the superposition

of these fields with either separate or equal frequencies. In

the first case we assume that interference effects can be ne-

glected, whereas they become even dominant in the second.

Direct numerical simulations are employed to investigate the

flow features. Within this paper the focus is set on the mean

flow topology, the distribution of turbulent kinetic energy,

the turbulent vortex structure and their consequences for

the mixing efficiency.

MATHEMATICAL MODEL

Configuration

We consider the isothermal flow of an incompressible

fluid with density %, kinematic viscosity ν, and electric con-

ductivity σ in an electrically non-conducting cylinder with

radius R and height H = 2R. The configuration including

the applied magnetic fields is sketched in Fig. 1. Since typi-

cal applications of electromagnetic stirring use low-frequency

fields, shielding effects are neglected here. Furthermore,

the magnitude of fluid velocity u is small compared to the

phase velocity of the magnetic fields such that the induced

fields can be ignored as well. These assumptions lead to the

so-called low-frequency/low-induction approximation, which

results in a decoupling and considerable simplification of the

electrodynamic problem.

Rotating magnetic field

The RMF is given by

BR = BR[cos(ϕ− ωRt)er − sin(ϕ− ωRt)eϕ] (1)

where BR is the induction and ωR the angular frequency.
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Figure 1: Configuration.

The current density is

jR = σ(ER −∇ΦR) = σωRBRR

0@ĵr cos(ϕ− ωRt)
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ĵz cos(ϕ− ωRt)

1A (2)

where ER is the induced electric field and ΦR the potential

(Gorbachev et al. 1974),
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J0(λnr

R
)− J2(λnr

R
)

2
sinh(λnz

R
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ĵz =
r

R
−

∞X
n=1

cnλnJ1(λnr
R
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), (5)

Jk the Bessel functions, λn the zeros of J ′1, and

cn = 2/[λn(λ2
n − 1)J1(λn) cosh(λn)]. (6)

Traveling magnetic field

We constrain ourselves to long-wave fields, for which the

wave number satisfies the relation kTH � 1. In this case

the TMF induction and the induced current are given by

BT = BT

»
kTr

2
sin(kTz−ωTt)er + cos(kTz−ωTt)ez

–
(7)

and

jT = σωTBT
r

2
sin(kTz − ωTt)eϕ (8)

respectively.

ELECTROMAGNETIC BODY FORCE

The simultaneous application of an RMF and a TMF

yields the body force

f = jR ×BR + jT ×BT + (jR ×BT + jT ×BR)

= fR + fT + fI. (9)

The individual contributions of the rotating and traveling

field oscillate with the double frequencies, 2ωR and 2ωT,

respectively. Because these are much higher than the char-

acteristic flow frequency, ωF = umax/R, the forces can be

Figure 2: Electromagnetic body force for the case ωR = ωT,

Ta = F = 106 and I = 2.185× 106.

approximated by their mean values. The corresponding ex-

pressions can be arranged in the form

fR =
ρν2

R3
Ta ĵz eϕ, fT =

ρν2

R3

F

2

r2

R2
ez (10)

where

Ta =
σωRB

2
RR

4

2%ν2
, F =

σωTB
2
TkTR

5

4%ν2
(11)

is the Taylor number of the RMF and the forcing parameter

of the TMF, respectively.

The interaction force fI consists of two parts that oscillate

with the combination frequencies ωR + ωT and ωR − ωT, re-

spectively. We are interested in two special cases: In the first

case ∆ω = |ωR − ωT| is assumed to be large in comparison

with ωF and, hence, fI can be neglected. As the second case

we consider ωR = ωT = ω. While the part of fI oscillating

with ωR + ωT is still negligible, the other gives rise to the

steady, three-dimensional forcing

fI =
ρν2

R3
I

0B@ ĵϕ sin(ψ)

−ĵz kTr
2

sin(ψ)− ĵr cos(ψ)

− 1
2

r
R

sin(ψ)− ĵϕ
kTr
2

cos(ψ)

1CA (12)

where ψ = ϕ− kTz and

I =

s
2TaF

kTR
=
σωBRBTR

4

2%ν2
. (13)

A vector plot of the total body force in the second case

(∆ω = 0) is shown in Fig. 2.

Flow equations

Using the scales R, R2/ν, ν/R, and %ν2/R3 for length,

time, velocity, and body force, the nondimensional flow

equations write

∇ · u = 0, (14)

∂tu +∇ · uu = −∇p+∇2u + f . (15)

NUMERICAL METHOD

All simulations were performed using the spectral el-

ement /Fourier code semtex, which employs quadrilateral

nodal elements in the meridional semi-plane coupled with
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Table 1: Cases and parameters.

Case Ta F I Nϕ

RMF 106 0 − 256

TMF 0 4× 106 − 320

S-1 106 4× 106 − 256

S-2 106 106 2.185× 106 512

trigonometric expansions in the azimuth. For details of the

method we refer to (Blackburn and Sherwin 2004).

The implementation of the body force was verified by

comparison to an implementation in Mathematica and vari-

ous test cases, including the analytic solution for the RMF-

driven flow in an infinite cylinder and the linear instability

of TMF-driven flow (Grants and Gerbeth 2004).

RESULTS

Direct numerical simulations were carried out for RMF

and TMF with different forcing parameters (cf. Table 1).

The computational domain was discretized using 25 × 50

spectral elements of order 11 and Nϕ = 256 to 512 merid-

ional planes, corresponding to 128 to 256 Fourier modes,

respectively. The grid spacing in the radial and axial direc-

tions varied from ∆+ ≤ 0.2 near the walls to ∆+ ≈ 3.5 in

the core region.

Case RMF: Rotating Magnetic Field

The flow features obtained in this case (see Fig. 3)

agree well with earlier results for H/2R = 1.5 (Stiller et al.,

2006). The mean flow is governed by the swirling motion

induced by the RMF body force. The meridional circula-

tion driven by the top and bottom Bödewadt layers leads

to a homogenization of the flow, but is too weak to pro-

vide for an efficient mixing (Nikrityuk et al. 2006b). One

may anticipate that this function is adopted by the Taylor-

Görtler vortices, which are visualized in Fig. 3(c) using the

λ2 criterion. These vortices represent the main turbulence

mechanism and lead to an intensive mass and momentum

transfer in the radial and axial directions. However, as the

azimuthal fluctuations contain contain only about one fifth

of the turbulence energy, the exchange is less effective in the

ϕ direction. Another drawback from the perspective of stir-

ring is that the vortices are largely confined to the near wall

region r > 0.8.

Case TMF: Traveling Magnetic Field

Figure 4 depicts the average velocity, turbulent kinetic

energy and vortices for F = 4× 106. The mean flow resem-

bles a smooth, toroidal vortex, whereas the instantaneous

flow is fully turbulent and regularly changes its topology.

The turbulent fluctuations share about one half of the total

kinetic energy, which is an exceptional high degree in shear

flows. Apart from a certain preference of the axial direction,

the vortices are randomly oriented and cover the whole do-

main, thus rendering the TMF a promising choice for mixing

applications.

Case S-1: Linear Superposition

In this case the rotating and traveling fields considered

before were superimposed such that interference effects are

negligible. In practice this can be achieved, e.g., by choos-

ing ωT = 2ωR. The naive idea behind this approach is that

the superposition would result in a favorable combination of

the different mixing mechanisms that are present in the flow

driven either by the RMF or TMF alone. Because the max-

imum velocity in the RMF case is almost two times higher

than in the TMF case, it is not surprising that the azimuthal

swirling motion prevails. Figure 5 reveals that the topology

of the meridional flow is almost equivalent to the RMF case.

The only qualitative change due to the traveling field is the

break of vertical symmetry, which is caused by the redistri-

bution of angular momentum towards the upper lid. As a

result, the maximum of azimuthal velocity is shifted from

the neutral plane to the top of the cylinder and increased to

3410 from 3070 in the RMF case. The magnitude of verti-

cal velocity increased as well, but remains about two thirds

below the value obtained in the TMF case.

Figures 5(b,c) show that the turbulence properties are

also very similar to the RMF case, such that the ”linear”

superposition of the fields considered here does not promise

any significant advantage. It remains an open question, how-

ever, in which way the flow pattern changes when the TMF

forcing is intensified.

Case S-2: Superposition with Equal Frequencies

In contrast to the previous case, both fields oscillate with

the same frequency here. Furthermore, the TMF forcing was

reduced by a factor of four. These changes result in a com-

pletely different flow topology: Figure 6 reveals that the

main flow is composed of a swirling motion driven by the

RMF and a circulation that appears as a single vortex in

the plane x = 0. One side effect of this circulation is the

redistribution of angular momentum and a deformation of

the azimuthal flow. Although the thorough assessment of

statistical properties is still progress, we conclude that flow

is strongly three-dimensional also in the mean. Moreover,

all velocity components are approximately of the same or-

der. These features promise favorable mixing properties in

comparison with the purely RMF- and TMF-driven flows,

which are inherently two-dimensional. On the other hand,

the static asymmetry of the flow may cause adverse effects

in some applications. In casting, for example, the inhomo-

geneous melt flow may lead to a significant distortion of the

solidification front with unpredictable consequences for the

structure of the ingot.

Finally, Fig. 7 shows the instantaneous vortex structure

for the same snapshot. Most vortices are located at the top

left and the bottom right, which are the locations where the

circulation driven by the interaction force encounters the

lids. In contrast to the previous cases no preferred orienta-

tion can be identified.

CONCLUSIONS

The flow driven by rotating and traveling magnetic fields

and two qualitatively different combinations of these fields

was studied by means of direct numerical simulation.

The imposition of a RMF yields a homogeneously rotat-

ing flow with Taylor-Görtler vortices as the main turbulence

mechanism. As a consequence, the RMF provides for effi-

cient stirring, but limited mixing. The meridional circula-

tion driven by the TMF is less stable, which results in a

lower mean velocity and a remarkably high contribution of

turbulence to the total kinetic energy. Therefore, the TMF

is clearly better suited for mixing than the RMF.

The linear (interference-free) superposition of both fields
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leads to a dominance of the RMF, if the individual forcing

parameters are comparable. From the perspective of mix-

ing, the resulting flow offers no significant advantage. A

completely different flow pattern arises, when both fields

oscillate with the same frequency. The resulting flow is

genuinely three-dimensional in its mean as well as in the

turbulent part. Unfortunately, the presumably high mixing

efficiency is counterbalanced by the inhomogeneous trans-

port properties due to the static asymmetry of the flow. It

may be conjectured that a better compromise is achieved,

if the frequencies of the applied fields are slightly different,

i.e., 0 < ∆ω � ωF.
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Figure 3: RMF-driven flow at Ta = 106. Contour levels differ by 10% of the absolute extremum. Dashed lines correspond to

negative values. Vortices are shaded according to the sign of azimuthal vorticity to indicate their sense of rotation.
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(b) k contours. (c) Instantaneous vortex structure.

Figure 4: TMF-driven flow at F = 4× 106.
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(b) k contours. (c) Instantaneous vortex structure.

Figure 5: Superposition of RMF and TMF with Ta = 106, F = 4× 106 and ωR 6= ωT.
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Figure 6: Snapshot of the flow for the case Ta = 106, F = 106 and ωR = ωT.

Figure 7: Vortex structure for the case ωR = ωT.
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