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ABSTRACT

This paper explores the performance of the tenth-order

central spatial scheme and derives the accompanying energy-

norm stable summation-by-parts (SBP) numerical boundary

operators for problems with non-periodic boundaries. The

objective is to employ the resulting tenth-order spatial dif-

ferencing with the stable SBP boundary operators as a base

scheme in the framework of adaptive numerical dissipation

control in high order multistep filter schemes of Yee et al.

(1999), Yee and Sjögreen (2002, 2005, 2006, 2007), and

Sjögreen and Yee (2004). These schemes were designed for

multiscale turbulence flows including strong shock waves and

combustion.

INTRODUCTION

The accuracy and stability of the overall high order

central difference operators employing the traditional ways

of implementing numerical boundary conditions by reduc-

ing the orders of the central scheme near the non-periodic

boundary can be greatly compromised. In the 80’s and

90’s major effort was placed on the development of high

order shock-capturing schemes and high order compact spa-

tial schemes. Traditional high order central schemes were

considered neither stable nor robust enough to be used

in a more practical setting. In the work of Kriess and

Scherer (1974, 1977), Strand (1994), Olsson (1995), Matts-

son (2003), Svärd (2004) and references cited therein, high

order finite difference operators containing special numer-

ical boundary conditions with summation-by-parts (SBP)

stable energy estimates were derived for the first derivative

approximations for centered difference operator (for the in-

terior grid points) of order up to eight. The use of standard

central spatial schemes thus regained its momentum in the

mid and late 90’s. These SBP central schemes up to order

eight have been used with much success as the spatial base

scheme in the adaptive numerical dissipation control high or-

der multistep filter schemes of Yee and Sjögreen (1999, 2002,

2005, 2006, 2007) and Sjögreen and Yee (2002, 2003, 2004).

Their test examples concentrated mainly on SBP sixth-order

central spatial base schemes. Improved accuracy over stan-

dard high order shock-capturing schemes was obtained for
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multiscale shock/turbulence interactions.

In this work, the tenth-order central spatial differenc-

ing with stable SBP boundary operators is derived with

numerical examples. The next section illustrates the perfor-

mance of the tenth-order scheme for problems with periodic

physical boundaries. The SBP boundary operators for the

tenth-order centered differencing are derived with a 1-D

shock/turbulence interaction example in the subsequent sec-

tions. 2-D and 3-D examples are in progress and will be re-

ported in a forthcoming paper. From here on, the use of the

phrase, e.g., ”SBP tenth-order central schemes” means the

use of the tenth-order centered differencing interior scheme

(for the interior grid points) with the accompanying stable

SBP boundary operators of orders that are usually much

lower than the interior scheme.

TEST CASES WITH PERIODIC BOUNDARY CONDI-

TIONS

This section shows the performance of the tenth-order

spatial scheme for several test cases with periodic boundary

conditions. Note that in this case, SBP boundary operators

are not needed.

The seven-point, sixth-order accurate centered difference

operator (D06) with an eighth-order numerical dissipation

(AD8) is denoted by D06AD8. The eleven-point, tenth-order

accurate centered difference operator (D10) with twelfth-

order numerical dissipation (AD12) is denoted by D10AD12.

Similarly, D08AD10 denotes the eighth-order centered differ-

ence operator (D08) with tenth-order numerical dissipation

(AD10). These operators are used for the spatial derivatives

in the Euler equations. The classical fourth-order accurate

Runge-Kutta method is used for the time integration. In all

of the examples, different time step sizes that are below the

CFL limit were used. However, their results indicate no sig-

nificant difference in the accuracy, indicating that the error

of the spatial discretization dominates the temporal error.

The first example is the same isentropic vortex convec-

tion problem considered in Yee et al. (1999) and Sjögreen

and Yee (2002). The computational domain is [0, 18]×[0, 18].
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The initial data is

ρ(0, x, y) =

„

1 −
β2(γ − 1)

8γπ2
e1−r2

«
1

γ−1

(1)

u(0, x, y) = u∞ −
β

2π
(y − y0)e

(1−r2
)/2 (2)

v(0, x, y) = v∞ +
β

2π
(x − x0)e

(1−r2
)/2 (3)

p(0, x, y) = ρ(0, x, y)γ (4)

where ρ is the density, u is the velocity in the x-direction, v is

the velocity in the y-direction, and p is the pressure. γ is the

ratio of specific heats. Here, γ = 1.4, β = 5, u∞ = 1, and

v∞ = 0. r2 = (x−x0)2+(y−y0)2, where the initial center of

the vortex is (x0, y0) = (9, 9). The boundary conditions are

periodic in both directions. The exact solution consists of a

translation of the initial data with the free stream velocity.

Figure 1 displays the L2-norm error in the density af-

ter one computational domain period of time integration

with D06AD8 (solid line) and D10AD12 (dashed line) for

four uniform grids with spacings h = 0.5, 0.25, 0.125, and

0.0625. The dissipation coefficient for AD8 is 0.0016 and

for AD12 is 0.0001. We infer from Fig. 1 that the error of

the tenth-order method is always smaller than the error of

the sixth-order method, but that the errors of both meth-

ods converge slower than the formal order of accuracy for

the first two refinements. At the last refinement, the results

are closer to the expected convergence rate. The error of

the sixth-order method decreases by a factor 69, when we

refine from h = 0.125 to h = 0.0625. The corresponding

decrease of the error in the tenth-order method is a fac-

tor 692. The reduction of the error between the coarsest

grids is slow because the computation is under resolved for h

larger than 0.25. The highest significant frequencies are not

resolved with any points per wavelength; points per wave-

length results become meaningless. Computations without

the added numerical dissipation are also stable. However,

spurious oscillations due to the nonlinear effect of the gov-

erning equations prevent the convection of the vortex from

advancing to a higher number of periods. See Sjögreen and

Yee (2002) and Yee and Sjögreen (2002) for the behavior

of D06 and D08 central schemes with or without the AD8

and AD10 terms for longer time integration of this vortex

convection problem. For a stable and accurate long time

integration of periods up to 300, the central base scheme

needs to be applied to the entropy split form of the inviscid

flux derivative (instead of the conservative flux derivative).

Similar long time integration of the vortex can also be ob-

tained if our high order filter schemes are used. See Yee and

Sjögreen (2000, 2002) for details.

In the second example we solve the 3-D Euler equations

of gas dynamics with γ = 5/3 and with initial data

ρ(0, x, y, z) = 1 (5)

u(0, x, y, z) = sin(x) cos(y) cos(z) (6)

v(0, x, y, z) = − cos(x) sin(y) cos(z) (7)

w(0, x, y, z) = 0 (8)

p(0, x, y, z) = 100 +
1

16
((cos(2z) + 2)(cos(2x) + cos(2y)) − 2)

(9)

on the computational domain [0, 2π]× [0, 2π]× [0, 2π]. Here

u, v, w are the three velocity components. This is known as

a Taylor-Green vortex. The computation stops at a total

time equal to 10. The boundary conditions are periodic.
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Figure 1: L2 norm of the error in the density after the vortex

has convected one period as function of the grid spacing, h.

Sixth-order method (solid) and tenth-order method (dash).

The initial data are smooth, but the scales in the solution

become smaller and smaller with time. The enstrophy (the

square of the L2 norm of the curl of the velocity) is often used

as a measure of the content of small scales in the solution.

For this problem, the added numerical dissipations AD8,

AD10 and AD12, for the corresponding centered schemes

are necessary for a stable time stepping.

In Fig. 2 we plot the enstrophy (normalized to 1 at

time 0) as function of time for the sixth-order (dot), the

eighth-order (dash) and the tenth-order (dash-dot) schemes,

computed on a 64 × 64 × 64 grid. We also plot the en-

strophy obtained from the semi-analytical formulas given in

Brachet et al. (1983). This “exact” solution is valid for

times less than approximately 4 and we only plot it up to

that time. The computed enstrophies agree well with the

semi-analytical formula. The AD10 and AD12 numerical

dissipation coefficients used are 0.00005. The D06AD8 with

numerical dissipation coefficient 0.0001 is already unstable.

The AD8 numerical dissipation coefficient used is 0.0002.

Figure 3 shows the same comparison as in Fig. 2, but

with a 132×132×132 grid using numerical dissipation coef-

ficient of 0.0002 for AD8, 0.00006 for AD10 and 0.00002 for

AD12. The maximum enstrophy now is higher (note differ-

ent scaling) for all methods, reflecting the fact that higher

frequencies can be supported on a finer grid. For this fine

grid, the numerical dissipation coefficients 0.0001 for AD8,

0.00005 for AD10, and 0.00001 for AD12 give divergent so-

lutions during the time evolution. Figure 4 shows the effect

of the AD12 coefficient on the accuracy of the enstrophies

of the tenth-order scheme using three different AD12 values

(0.00005, 0.00003, and 0.00002).

The same computations using comparable yet larger dis-

sipation coefficients for AD8, AD10 and AD12 are shown

in Fig. 5 and Fig. 6 using 643 and 1283 grid points. That

is the strengths of the numerical dissipation operators are

set to be equivalent for all three methods. The solution of

the tenth-order scheme appears to follow the semi-analytical

solution a bit closer. For large times there is no accuracy,

but Fig. 5 shows that the schemes with less numerical dis-

sipation give higher enstrophy values. Computations using

central schemes with order lower than six give much lower

enstrophy values (figures not shown) using the same two

grids. This means that the method with the highest order

of accuracy has the largest small-scale content. It is clear

from Figs. 5 and 6 that the tenth-order method is better at

supporting the small scales, because the enstrophy is higher

for large times. In this case, the tenth-order central scheme is
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Figure 2: Enstrophy vs. time for the Talyor-Green vor-

tex. 643 grid points. Sixth-order method with AD8 co-

eff. = 0.0002 (dot), eighth-order method with AD10 coeff.

= 0.00005 (dash), tenth-order method with AD12 coeff.

= 0.00005 (dash-dot), and semi-analytical (solid).

0 2 4 6 8 10
0

10

20

30

40

50

T

E
ns

tro
ph

y

132x132x132 Grid Points

D10AD12
D08AD10
D06AD08
Exact

Figure 3: Enstrophy vs. time for the Talyor-Green vor-

tex. 1323 grid points. Sixth-order method with AD8 co-

eff. = 0.0002 (dot), eighth-order method with AD10 coeff.

= 0.00006 (dash), tenth-order method with AD12 coeff.

= 0.00002 (dash-dot), and semi-analytical (solid).

more accurate than its eighth-order and sixth-order counter-

parts. The above figures show the strong dependence of the

ensthrophies on the gird size and the amount of their corre-

sponding numerical dissipation coefficients of each methods.

It is noted that if our high order filter schemes were used

for this problem, for the same grid, lower enstrophy value

were encountered due to the fact that shock-capturing dis-

sipations are not needed here.

Both the above examples show error reduction with

the tenth-order accurate scheme for problems with periodic

boundary conditions. In order to extend the tenth-order

computations to problems with non-periodic boundaries,

special stable boundary operators are needed. We are partic-

ularly interested in deriving energy-norm stable SBP bound-

ary operators for the tenth-order interior operator. One such

derivation is presented next.

SBP DIFFERENCE OPERATORS

Here, we follow Strand (1994) to determine boundary

modification for tenth-order accurate interior approxima-

tions of d/dx. We consider a uniform grid xj , j = 1, 2, 3, . . .
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Figure 4: Enstrophy vs. time for the Taylor-Green vortex.

1323 gird points. Tenth-order method with AD12 coeff. =

0.00002 (dash-dot), AD12 coeff. = 0.00003 (dash), AD12

coeff. = 0.00005 (dot), and semi-analytical (solid).
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Figure 5: Enstrophy vs. time for the Talyor-Green vortex.

643 grid points using relative dissipation coefficient strength.

Sixth-order method with AD8 coeff. = 0.0016 (dot), eighth-

order method with AD10 coeff. = 0.0004 (dash), tenth-order

method with AD12 coeff. = 0.0001 (dash-dot), and semi-

analytical (solid).

with grid spacing h = xj+1 − xj . The difference operator

approximating du(xj)/dx is of the form

hD̃uj =

(

Ps
k=1

qj,kuk j = 1, 2, . . . , r
Pq

k=−q
αkuj+k j = r + 1, r + 2, . . .

.

The interior approximation is defined by the coefficients αk .

The 2qth order accurate interior approximation has α−k =

−αk and is used for j > r, where r is an arbitrary number

> q. The boundary modified operator acts at the points

j = 1, . . . , r, and is defined by the coefficients qj,k. The

SBP boundary operator, which is the discrete analogue of

the integration-by-parts energy norm, satisfy the identity

(u, D̃v)h = −(D̃u, v)h − u1v1

for all grid functions u and v where (u, v)h is a discrete

scalar product. This makes it possible to prove L2-norm

energy estimates for the difference approximation.

We write the difference operator in block matrix form as

hD̃ =

„

Q1 Q2

−CT D

«

,
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Figure 6: Enstrophy vs. time for the Talyor-Green vortex.

643 grid points using relative dissipation coefficient strength.

Sixth-order method with AD8 coeff. = 0.0016 (dot), eighth-

order method with AD10 coeff. = 0.0004 (dash), tenth-order

method with AD12 coeff. = 0.0001 (dash-dot), and semi-

analytical (solid).

where Q = (Q1 Q2) is the matrix formed by the coefficients

qj,k. Q1 is of size r × r. C and D are determined by the

interior discretization. When the order of accuracy is 2q, D

is an anti-symmetric band matrix with constant diagonals

(−αq ,−αq−1, . . . ,−α1, 0, α1, . . . , αq),

where the zero is the main diagonal. The matrix C holds

the part of the interior discretization that extends outside

the first rows of D, i.e.,

−CT =

0

B

B

B

B

B

B

B

@

0 . . . 0 −αq −αq−1 . . . −α1

0 . . . 0 0 −αq . . . −α2

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . −αq

0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

1

C

C

C

C

C

C

C

A

Q2 and C are of size r × (s − r). s can be considered arbi-

trarily large with the rows of Q2 and C padded with zeros.

Taylor expansion gives the equations for pth-order of ac-

curacy at the boundary,

QE = F (10)

where (E)i,j = (i−1)j−1 and (F )i,j = (j−1)(i−1)j−2 and

where any occurrence of 00 is interpreted as 1. The sizes of

E and F are s × (p + 1) and r × (p + 1) respectively. We

partition E as E =

„

E1

E2

«

with E1 of size r × (p + 1) and

write (10) as

Q1E1 + Q2E2 = F. (11)

The summation-by-parts property is equivalent to

(u, D̃u)H = −
1

2
u2
1

where the weighted scalar product is given by (u, v)H =

(uI)T HvI + (uII )T vII , for a positive definite r × r matrix

H. We define uI = (u1, . . . , ur) and uII = (ur+1, ur+2, . . .).

The summation by parts property is equivalent to

HQ1 = B1 + B2 (12)

HQ2 = C (13)

where B1 is the matrix with −1/2 as the (1,1) element and

all other elements equal to zero. B2 is an arbitrary anti-

symmetric matrix. Consequently, the summation-by-parts

boundary operators are found by solving (11), (12), and (13)

for Q1, Q2, and H.

To solve these equations, we multiply (11) by H and use

(12) and (13) to substitute HQ1 and HQ2. This results in

the equation

B2E1 + B1E1 + CE2 = HF (14)

for B2. We multiply (14) by ET
1

and use the anti-symmetry

(ET
1

B2E1)T = −ET
1

B2E1 to obtain the solvability condi-

tion

F T HE1 +ET
1 HF = 2ET

1 B1E1 +ET
1 CE2 +ET

2 CT E1 , M,

(15)

which is a linear system of (p + 1)2 equations for the r2 un-

known elements of H. We also require that H is symmetric.

Note that M only depends on the interior discretization and

on r. It was shown in Strand (1994) that (15) can be solved

in the following cases

• p is odd, the interior discretization is (p + 1)th-order

accurate, and r = p + 1, i.e., the number of equations

and unknowns are equal in (15). H is called a full

norm.

• p is odd, the interior discretization is (p + 1)th-order

accurate, r = p + 2, and all elements on the first row

of H, except the (1,1) element, are equal to zero. H is

called a restricted full norm.

• H is diagonal, the interior discretization is (2p)th-order

accurate, and r = 2p. H is called a diagonal norm.

Note that the existence of a solution H is not enough; in

order for H to be a norm, H has to be positive definite as

well. It was shown in Strand (1994) that a positive definite

H can be found if r is made sufficiently large, but there is

no guarantee that optimal properties r = p + 1, r = p + 2,

and r = 2p (for the three above cases) can be satisfied with

H positive definite.

Energy estimates for PDEs obtained in one space di-

mension with the full norm operator do not generalize to

two space dimensions, because the full norms in the x- and

y-directions do not, in general, commute. With the diag-

onal norm, these operators do commute and estimates can

be carried over from one dimensional problems to multidi-

mensional problems. However, our experience from practical

computations is that the full norm operators also perform

well in multi-dimensions.

After having solved (15) for H, we insert H into (14) and

solve for B2. (14) is usually underdetermined and we obtain

a solution that depends on a number of parameters. With H

and B2 known, (12) and (13) give Q1 = H−1(B1 + B2) and

Q2 = H−1C. The SBP boundary operator is determined.

Table 1 summarizes a few known SBP operators. The second

column shows the boundary order p and the third column

displays the number of free parameters in the operator.

Olsson (1992) derived the same operators as Strand

(1994). Mattson (2003) gave one operator, not the para-

metric dependency.

The freedom given by the undetermined parameters can

be used, e.g., to determine an operator with a minimal spec-

tral radius. This maximizes the time step if the operator is

used in an explicit time stepping scheme.
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Table 1: Summary of known SBP operators.

Norm type B-order p # param. Ref.

full 3 2 Strand (1994)

full 5 3 Mattson (2003)

full 7 4 Mattson (2003)

restricted 3 3 Strand (1994)

diagonal 1 0 Strand (1994)

diagonal 2 0 Strand (1994)

diagonal 3 1 Strand (1994)

diagonal 4 3 Strand (1994)

SBP Operators with Tenth-Order Accuracy in the Interior

The tenth-order accurate centered finite difference oper-

ator has the coefficients

α1 = 5/6 α2 = −5/21 α3 = 5/84

α4 = −5/504 α5 = 1/1260. (16)

We use this as the interior discretization and solve (15) for

a diagonal norm with p = 5, r = 10. It turns out that

the solution has negative elements, i.e., H is not positive

definite. Similarly, solving for a diagonal norm SBP operator

with (p = 6, r = 12), (p = 7, r = 14), and (p = 8, r = 16) all

give non-positive definite Hs. We conjecture that there are

no diagonal norms as defined in Strand (1994) for p > 4.

Instead we take p = 5 and r = 11 to obtain an H that

depends on one parameter. For a certain interval of the

parameter, H is positive definite. We fix this parameter in

the middle of the interval of positive definiteness to obtain

the norm

H = diag(62715991/217728000, 10645069/6773760,

922613/6350400, 11862631/6350400,

678527/1036800, 21626453/36288000, 2887/1620,

678527/1814400, 130522139/101606400,

282939397/304819200, 64002913/63504000). (17)

The SBP boundary operator, Q, thus obtained depends on

10 free parameters through the solution of (14). Setting

random values of these parameters typically leads to an op-

erator with a spectral radius of size 105, which is useless for

any practical purpose. To overcome this problem, we used

the fminsearch routine in Matlab to minimize the spectral

radius of the difference operator with respect to the free pa-

rameters. The boundary operator obtained is presented in

the Appendix. It has spectral radius 50, which is 20 times

larger than the size of the interior operator, but it is small

enough to enable some preliminary computations. The min-

imization problem is extremely ill-conditioned, and we have

probably not reached the global minimum. This is a topic

of continued investigation.

TEST CASE WITH NON-PERIODIC BOUNDARIES

The non-periodic test case is the 1-D compressible invis-

cid shock-turbulence interaction problem with initial data

consisting of a shock propagating into an oscillatory density.

The initial data is given by

(ρL, uL, pL) = (3.857143, 2.629369, 10.33333) (18)

to the left of a shock located at x = −4, and

(ρR, uR, pR) = (1 + 0.2 sin(5x), 0, 1) (19)
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Figure 7: One dimensional shock-turbulence problem. So-

lution at time 1.6 computed by the new tenth-order SBP

scheme with a fifth-order WENO based nonlinear filter (Yee

and Sjögreen (2006)). Computed solution (grey) and refer-

ence solution (black).

to the right of the shock. The problem is solved on the

domain [0, 5].

Figure 7 shows the solution computed with the present

SBP tenth-order spatial base scheme together with a nonlin-

ear shock-capturing filter obtained as the dissipative portion

of a fifth-order WENO scheme (Yee and Sjögreen, 1999,

2002, 2006). The computation used a uniform grid with 400

points (grey line) and the numerical dissipation coefficient

of 0.0005 for AD12. The solid black line is the reference so-

lution by the standard fifth-order WENO scheme using 4000

grid points. The SBP tenth-order filter scheme is very close

to the reference solution. There is a dramatic improvement

by the SBP tenth-order filter scheme over the standard fifth-

order WENO scheme using the same grid (Yee and Sjögreen

(2006, 2007)). Unfortunately, the accuracy of the SBP

tenth-order filter scheme is almost indistinguishable from the

SBP sixth-order and SBP eighth-order filter schemes compu-

tations for this particular test case. In addition, one major

shortcoming of the SBP tenth-order scheme is that it has a

very restricted CFL limit. It is an order of magnitude lower

than its SBP sixth-order and SBP eighth-order counterparts.

Note that the stable numerical boundary treatment (not

SBP boundary operators) presented in Sjögreen (1995) is

used for the dissipative difference operators AD8, AD10 and

AD12 for the non-periodic boundary case. The SBP bound-

ary operators for high order dissipative difference operators

are very complicated. The present SBP boundary operator

for the tenth-order central interior scheme is also used to

simulate selected 2-D and 3-D multiscale problems contain-

ing strong shock waves. Results indicated that there is no

dramatic gain in accuracy among sixth-order, eighth-order

and tenth-order central base scheme under the framework of

our high order filter approach. Perhaps an improved numer-

ical boundary treatment for the AD12 difference operator

and an improved filter strategy is needed to take advantage

of the higher order accuracy base scheme for this type of

multiscale physics. Future work includes the performance of

the SBP tenth-order filter scheme for 3-D multiscale flows

without shocks and for weak and strong shock/turbulence

interactions with non-periodic physical boundaries. The re-

sults will be reported in detail in a future publication.
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SUMMARY

We have presented a fifth-order SBP boundary modifi-

cation for the tenth-order interior central scheme. However,

increasing the interior accuracy higher than eighth-order in

the derivation of SBP operators leads to new difficulties.

First, it is non-trivial to make the norm matrices computed

by the standard procedures positive definite. Second, the

computed boundary operators usually have very large spec-

tral radii. In the very high order case, both the norm matri-

ces and the boundary operators depend on a large number

of free parameters. In order to derive useful very high order

SBP operators, it is necessary to use advanced optimization

methods to select these parameters. For coarse grids with

periodic boundary conditions, the tenth-order central differ-

encing is more accurate than lower order schemes. For the

non-periodic boundary case, the present SBP tenth-order

scheme also performs well under the framework of our fil-

ter approach. However, the CFL limit of the tenth-order

scheme is an order of magnitude lower than the sixth-order

and eighth-order counterparts. Future work will include

the study of SBP spatial compact interior schemes of order

higher than four. The theory of SBP boundary modification

for compact difference operators is not as complete as the

theory for non-compact (central) operators. The method de-

scribed in Carpenter et al. (1993) is specific to fourth-order

accuracy only.
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APPENDIX

Here we give the optimized boundary operator matrix

Q for the SBP diagonal norm operator for the tenth-order

interior scheme with p = 5 and r = 11. The matrix has size

11×16. The first six columns are

−1.735825 0.770205 5.598258 −5.303959 −5.536114 8.779473
−0.141173 0.000000 −2.878976 4.617511 1.976732 −5.979838
−11.099373 31.141411 0.000000 −66.660594 24.507405 76.519010
0.817870 −3.884603 5.184510 0.000000 −4.617298 −2.222004
2.436671 −4.746727 −5.440561 13.179402 0.000000 3.250455
−4.243363 15.768336 −18.653725 6.964703 −3.569390 0.000000
0.032496 −0.934761 4.439107 −8.991291 9.017526 −4.486641
0.665259 −3.113476 4.933463 −1.255448 −5.426069 7.335731
1.219606 −3.744699 −0.311858 13.619471 −18.761465 8.494855
−1.663525 5.798644 −2.675419 −13.658515 22.817263 −11.670627
0.408393 −1.510655 1.024657 2.833466 −5.397210 2.924868

columns seven to 11 are

−0.201045 −0.863696 −5.438996 5.360636 −1.428936
1.060019 0.740902 3.060986 −3.424987 0.968825

−54.451379 −12.698941 2.757407 17.093239 −7.108185
8.577760 0.251335 −9.365768 6.786950 −1.528751

−24.555401 3.100611 36.826269 −32.362533 8.311814
13.416241 −4.603151 −18.310359 18.177034 −4.946326
0.000000 0.908621 0.088411 −0.060118 −0.013795
−4.329925 0.000000 1.909337 −0.954379 0.259912
−0.122652 −0.555845 0.000000 −0.049806 0.173160
0.115421 0.384507 0.068928 0.000000 0.685535
0.024392 −0.096441 −0.220705 −0.631367 0.000000

and columns 12 to 16 are

0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000445 0.000000 0.000000 0.000000 0.000000
−0.026528 0.002122 0.000000 0.000000 0.000000
0.046337 −0.007723 0.000618 0.000000 0.000000
−0.256507 0.064127 −0.010688 0.000855 0.000000
0.826837 −0.236239 0.059060 −0.009843 0.000787
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