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ABSTRACT

Turbulent fluid flow through a square duct is charac-

terised by the existence of net flows is directions perpen-

dicular to the duct axis. These secondary circulations take

the form of eight counter-rotating vertices, bounded by the

wall, a wall bisector and a corner bisector. The velocities are

relatively small, significantly lower than the turbulent fluc-

tuations, and are relatively difficult to capture in numerical

simulations. A multiple-relaxation-time lattice Boltzmann

method has been applied to this problem, using a Smagorin-

sky eddy viscosity subgrid scale model with a van Driest

wall damping function to model the unresolved stresses. A

Reynolds number of 300 (based on mean friction velocity and

duct width) was used and the flow was driven by a pressure

gradient in the streamwise direction, with periodic boundary

conditions applied in this direction. The large eddy simu-

lations using this method correctly predicted the existence

of the secondary flows, and turbulent statistics were found

to be in good quantitative agreement with prior data from

high resolution numerical simulations.

INTRODUCTION

A classic example of Prandtl’s secondary flows of the

second kind is presented by turbulent fluid flow through a

square duct, in which circulations in directions perpendicu-

lar to the bulk flow are found. These secondary flows also

arise in turbulent flow through channels of other non-circular

cross-sections, but are not found in laminar flows. Although

long recognised to be associated with turbulence, the ex-

act cause of these circulations has been a subject of debate,

though it is generally recognized to be associated with the

inhomogeneity and anisotropy in the Reynolds stress in the

cross-sectional plane.

In a square duct, the time-averaged velocity fields re-

veal these secondary flows as a set of eight vortices, each

one enclosed by a wall, a corner bisector and a wall bisec-

tor. The general features are not sensitive to the Reynolds

number, except that it should be high enough that the flow

be fully turbulent. The velocities associated with these

flows is relatively small, of the order of 1% of the mean

streamwise velocity, and thus significantly smaller than the

turbulent velocity fluctuations. The mechanisms responsible

for the secondary flows result from a fine balance involv-

ing the gradients in the Reynolds stress and pressure strain

terms, making the square duct a particularly challenging

problem for turbulence models. For example, computations

based on commonly used Reynolds-averaged models, such

as the k–ε model, do not perform well, while more complex

anisotropic Reynolds stress models have been successful to

a degree, though not without a priori information on the

stress terms. In this regard, eddy capturing schemes based

on subgrid scale models appears to be more promising.

In this work, the lattice Boltzmann method (LBM) is

applied to the turbulent duct flow problem. The LBM is an

approach based on kinetic theory, in which kinetic equations

are solved for a set of distribution functions, from which the

macroscopic variables (velocity, pressure) can be recovered.

This is somewhat different from other approaches in which fi-

nite difference or spectral methods are used to directly solve

the equations governing the flow of fluids. The approach

taken uses the multiple-relaxation-time (MRT) model, a re-

cent formulation developed by d’Humières et al. (2002) and

subsequently extended by Premnath and Abraham (2007).

This model offers better stability and accuracy than earlier

models based on the Bhatnagar–Gross–Krook (BGK, 1954)

approximation and using just a single relaxation time (SRT).

With the LBM being a comparatively recent approach

to computational fluid dynamics, relatively little work has

been done to assess its suitability for turbulent flows, most

work having focused on laminar flow at low Reynolds num-

bers. However, recent studies using the MRT model (e.g. Yu

et al., 2006) have demonstrated much better performance

than with the earlier SRT model, which is likely to increase

interest in the application of the LBM to turbulent flows.

The MRT–LBM has not yet been thoroughly assessed

for wall-bounded turbulent flows, and the principal objec-

tive of this work was to use the turbulent duct flow problem

to determine how well the LBM would perform for bounded

flows. A subgrid scale model was used, and the unresolved

turbulence scales were dealt with by using a Smagorinsky

eddy viscosity model, with a van Driest damping function

applied near to the walls, so as to perform large eddy simula-

tions (LES). As previously mentioned turbulent duct flow is

a challenging case and Reynolds averaged turbulence mod-

els generally cannot predict the secondary flows adequately.

For this reason it is employed as the benchmark problem in

this work.
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Figure 1: Schematic illustration of the 19–velocity model.

SOLUTION PROCEDURE

Lattice Boltzmann method

The lattice Boltzmann method (LBM) is a relatively re-

cent approach for solving fluid mechanics problems (Chen

and Doolen, 1998; Succi, 2001). It is based on the solu-

tion of a kinetic equation, the lattice Boltzmann equation

(LBE), which describes the evolution of distributions of par-

ticles on a lattice whose collective behavior reproduces fluid

flow. The lattice, possessing sufficient symmetry, restricts

the collisions and movements of particle populations along

discrete directions in such a way that in the continuum, fluid

flow represented by weakly compressible Navier-Stokes equa-

tions is reproduced. The attractiveness of the LBM comes

from the simplicity of the numerical procedure, avoiding the

use of time consuming Poisson-type equation for pressure

field, and ease in handling boundary conditions for repre-

sentation of complex geometries. Moreover, LBM involves

algorithms that are local and explicit, resulting in excellent

performance on a variety of parallel computers with near-

linear scaling and thus suitable for large problems.

The LBE is discretised and solved on a grid, and in three

dimensions a cubic grid is used, and 15- or 19- discrete ve-

locity models are commonly used, though models with 18

or 27 velocities are also found occasionally. In this work,

a 19-velocity model was used, due to its superior numerical

stability, and this is shown in Fig. 1.

The distribution function fα is calculated using a two

step procedure comprising a so-called collision step and a

streaming step. In the MRT formulation, the following ki-

netic equations are used (d’Humiéres et al., 2002; Premnath

and Abraham, 2007):

f̃α(x, t) = −
∑

β

Λαβ

(
fβ − feq

β

)

+
∑

β

(
Iαβ −

1

2
Λαβ

)
Sβ δt (1–a)

fα(x + eαδt, t + δt) = f̃α(x, t) (1–b)

The first term on the right hand side (RHS) of Eq. (1–a)

represents the cumulative effect of particle collisions on the

evolution of the distribution function fα, and can be thought

of as representing the effects of viscosity, as well as other

processes; the subscripts α and β represent the discrete ve-

locity vectors. Collision is considered as a relaxation process

in which fβ relaxes to its local equilibrium value feq
β

at a rate

determined by the relaxation time matrix Λαβ . The MRT

model has a generalised collision matrix with multiple re-

laxation times corresponding to the underlying physics: the

macroscopic fields such as densities, momentum and stress

tensors are given as various kinetic moments of the distri-

bution function. For example, collision does not alter the

densities ρ and momentum ρu, while the stress tensors re-

lax during collisions at rates determined by fluid properties

such as the shear and bulk viscosities. Thus certain relax-

ation times forming components of the collision matrix Λαβ

in the MRT model are developed to reflect the underlying

physics, while those which do not affect hydrodynamics are

chosen to enhance the numerical stability of the approach.

For more details, the reader is referred to d’Humières et al.

(2002) and Premnath and Abraham (2007).

The second term on the RHS of Eq. (1–a) introduces

changes in the evolution of distribution function from driving

forces F , such as gravity or an imposed pressure gradient

used to drive the flow, through a source term Sα; the tensor

Iαβ is the identity matrix.

At this point is worth noting that the commonly used

SRT model uses a scalar relaxation parameter in place of

the tensors Λαβ and there is no summation for the terms

on the right. Also note that the implementation of Eq. (1–

a) does not involve direct summation as shown, but uses

a highly optimised procedure that involves transformations

into moment space and exploits certain properties of Λαβ

(d’Humières et al., 2002; Premnath and Abraham, 2007;

Premnath et al., 2007). With these optimisations, it is

found that despite its much greater complexity, the MRT

only takes about 10–30% more CPU time than the BGK

model. Thus Eq. (1–a) provides the post-collision value of

the distribution function given by f̃α.

Equation (1–b) is known as the advection, or streaming,

step and deals with the change in the distribution function

during a time interval δt, as the particles propagate from

location x to their adjacent location x+eαδt, with a velocity

eα along the characteristic direction α.

The local macroscopic density and velocity fields are then

given by taking appropriate kinetic moments as

ρ =

18∑
α=0

fα (2)

ρu =

18∑
α=0

fαeα +
1

2
F δt (3)

and the pressure field p may be written as

p = c2sρ (4)

where cs = δx/(δt

√
3) is the speed of sound.

The behaviour of the populations represented by the dis-

tribution function f corresponds to that of fluid flow, and

the incompressible Navier–Stokes equations can be recov-

ered from the lattice Boltzmann equations for the case of low

Mach number (v ¿ cs). The discussion of the MRT model

presented here has been relatively brief, but more detailed

descriptions can be found in the aforementioned papers.

Two important points to note are that there is no pres-

sure Poisson equation to solve, and that the solution scheme

is explicit, with information required from neighbouring
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Figure 2: Parallel performance of the lattice Boltzmann code

for turbulent flow with a grid of 2400×120×120. Circles are

data points and line is speed for linear scaling. Speeds are

normalised by one eighth of the speed using eight processors.

nodes only. The solution of the Poisson equation is time

consuming and typically takes 80–90% of the CPU time

in traditional CFD solvers (Madabhushi and Vanka, 1991;

Premnath et al., 2002); its absence means that LBM codes

are relatively fast on a per time step per grid point basis.

The explicit nature of the computations means that codes

based on the LBM can run very efficiently on parallel ar-

chitectures, and this is one of the main motivations for its

use.

As an example, Fig. 2 shows the results of some parallel

performance tests using our lattice Boltzmann code. The

case simulated was turbulent flow through a cylindrical pipe

using a Smagorinsky turbulence model modulated by a wall

damping function. A grid size of 2400× 120× 120 was used

and data were obtained by recording the time taken to per-

form a fixed number (about 200) of time steps. The code was

run on between 8 and 128 processors on the US Department

of Energy’s supercomputer BASSI and the speeds shown in

the plot are normalised such that the mean speed on one

8 processor node is eight. For the 128 processor case, the

computational speed was 14.7 times that with 8 processors,

which corresponds to 92% of that which would be obtained

with linear scaling. It was found that for the tests involving

just one node, the times taken varied significantly, by up

to 6%, though when using many nodes the run times were

more or less constant. This suggests that about 3% of the

fall off in performance could be accounted for by variations

in the speed of the different nodes. Similar performance fig-

ures have been found for flows with magnetohydrodynamic

effects (Pattison et al, 2007).

Turbulence model

The standard Smagorinsky model has been implemented

to account for the effect of unresolved scales in large eddy

simulations (LES). In this model, the eddy viscosity, νt, is

calculated from

νt = (Cs∆)2S, S =
√

2SijSij (5)

where Cs is a constant and ∆ is a length scale. In the

present study, the length scale was taken to be equal to the

grid spacing, and Cs was set to 0.12. The strain rate tensor

is given by Sij = 1/2(∂jui + ∂iuj) and was calculated di-
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Figure 3: Schematic diagram showing geometry modelled.

rectly from the non-equilibrium part of the moments – this is

computationally more efficient than using finite differences,

and simplifies the calculation for complex geometries.

To account for the effect of walls on the turbulence, the

length scale was modified using the van Driest damping func-

tion (1956)

∆ = δx

[
1− exp(−y+/A+)

]
(6)

where y+ = yu∗/ν0 is the normalised distance from the the

wall, u∗ is the friction velocity and the constant A+ = 26.

SIMULATIONS

A schematic representation of the geometry used is

shown in Fig. 3. The shear Reynolds number used was 300.

This is defined as Re∗ = u∗w/ν where w is the duct width

and the mean friction velocity is calculated from the imposed

pressure gradient as ρu2∗ = w |dP/dx|/4. The dimensionless

viscosity (normalised by the grid spacing and time step) was

set to 0.001, and a grid size of 432×74×74 was used.

Periodic boundary conditions were applied in the x

(streamwise) direction, and no-slip conditions in the other

two directions. The use of grid points within the wall meant

that the boundary was half a grid spacing from the outer-

most points, thus the effective width was 72 grid separations.

A uniform grid was used for the simulation, though it should

be noted that stretched grids can be used with the LBM for

certain problems (He et al., 1996; Premnath and Abraham,

2004). The choice of domain proportions followed the rec-

ommendation of Huser and Birigen (1993), who found that

a streamwise extent of about six times the duct width was

sufficiently long to yield accurate simulations.

For the initial conditions, an approximate velocity field

was set up, based on the 1/7 power law. In order to initiate

turbulence, a perturbation profile with sinusoidal fluctua-

tions was superimposed on this, chosen so as to satisfy

continuity (Lam, 1989).

The simulation was run using the MRT model (Premnath

et al., 2007), with a pressure gradient providing the driving

force. A single processor Pentium IV machine was found

to be sufficient for this. The computation was run until a

statistically steady state was reached, and then continued

for a period of over 100 000 time steps over which statistics

were collected.

Three main sources of data were used for comparisons

with the MRT–LBM simulations. Gavrilakis (1992) per-

formed high resolution DNS at the same Reynolds number

as our simulation. Huser and Birigen (1993) also performed

DNS of this case, though they used a higher Reynolds num-

ber of 600. Comparisons with LES performed by Madab-

hushi and Vanka (1991), based on a finite difference ap-
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proach, are also included to enable the performance of the

LBM LES code to be judged against that of another LES

code. In addition, experimental data from Cheesewright

et al. (1990) for a Reynolds number slightly lower than that

in the present simulations was used.

RESULTS

Figure 4 shows contours of the streamwise velocity in the

cross-sectional plane. In this plot, the velocity has been aver-

aged over both time and the length of the domain. Figure 5

shows the secondary velocities (the non-streamwise compo-

nent); in this case, and in all other plots unless otherwise

stated, statistics were also averaged over the eight similar

octants.
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Figure 4: Mean streamwise velocities in the cross-sectional

plane.
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Figure 5: Mean secondary velocity vectors in the cross-

sectional plane.

Figure 5 clearly shows the expected vortex moving in a

sense such that fluid moves toward the corner along the cor-

ner bisector and away from the wall along the wall bisector.

The vortex is centred at about (0.45, 0.18), where the num-

bers in parentheses are the y and z coordinates normalised

with respect to the half width. This compares well with

Gavrilakis’s DNS which gave the centre at (0.5, 0.2). Mad-

abhushi and Vanka’s LES predicted the centre at (0.55, 0.25)

and Huser and Birigen’s DNS, (at higher Reynolds number)

at (0.4, 0.2). The plot also suggests the presence of a small

vortex very close to the corner – this was also noticed by

Gavrilakis.

The contours of streamwise velocity can be seen to bend

toward the walls near to the corners. This is a characteris-

tic of duct flow and is associated with the secondary flow.

The secondary vortex transports faster–moving fluid from

the central region toward the corners along the corner bisec-

tors while slower–moving fluid from the vicinity of the wall is

advected toward the centre near the wall bisectors, resulting

in the bulge in the contours.
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Figure 6: Mean streamwise velocity along wall bisector.

Lines are MRT–LBM predictions, circles Huser & Birigen

(1993), triangles Madabhushi & Vanka (1991), and crosses

Gavrilakis (1992).

Figure 6 shows the mean streamwise velocity along the

wall bisector. To be consistent with the data with which it is

compared, the velocity is normalised using the local friction

velocity at the wall bisector, calculated as u2
τ = τ/ρ where τ

is the local wall stress and ρ the density. Distance is plotted

in terms of wall units ν/uτ , where ν is the viscosity. When

compared with Gavrilakis’s DNS (1992), the mean velocity

is slightly overpredicted, as is often the case with the lower

resolutions used with LES. Huser and Birigen (1993) used a

lower resolution in the wall-normal direction than Gavrilakis

and the is the likely reason for the higher velocity predicted,

though there could also be Reynolds number effects. Also,

Huser and Birigen had performed a preliminary DNS at a

coarser resolution, and this had given higher velocities than

the final DNS.

Turbulence statistics are presented in Fig. 7, which shows

the root mean square (rms) velocity fluctuations along a wall

bisector, together with data from LES and DNS for compar-

ison. The level of agreement with the DNS data can be

seen to be good, and MRT–LBM predictions show signifi-

cantly better agreement with the DNS data than the other

LES, despite the fact that the LBM computations were run

with a much coarser resolution in the important near-wall

region. The variation in rms velocities is very similar to

that found in other wall–bounded flows and comparisons

with plane channel data can be found in Gavrilakis’s pa-
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Figure 7: Root mean square velocity fluctuations along wall

bisector. Lines are MRT–LBM predictions for Re∗=300,

open symbols DNS data of Gavrilakis (1992), and crosses

LES data from Madabushi and Vanka (1991). Velocities

have been normalised with uτ .
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Figure 8: Reynolds stress along wall bisector. Lines are

MRT–LBM predictions and circles are DNS data of Gavri-

lakis (1992).

per. Gavrilakis raised the question of whether the friction

velocity at the wall centre, uτ , or the average friction ve-

locity, u∗, should be used for the normalisation of the data,

and noted that agreement with channel data was best if uτ

was used near to the wall and u∗ farther out.

The principal component of Reynolds stress < −u′w′ >

along a wall bisector (y/W = 0.5) is plotted in Fig. 8. Again,

reasonable, though not perfect, agreement with the DNS

data can be observed, as is typical of LES. Comparisons

with Fig. 7 show that the LBM tends to overpredict the

stress where the turbulent intensities are overpredicted and

vice versa.

One important assessment of this work was to evalu-

ate the ability of the model to quantitatively capture the

secondary circulations. Figure 9 plots the mean spanwise (y-

component) velocity profiles along lines of constant y, and

compares the predictions with those of Gavrilakis and the

experimental data of Cheesewright et al. These plots clearly

show quantitative agreement between the different sources.

Figure 10 plots the root mean square fluctuations of the

spanwise velocity component. Again comparison with other
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Figure 9: Profiles of mean spanwise velocity. Lines are

MRT–LBM, circles DNS (Gavrilakis, 1992) and crosses ex-

perimental data (Cheeswright et al., 1990).
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Figure 10: Profiles of rms spanwise velocity. Lines are

MRT–LBM, circles DNS (Gavrilakis, 1992) and crosses ex-

perimental data (Cheeswright et al., 1990).

data shows close agreement.

CONCLUSIONS

The ability of the MRT–LBM to simulate a wall-bounded

turbulent flow in a square duct has been investigated. This

case was chosen because it exhibits secondary circulations

which are relatively difficult to capture with computational

methods; indeed many commonly turbulence fail to reveal

these motions. The large eddy simulations were performed

with a Smagorinsky model with a wall damping function

used for the unresolved stresses.

Analysis of the results showed the four pairs of counter-

rotating vortices representing the secondary flows to be

present, and comparisons with prior data from Gavrilakis

(1992) and Cheesewright et al. (1990) showed the magni-

tudes of these components to be in good qualitative agree-

ment. Despite the relatively low resolution used (about

4 wall units in the bulk, with 2 wall units next to the wall),

the predictions of turbulent fluctuations and streamwise ve-

locities have been within about 10% of the DNS data, and
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the LBM showed better agreement than did an earlier fi-

nite difference based LES (Madabhushi and Vanka, 1991).

When one considers its ability to parallelise, it appears that

the LBM shows great potential as a tool for the simulation

of complex turbulent flows.
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