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ABSTRACT

In this research, two new dynamic tensor diffusivity
subgrid-scale (SGS) heat flux (HF) models are proposed for
large-eddy simulation (LES) of thermal convection. The lin-
ear and nonlinear constitutive relations for these two new
modelling approaches represent the most general explicit
algebraic formulations possible for the family of SGS HF
models constructed using the resolved temperature gradient
and SGS stress tensor. As a result, these two proposed mod-
els include a number of previous dynamic SGS HF models as
special cases. In contrast to the conventional dynamic eddy
thermal diffusivity SGS HF model, both proposed models
admit more degrees of freedom, allow non-alignment be-
tween the SGS heat flux and negative resolved temperature
gradient vectors, and therefore, provide a more realistic geo-
metrical and physical representation for the SGS heat flux
vector. To validate the proposed models, numerical simula-
tions have been performed based on a benchmark test case
of an unstably stratified horizontal channel flow.

INTRODUCTION

The application of a dynamic procedure to SGS HF mod-
elling was introduced by Moin et al. (1991), shortly after the
proposal of the dynamic SGS stress model by Germano et al.

(1991). In their work, Moin et al. (1991) proposed a dy-

namic eddy diffusivity model for representing the SGS heat

flux (DEDM-HF). DEDM-HF is based on a linear constitu-
tive relation analogous to Fourier’s law for describing molec-
ular heat conduction, which assumes that the SGS HF vector
is instantaneously proportional to and aligned with the neg-
ative resolved temperature gradient, viz. hj ∝−∂θ̄/∂xj . It
is known (Salvetti and Banerjee, 1995; Peng and Davidson,
2002; Porté-Agel et al., 2001) that such an overly simplified
linear constitutive relation is inconsistent with the physics
of turbulent convection and cannot correctly reflect the local
geometrical property of the SGS HF vector.

During the past decade, dynamic SGS HF models pro-
gressed from models of the eddy diffusivity type to those
based on a tensor diffusivity in order to further improve
the physical and geometrical representation of the SGS HF
vector. Salvetti and Banerjee (1995) introduced a dynamic

two-parameter mixed model for representing the SGS heat

flux (DTPMM-HF), which combines the linear eddy dif-
fusivity SGS HF model with a scale-similarity SGS HF
model. By using a truncated Taylor series expansion for
analysis of a filtered flow variable, Porté-Agel et al. (2001)
and Kang and Meneveau (2002) introduced a simplified
DTPMM-HF for studying heat fluxes and dissipation in an
atmospheric boundary layer. Peng and Davidson (2002)
proposed a dynamic homogeneous linear tensor diffusiv-

ity model (DHLTDM-HF) for studying a buoyancy driven
turbulent flow. In the approach of Peng and Davidson,
the tensor diffusivity is constructed as a homogeneous lin-
ear function of the resolved strain rate tensor [defined as

S̄ij

def
= (∂ūi/∂xj + ∂ūj/∂xi)/2]. Using the theory of ten-

sor functions, Wang et al. (2006a, 2007) recently proposed
a dynamic inhomogeneous linear tensor diffusivity model

(DILTDM-HF) and a dynamic nonlinear tensor diffusiv-

ity model (DNTDM-HF) for representation of the SGS heat
flux. The tensor diffusivity for DILTDM-HF is constructed
as an inhomogeneous linear function of S̄ij and the re-

solved rotation rate tensor Ω̄ij [defined as Ω̄ij

def
= (∂ūi/∂xj −

∂ūj/∂xi)/2] (Wang et al., 2007); whereas, the tensor diffu-
sivity for DNTDM-HF is constructed as a quadratic nonlin-
ear function of S̄ij (Wang et al., 2006a).

The previous approaches for dynamic SGS HF modelling
represented by DEDM-HF, DTPMM-HF, DHLTDM-HF,
DILTDM-HF and DNTDM-HF rely on the resolved velocity
gradient tensor (or, its derivatives S̄ij and Ω̄ij) for construct-
ing the modelling constitutive relation. In contrast to these
previous investigations, the objective of the current research
is to extend the concept of generalized gradient diffusion hy-

pothesis (GGDH) of Daly and Harlow (1970) to develop two
new dynamic tensor diffusivity SGS HF models based on the
SGS stress tensor τij . In the current proposal, because the
tensor diffusivity is a tensor function of τij , the model for
the SGS HF vector has more degrees of freedom (dependent
on the choice of the SGS stress model), with the result that
the concomitant constitutive relationship achieves greater
generality in comparison with the conventional approaches.

SGS STRESS AND HEAT FLUX MODELS

In LES of thermal convection, the governing equations
include the filtered continuity, momentum and thermal en-
ergy equations, which take the following form for an incom-
pressible flow:

∂ūi

∂xi

= 0, (1)
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−
∂hj

∂xj

, (3)

where θ̄ is the filtered temperature, [gi] = [0,−g, 0]T is the
gravitational acceleration vector, β is the thermal expansion
coefficient, α is the molecular thermal diffusivity, and Θr is
a reference temperature, which for our test case of an unsta-
bly stratified channel flow, is taken as the bulk temperature,
viz. Θr = θB =

R 2δ

0
〈θ̄〉dx2/2δ. Here, δ is the half channel

width, and 〈·〉 corresponds to a quantity averaged both in
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time and over the homogeneous x1-x3 plane. The stream-
wise, wall-normal and spanwise coordinates for the Cartesian
frame used in this research are denoted using x1, x2 and x3,
respectively. As a consequence of the filtering process, the
so-called SGS stress tensor and SGS HF vector appear in the
above system of governing equations, which are defined as

τij

def
= uiuj − ūiūj and hj

def
= ujθ− ūj θ̄, respectively. In the

following two Subsections, the conventional and proposed
modelling formulations for τij and hj , required for closing
the above system of governing equations, are described.

SGS Stress Models

Two dynamic SGS stress models are tested in this re-
search: namely, the conventional dynamic Smagorinsky
model (DM) of Lilly (1992) and dynamic nonlinear SGS
stress model (DNM) of Wang and Bergstrom (2005).

SGS Stress Model 1 (DM):
The constitutive relation for DM is based on a linear tensor
function of the resolved strain rate tensor S̄ij , i.e.

τ∗

ij
= τij −

τkk

3
δij = −2CS∆̄2

|S̄|S̄ij , (4)

where |S̄| = (2S̄ij S̄ji)1/2, ∆̄ is the grid-level filter width,

and an asterisk represents a trace-free tensor, i.e., (·)∗
ij

def
=

(·)ij − (·)kkδij/3. Following the dynamic procedure of Lilly
(1992), the model coefficient CS can be obtained as

CS = −(MijLij)/(MijMij), (5)

where Lij

def
= ḡuiūj − ˜̄ui

˜̄uj , and Mij

def
= αij − β̃ij is a differ-

ential tensor with αij

def
= 2 ˜̄∆2

|
˜̄S| ˜̄Sij and βij

def
= 2∆̄2

|S̄|S̄ij .
In these equations, the filtered quantities at the grid-level
are denoted using an overbar, while the filtered quantities
at the test-grid-level are denoted using a tilde.

SGS Stress Model 2 (DNM):
The constitutive relation for the second tested SGS stress
model DNM is based on an explicit nonlinear quadratic ten-
sorial polynomial constitutive relation, viz.

τ∗

ij
= −CSβij − CW γij − CN ηij , (6)

where γij

def
=4∆̄2(S̄ikΩ̄kj + S̄jkΩ̄ki) and ηij

def
=4∆̄2(S̄ikS̄kj −

S̄mnS̄nmδij/3) are base tensor functions. It can be shown
(Wang and Bergstrom, 2005) that the three model coeffi-
cients can be evaluated through optimization as24MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

35·24 CS
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35=−

264L∗

ij
Mij

L
∗

ij
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L
∗

ij
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Here, Wij

def
= λij − γ̃ij and Nij

def
= ζij − η̃ij are differen-

tial tensors, with λij

def
= 4 ˜̄∆2( ˜̄Sik

˜̄Ωkj + ˜̄Sjk
˜̄Ωki) and ζij

def
=

4 ˜̄∆2( ˜̄Sik
˜̄Skj −

˜̄Smn
˜̄Snmδij/3). It has been demonstrated

(Wang et al., 2005, 2006b) that DNM is capable of reflecting
the correct level of turbulent kinetic energy (TKE) trans-
fer (both forward and backward scattering) between the
resolved and subgrid scales, and improving the numerical
stability such that the DNM can be applied locally without
resorting to the technique of plane averaging for calculating
the model coefficients.

SGS Heat Flux Models

The focus of this research is on the SGS HF modelling
rather than the SGS stress modelling. For this purpose, we
propose two new models (i.e., a linear and a nonlinear dy-
namic SGS HF models). In order to perform a comparative
study, the two proposed models are tested against the con-
ventional DEDM-HF. All the SGS HF models investigated
in this study can be categorized under the general frame-
work of tensor thermal diffusivity HF modelling originally

introduced by Batchelor (1949), who suggested the following
model for representing the turbulent HF vector 〈u′

j
θ′〉e in a

Reynolds-averaged Navier-Stokes (RANS) approach:

〈u′

jθ′〉e = −Djk

∂〈θ〉e

∂xk

, (8)

where Djk is the so-called turbulent tensor thermal diffusiv-

ity, and 〈·〉e represents an ensemble-averaged quantity in a
RANS approach. An important application of Batchelor’s
suggestion is the GGDH model proposed by Daly and Har-
low (1970), which models Djk using the Reynolds stresses
and expresses the turbulent heat flux vector as:

〈u′

j
θ′〉e = −CθTe〈u

′

j
u′

k
〉e

∂〈θ〉e

∂xk

, (9)

where Cθ is a model coefficient, Te is an appropriate turbu-
lent time scale, and 〈u′

j
u′

k
〉e is the Reynolds stress tensor.

SGS Heat Flux Model 1 (DEDM-HF):
The DEDM-HF proposed by Moin et al. (1991) expresses
the SGS heat flux as

hj = −Cθ∆̄2
|S̄|

∂θ̄

∂xj

, (10)

where the scalar eddy diffusivity implied by Eq. (10) is
αsgs = Cθ∆̄2|S̄|, which can be further written in a general
tensor diffusivity form using the Kronecker delta as follows:
Djk =αsgsδjk =Cθ∆̄2

|S̄|δjk. Introducing the following base

vector functions: bj

def
= ∆̄2

|S̄| ∂θ̄

∂xj

and aj

def
= ˜̄∆2

|
˜̄S| ∂

˜̄
θ

∂xj

, the

SGS HF vector at the grid-level can then be expressed as
hj = −Cθbj . Similarly, the SGS HF vector at the test-grid-

level (Hj

def
= gujθ − ˜̄uj

˜̄θ) can be expressed as Hj = −Cθaj .
The grid- and test-grid-level SGS HF vectors satisfy the vec-

tor identity :
Lj = Hj − h̃j , (11)

where Lj

def
= ḡuj θ̄ − ˜̄uj

˜̄θ is directly computable in the sim-
ulation. By substituting the grid- and test-grid-level SGS
HF models into the vector identity and assuming that

h̃j = −C̃θbj ≈ −Cθ b̃j , a residual vector that expresses the
difference between the left-hand-side (LHS) and right-hand-
side (RHS) of Eq. (11) emerges: Ej = Lj + CθMj , where

Mj

def
= aj − b̃j is a differential vector. By minimizing the

norm of the residual vector (i.e., E
def
= EjEj) using the least

squares method, the model coefficient can be obtained, viz.

Cθ = −(LjMj)/(MjMj). (12)

SGS Heat Flux Model 2 (DGGDH-HF):
The original constitutive relation of Daly and Harlow (1970)
is based on the Reynolds stress tensor for modelling the tur-
bulent heat flux within the RANS approach. In the context
of LES, this constitutive relation results in:

hj = −CθT τ∗

jk

∂θ̄

∂xk

, (13)

where T is a characteristic subgrid time scale which is evalu-
ated using the norm of the resolved velocity gradient tensor,

viz. T =1/|Ā|, with Āij

def
= ∂ūi/∂xj and |Ā|

def
= (2ĀijĀij)1/2.

Equation (13) forms the constitutive relation for our pro-
posed dynamic GGDH model for representing the SGS heat

flux (DGGDH-HF). From Eq. (13), the tensor diffusivity for
DGGDH-HF can be inferred as DG

jk
= f(τ∗

jk
) = CθT τ∗

jk
,

which is a homogenous linear tensor function of τ∗

jk
. Here,

homogeneity refers to a linear transformation that obeys:
DG

jk
= f(τ∗

jk
) = 0 if τ∗

jk
= 0. With the base vector func-

tions defined as: bG
j

def
=

τ
∗

jk

|Ā|

∂θ̄

∂xk

and aG
j

def
=

T
∗

jk

|
˜̄
A|

∂
˜̄
θ

∂xk

, the grid-

and test-grid-level SGS HF vectors can then be expressed
succinctly as: hj = −CθbG

j
and Hj = −CθaG

j
, respectively.
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Fig. 1: Relationships between the classical turbulent HF models

for RANS and dynamic SGS HF models for LES.

Here, T ∗

jk

def
= (guju

k
− ˜̄uj

˜̄uk)∗ represents the trace-free SGS
stress tensor at the test-grid-level. Similarly, the optimal
model coefficient Cθ can be obtained as

Cθ = −(LjGj)/(GjGj), (14)

where Gj

def
= aG

j
− b̃G

j
is a differential vector.

SGS Heat Flux Model 3 (DGGDHQ-HF):
According to the theory of tensor functions, a vector-valued
function of a second-order symmetric tensor M and a vector
v can be represented by Noll’s formula (Zheng, 1994) as
follows:

h = ϕ0v + ϕ1Mv + ϕ2M
2
v, (15)

where ϕ0, ϕ1 and ϕ2 are functions of the independent irre-
ducible tensor invariants of M and v. Noll’s formula pro-
vides an explicit, inhomogeneous, complete and irreducible
tensor function of M and v, forming the basis for our pro-
posed quadratic dynamic GGDH model for representing the

SGS heat flux (DGGDHQ-HF), viz.

hj =−DQ

jk

∂θ̄

∂xk

=−CθP T |τ | ∂θ̄

∂xj

−CθGT τ∗

jk

∂θ̄

∂xk

−CθQT
τ
∗

ji
τ
∗

ik

|τ |

∂θ̄

∂xk

,
(16)

where |τ |
def
= (2τ∗

ij
τ∗

ij
)1/2 and the tensor diffusivity is a

quadratic nonlinear tensor function of τ∗

ij
, viz.

DQ

jk
= CθP T |τ |δjk + CθGT τ∗

jk
+ CθQT

τ∗

ji
τ∗

ik

|τ |
. (17)

The three terms on the RHS of Eq. (16) are identified as:
the eddy diffusivity component (corresponding to the con-
ventional DEDM-HF, or Model 1); the first-order tensor
diffusivity component (corresponding to DGGDH-HF, or
Model 2); and, the quadratic nonlinear component. Equa-
tions (15) and (17) are inhomogeneous owing to the presence
of the SGS eddy diffusivity term (the term related to δjk), ir-
reducible because none of v, Mv and M

2
v can be expressed

as a single-valued function of the remaining terms, and com-

plete because any vector function of the form h = f(M, v)
can be expressed by Eq. (15). As such, no higher-order terms
(e.g., τ∗

ji
τ∗

il
τ∗

lk
· ∂θ̄/∂xk) should appear in Eq. (17), since

these are not independent of the existing terms.

Introducing the base vector functions: bP

j

def
= |τ |

|Ā|

∂θ̄

∂xj

,

aP

j

def
=

|T |

˜̄
|A|

∂
˜̄
θ

∂xj

, bQ

j

def
=

τ
∗

ji
τ
∗

ik

|τ ||Ā|

∂θ̄

∂xk

, aQ

j

def
=

T
∗

ji
T

∗

ik

|T |
˜̄

|A|

∂
˜̄
θ

∂xk

, the grid-

and test-grid level SGS heat fluxes can be simplified as

hj = −CθP bP

j
− CθGbG

j
− CθQbQ

j
, (18)

and
Hj = −CθP aP

j − CθGaG

j − CθQaQ

j
, (19)

respectively. Here, |T | = (2T ∗

ij
T ∗

ij
)1/2 is the norm of T ∗

ij
.

By substituting Eqs. (18) and (19) into Eq. (11), a 3×3 ma-
trix system for computing the model coefficients is directly
obtained

[Pj , Gj , Qj ] · [CθP , CθG, CθQ]T = −Lj , (20)

for j = 1, 2 and 3. Here, Pj

def
= aP

j
− b̃P

j
and Qj

def
= aQ

j
− b̃Q

j

are differential vectors. Because bP

j
, bG

j
and bQ

j
are linearly

Table 1: Summary of test cases for the validation of DGGDH-

HF and DGGDHQ-HF (Reτ = 150)

Test case SGS HF model SGS stress model Gr

Case 1 DEDM-HF DM 1.3 × 106

Case 2 DM 1.3 × 106

Case 3 DGGDH-HF DNM 1.3 × 106

Case 4 DNM 4.8 × 106

Case 5 DM 1.3 × 106

Case 6 DGGDHQ-HF DNM 1.3 × 106

Case 7 DNM 4.8 × 106

independent as are aP

j
, aG

j
and aQ

j
, the differential vectors

Pj , Gj and Qj are also linearly independent. Therefore, the
solution of Eq. (20) for the three model coefficients exists
locally for an instantaneous turbulent thermal flow.

Relations between Different SGS HF Models

Figure 1 illustrates the relation between the RANS and
LES HF models discussed in this research. As shown in
this figure, all these models are unified under the general
framework of tensor thermal diffusivity HF modelling pro-
posed by Batchelor [cf. Eq. (8)]. A direct implementation of
Daly and Harlow’s approach in the context of LES results in
the proposed DGGDH-HF, which by analogy assumes Dij

to be proportional to τij (or, its trace-free form τ∗

ij
). An

extension of the GGDH constitutive relation from a linear
to a quadratic form results in the proposed DGGDHQ-HF,
which corresponds to the most general modelling equation
for any explicit algebraic constitutive relation that is based
on only τij and ∂θ̄/∂xj [viz., hj = f(τij , ∂θ̄/∂xj)].

On adoption of the classical Smagorinsky constitutive re-
lation, the SGS stress tensor assumes the classical form τ∗

ij
=

−2CS∆̄2|S̄|S̄ij . Substituting this model into DGGDHQ-HF
and evaluating the SGS time scale as T =1/|S̄| results in an
equivalent form for DNTDM-HF of Wang et al. (2006a):

hj =−DN

jk

∂θ̄

∂xk

=−C′

θP
∆̄2|S̄| ∂θ̄

∂xj

−C′

θG
∆̄2S̄jk

∂θ̄

∂xk

−C′

θQ
∆̄2S̄jiS̄ik

|S̄|

∂θ̄

∂xk

.
(21)

The derivation of DEDM-HF of Moin et al. (1991) and
DHLTDM-HF of Peng and Davidson (2002) as special cases
of our general modelling approach (i.e., DGGDHQ-HF,
DGGDH-HF and DNTDM-HF) is straightforward. For ex-
ample, if C′

θG
= C′

θQ
= 0, DNTDM-HF reduces to DEDM-

HF; and, if C′

θP
= C′

θQ
= 0, DNTDM-HF reduces to

DHLTDM-HF with

hj = −DHL

jk

∂θ̄

∂xk

= −C′

θG
∆̄2S̄jk

∂θ̄

∂xk

, (22)

where the tensor diffusivity is a homogeneous linear tensor
function of S̄ij , viz. DHL

jk
= f(S̄jk) = C′

θG
∆̄2S̄jk .

TEST CASE AND NUMERICAL ALGORITHM

In order to validate the proposed SGS HF models, nu-
merical simulations have been performed using a benchmark
test case of a fully developed unstably stratified turbulent
channel flow. The results are compared with the DNS data
of Iida and Kasagi (1997, designated as IK-1997). The di-
mensions of the computational domain are L1 × L2 × L3 =
5πδ × 2δ × 2πδ in the streamwise (x1), wall-normal (x2)
and spanwise (x3) directions, respectively. Here, the half
channel width δ is 40 mm. A coarse grid of 48 × 32 × 48
nodes has been used for discretization of the computational
domain. The grid system is uniform in the streamwise and
spanwise directions, and is refined in the wall-normal direc-
tion within the near-wall region. The flow is characterized
by a Reynolds number of Reτ = 150. To examine the effects
of buoyancy on the heat and fluid flow, two Grashof num-
bers (i.e., Gr = 1.3 × 106 and 4.8 × 106) are tested. The
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Reynolds and Grashof numbers are defined as Reτ = uτ δ/ν
and Gr = gβ∆θ(2δ)3/ν2, respectively. Here, uτ represents
the wall friction velocity, and ∆θ = θwh − θwc is the tem-
perature difference between the hot and cold walls.

The governing equations were discretized using a second-
order finite volume method. The filtered momentum equa-
tions were solved using a fractional-step method, whereby
the nonlinear advection term was discretized using a second-
order explicit Adams-Bashforth scheme and the viscous dif-
fusion term was discretized using a second-order Crank-
Nicolson scheme. The pressure correction equation was
solved using a multigrid method, and checkerboard oscil-
lations in the pressure field arising from a state of pressure-
velocity decoupling on a collocated grid were removed us-
ing a momentum interpolation scheme. To solve the fil-
tered thermal energy equation, a fourth-order Runge-Kutta
method was used to advance the temperature field over a
single time step. The time period used to obtain the tur-
bulent flow and temperature statistics was based on 30, 000
time steps. In presentation of the results, quantities non-
dimensionalized using the friction velocity uτ and friction

temperature Tτ

def
= qw/(ρcP uτ ) are denoted with a super-

script “+”. Here, qw is the wall heat flux and cP is the
specific heat at constant pressure. Table 1 summarizes the
seven test cases considered in this research.

RESULT ANALYSIS

Resolved Velocity and Temperature Fields

Figure 2 shows the time-averaged velocity field and iso-
pleths of the resolved temperature field in the x2-x3 plane
at the center of the channel. From Fig. 2, we observe two
symmetrical large longitudinal vortex rolls aligned along the
streamwise direction, which result in a downdraft in the cen-
tral region and two updrafts in the peripheral regions. These
two large longitudinal vortex rolls are a consequence of the
joint effects of buoyancy and the streamwise pressure gradi-
ent, and give rise to the pattern of large organized secondary
structures that are characteristic of this flow.

Figure 3 shows the mean resolved streamwise velocity
profiles (i.e., 〈ū1〉) predicted using the two proposed SGS
HF models. As shown in Fig. 3, owing to the existence of
buoyancy, the predicted velocity profiles deviate from the
familiar log law. Although the velocity profiles predicted by
the different models agree in general, slight differences exist.
The predictions of 〈ū1〉 obtained using the combinations of
DGGDH-HF with DNM (case 3) and DGGDHQ-HF with
DNM (case 6) are in better conformance with the DNS data
than predictions obtained using the other SGS stress and HF
model combinations. Comparatively speaking, the conven-
tional (and popular) SGS model combination of DEDM-HF
with DM (case 1) gives the worst prediction of the velocity
profile. A perusal and comparison of the five different SGS
model combinations tested suggests that use of an advanced
SGS stress model and/or an advanced SGS HF model im-
proves the predictions of the resolved mean velocity field.
More specifically, (i) by comparing case 2 with case 3, and
case 5 with case 6, we observe that it is advantageous to use
DNM for modelling the SGS stress tensor as it leads to a bet-
ter predictive performance; (ii) by comparing cases 2 and 5
with case 1, we observe that it is advantageous to use the
proposed DGGDH-HF or DGGDHQ-HF for modeling the
SGS heat flux as both these models lead to improved predic-
tions; and, (iii) as mentioned above, use of the combination
of DGGDH-HF with DNM (case 3) or of DGGDHQ-HF with
DNM (case 6) gives results that are in the best conformance
with the DNS data.

Figure 4 demonstrates the effects of buoyancy on the
mean resolved velocity profile predicted using the two best

Fig. 2: Velocity field and isopleths of the resolved temperature

field (x2-x3 view at x1/L1 = 0.49, predicted using DGGDH-

HF & DNM, Gr = 1.3 × 106, temperature is normalized using

the temperature difference between the two walls).
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Fig. 5: Resolved turbulence intensities (Gr = 1.3 × 106).

performance combinations of the SGS stress and HF models
observed in Fig. 3 (namely, the combinations of DGGDH-HF
with DNM and of DGGDHQ-HF with DNM). From Fig. 4,
it is seen that the performance of the DGGDH-HF and
DGGDHQ-HF is similar at the two different Grashof num-
bers. As Grashof number increases, the non-dimensionalized
streamwise velocity shifts downwards in response to the in-
crease in the buoyancy. Figure 5 compares the predicted
resolved turbulence intensities [or, root-mean-square (RMS)

values, which are defined as ū+

i,rms

def
= 〈(

ūi−〈ūi〉

uτ
)2〉1/2 for

i = 1, 2 and 3] with the DNS data. In agreement with our
previous conclusion based on the mean resolved streamwise
velocity profiles, it appears that under exactly the same test
condition, the predictions of ūi,rms using the combinations
of DGGDH-HF with DNM (case 3) and DGGDHQ-HF with
DNM (case 6) are in better conformance with the DNS data
than those obtained using the other model combinations.
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Figure 6 shows the profile of the mean resolved temper-
ature across the channel. Due to the effect of buoyancy, the
mean temperature profile deviates from the conventional law
of the wall relationship. Among the five modelling combina-
tions tested, predictions obtained using the three combina-
tions based on DM (cases 1, 2 and 5) slightly over-predict the
temperature in comparison with the DNS data. Although
the combinations of DGGDH-HF with DNM (case 3) and
DGGDHQ-HF with DNM (case 6) slightly under-predict the
resolved temperature, these two combinations nevertheless
provide slightly better predictions of the resolved tempera-
ture profile in comparison with the DNS data, especially in
the buffer layer (x+

2
≈ 10–30). Figure 7 displays the resolved

temperature fluctuation (RMS of θ̄): θ̄+
rms

def
= 〈(

θ̄−〈θ̄〉

Tτ
)2〉1/2.

In conformance with previous observations, cases 3 and 6
generally provide better predictions than the other three
tested cases (which all use DM), when compared with the
DNS data. In particular, predictions obtained using the
combination of DGGDHQ-HF with DNM (case 6) are in the
best agreement with the DNS data, especially in the buffer
layer. This implies that for LES of heat transfer (or, scalar
transport), it is beneficial to use an advanced SGS stress
model (such as DNM) in the filtered momentum equation to
obtain a more realistic fluid flow field.

Budgets of Shear Stresses and Heat Fluxes

For LES of a channel flow, an instantaneous filtered
quantity can be decomposed into a time- and plane-averaged
component and a residual component as: φ̄ = 〈φ̄〉 + φ̄′′. On
assuming that the flow is statistically stationary and ho-
mogeneous in the x1–x3 plane, an equation which balances
the time- and plane-averaged shear stresses at an arbitrary
wall-normal location x2 can be obtained from the filtered
streamwise momentum equation:

ν
∂〈ū1〉

∂x2

− 〈ū′′

1 ū′′

2 〉 − 〈τ12〉 =
1

ρ

∂〈p̄〉

∂x1

x2 +
τwh

ρ
. (23)

The three terms on the LHS of Eq. (23) represent the
resolved viscous shear stress, resolved Reynolds (or, tur-
bulent) shear stress, and SGS shear stress, respectively.
The two terms on the RHS of the equation represent the
resolved integrated force due to the mean pressure gradi-
ent, and the resolved viscous shear stress at the hot wall

(τwh =ρν ∂〈ū1〉

∂x2
|x2=0), respectively.

Figures 8(a) and (b) show the shear stress budget pre-
dicted using DGGDH-HF and DGGDHQ-HF, respectively.
All the terms shown in the figures are non-dimensionalized
using the viscous shear stress term [i.e., τw/ρ = u2

τ ]. Al-
though two assumptions were used in the derivation of
Eq. (23) from the filtered momentum equation, the balance
expressed by this equation is consistent with the results ob-
tained from the numerical simulation. As evident in both
Figs. 8(a) and (b), the total shear stress calculated from the
LHS of Eq. (23) agrees very well with that calculated from
the RHS of the equation. The time- and plane-averaged SGS
shear stress component 〈−τ12〉 is very small in comparison
with the other shear stress components. However, as shown
in Figs. 8(a) and (b), the instantaneous value of the SGS
shear stress −τ12 can be significant at a specific location
(illustrated using a dashed line).

The time- and plane-averaged equation expressing the
balance in the mean wall-normal heat fluxes at any arbitrary
wall-normal location x2 can be obtained from the filtered
thermal energy equation [i.e., Eq. (3)] as:

−α
∂〈θ̄〉

∂x2

+ 〈ū′′

2 θ̄′′〉 + 〈h2〉 =
qwh

ρcP

, (24)

where qwh

def
= −λ ∂〈θ̄〉

∂x2
|x2=0 is the resolved molecular heat

flux at the hot wall, and λ is the thermal conductivity. The
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Fig. 6: Mean profiles of the

resolved temperature (Gr =
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Fig. 7: Root-mean-square of

resolved temperature (Gr =
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Fig. 8: Budget of wall-normal shear stresses (SGS stress model:

DNM, Gr = 1.3×106, location for the instantaneous SGS shear

stress distribution is: x1/L1 = x3/L3 = 0.49).
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Fig. 9: Budget of wall-normal heat fluxes (SGS stress model:

DNM, Gr = 1.3×106, location for the instantaneous SGS shear

stress distribution is: x1/L1 = x3/L3 = 0.49).

three wall-normal HF components on the LHS of Eq. (24)
correspond to the resolved molecular heat flux, resolved tur-
bulent heat flux, and SGS heat flux, respectively. Figure 9
displays the budget of the wall-normal heat flux terms pre-
dicted by DGGDH-HF and DGGDHQ-HF. All the terms
shown in the figure are non-dimensionalized by the molecu-
lar heat flux at the hot wall, i.e. qwh/ρcp = uτhTτh. With
this normalization, the total heat flux given by the RHS of
Eq. (24) becomes unity. As shown in Figs. 9(a) and (b), both
DGGDH-HF and DGGDHQ-HF provide a good balance of
the wall-normal heat fluxes, since it is evident from these
figures that the total heat flux calculated from the LHS of
Eq. (24) agrees well with the theoretical value of 1.0. Fig-
ures 9(a) and (b) also show that the instantaneous values
of the wall-normal SGS HF h2 can fluctuate locally with a
relatively large amplitude in sharp contrast to the time- and
plane-averaged values 〈h2〉.

Figures 10(a) and (b) show the streamwise and wall-
normal turbulent heat fluxes (i.e., 〈ū′′

1
θ̄′′〉++ 〈h1〉

+ and
〈ū′′

2 θ̄′′〉++〈h2〉
+, respectively) using wall coordinates in com-

parison with the DNS results. Although the performance of
the five different SGS model combinations is very similar in
terms of their predictions of the wall-normal turbulent HF
component [cf. Fig. 10(b)] (all in good agreement with the
DNS results), distinct differences exist between their pre-
dictions of the streamwise component of turbulent HF [cf.
Fig. 10(a)]. Once again, it is observed that use of DNM
and/or use of the proposed DGGDH-HF and DGGDHQ-HF
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gives predictions of the streamwise turbulent heat flux that
are in better agreement with the DNS data.

SGS Effect on Local TKE Flux

The rate of local TKE flux between the resolved and
unresolved scales is represented by an invariant of τ∗

ij
and

S̄ij through tensor contraction, viz. Pr

def
= −τ∗

ij
S̄ij . This

quantity represents an inertial inviscid local energy flux be-
tween the resolved scale and unresolved subgrid scales. Fig-
ures 11(a) and (b) shows the time- and plane-averaged value
of Pr across the channel (non-dimensionalized using u4

τ/ν).
The forward scatter (i.e., 〈P+

r 〉) and backscatter (i.e., 〈P−

r 〉)
of TKE have been separated, and naturally, these two quan-
tities must verify 〈Pr〉 = 〈P+

r 〉+〈P−

r 〉. From the Fig. 11, it is
observed that both SGS model combinations of DGGDH-HF
with DNM (case 3) and DGGDHQ-HF with DNM (case 6)
are capable of reflecting backscatter. In contrast, due to
the simplicity and limitation of the constitutive relation in-
herent to DM (which requires the principal axes of −τ∗

ij
be

aligned with those of S̄ij), none of the combinations of the
SGS models based on DM (not shown in the figures) can suc-
cessfully predict the net effect of backscatter in a time- and
plane-averaged sense. By comparing Figs. 11(a) and (b), it
is observed that the magnitude of local TKE fluxes predicted
by DGGDH-HF and DNM are slightly larger than those pre-
dicted by DGGDHQ-HF and DNM, reflecting differences in
the SGS HF modelling effect on local TKE transport.

CONCLUSIONS

The proposed DGGDHQ-HF derived from Noll’s formula
provides the most general representation of the SGS heat
flux for the family of explicit algebraic models that are func-
tions of the resolved temperature gradient ∂θ̄/∂xj and SGS
stress tensor τij [viz., hj = f(τij , ∂θ̄/∂xj)]. The represen-
tation of the SGS heat flux by DGGDHQ-HF is explicit,
nonlinear (quadratic), inhomogeneous, complete and irre-
ducible. One of the important special cases of DGGDHQ-HF
is DGGDH-HF, which is a linear homogeneous tensor dif-
fusivity model that is analogous to the well-known GGDH
approach of Daly and Harlow (1970) as applied within
the RANS framework. We demonstrate that the proposed
DGGDH-HF and DGGDHQ-HF are general linear and non-
linear SGS HF modelling approaches, which include as spe-
cial cases a number of previous models such as DEDM-HF
of Moin et al. (1991), DHLTDM-HF of Peng and Davidson
(2002) and DNTDM-HF of Wang et al. (2006a).

In order to validate the proposed modelling approach, a
comparative numerical study has been conducted based on
an unstably stratified horizonal channel flow. It is observed
that the performance of DGGDHQ-HF and DGGDH-HF
is superior to that provided by the conventional DEDM-
HF. Also, in comparison with the conventional DM of Lilly
(1992), use of DNM can improve predictions of both the
velocity and temperature fields. On utilization of DNM
for modelling the SGS stress, the predictive performance of
DGGDHQ-HF and DGGDH-HF is generally comparable for
the flow simulated in this study, although it should be noted
that the performance of DGGDHQ-HF is slightly better
than that of DGGDH-HF in terms of the prediction of RMS
of the resolved temperature field (θ̄+

rms) and the streamwise
turbulent heat flux (〈ū′′

1 θ̄′′〉++〈h1〉
+). With respect to the

need for advancing the theory of constitutive relations for
SGS HF modelling, both DGGDH-HF and DGGDHQ-HF
represent important generalizations to the current state-of-
the-art for SGS HF modelling. However, if attention is solely
focused on computational cost, DGGDH-HF appears to be
more appealing since this model requires fewer numerical
operations for its implementation than does DGGDHQ-HF.
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Fig. 10: Turbulent heat fluxes (Gr = 1.3 × 106).
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Fig. 11: Local TKE fluxes predicted by the proposed SGS

HF models (SGS stress model: DNM; Gr = 1.3 × 106). To-

tal: 〈Pr〉/(u4
τ
/ν); forward scatter: 〈P+

r
〉/(u4

τ
/ν); backscatter:

〈P−

r
〉/(u4

τ
/ν).
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