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ABSTRACT

Highly resolved Large Eddy Simulation (LES) of turbulent

boundary-layer separation are conducted. The behavior of

incompressible fully-turbulent flat-plate boundary-layer flow

subjected to a constant adverse pressure gradient (APG) is

investigated. Reynolds number and pressure-gradient param-

eters are adapted to measurements conducted by Indinger et

al. in a closed-circuit water tunnel. A special focus of analysis

is placed on scaling laws for the mean-velocity profiles un-

der non-equilibrium conditions approaching pressure-induced

separation. Our computational results suggest that classical

inner scaling remains valid for non-equilibrium even with in-

termittent detachment. Best predictions for the outer region

are obtained with the scaling of Zaragola and Smits.

INTRODUCTION

There has been considerable controversy regarding the be-

havior of the mean-velocity profile of turbulent boundary

layers approaching separation (George, 2006; Indinger et al.,

2006; Maciel et al., 2006). Asymptotic expansions predict in-

dependence from the pressure gradient for the inner region,

provided the Reynolds number is large (Panton, 2005). While

some experiments (Ludwieg and Tillmann, 1949; Sk̊are and

Krogstad, 1994, e.g.) show that the classical logarithmic law is

valid even under a strong adverse pressure gradient (APG) and

non-equilibrium conditions, other experiments indicate that,

based on inner scaling, the mean velocity profile is not self-

similar when approaching separation (Dengel and Fernholz,

1990; Nagano et al., 1998, e.g.).

Recently, Indinger et al. (2006, 2004) have presented mea-

surements for a fully turbulent flat-plate boundary layer with

a constant APG, for a detailed description refer to Indinger

(2005). Fig. 1 shows the experimental setup in the test section

of a closed-circuit water tunnel with flow from left to right.

The measurements were conducted in the boundary layer de-

veloping on an inclined flat plate. A flexible curved wall on

the opposite side is employed to impose the pressure gradient

to the flow, where the pressure-gradient parameters can be

controlled by adjusting the curvature. The test section has a

cross section of 0.4×0.4 square meters and an overall length of

0.8 meters. The flat plate, inclined by 4 degrees, has an overall

length of 0.725 meters and a flap to prevent trailing-edge sep-

aration. The plate surface is made from mirrored borosilicate

glass which facilitates measurements close to the wall. Several

auxiliary devices that are necessary to control the flow qual-

ity. A bypass system below the flat plate and a suction system

have been installed to control the stagnation point flow at the

elliptic leading edge of the plate. To prevent separation of the

boundary layer on the opposite wall due to curvature effects,

a second suction system consisting of three slots is installed at

the upper rear end of the test section.

In the spanwise-centered plane, streamwise velocity profiles

were measured using a LASER Doppler anemometry (LDA)

system. For measurements of the wall shear stress, a Pre-

ston tube was used. These measurements cannot provide

fully-3D statistics of the turbulent non-equilibrium flow. To

gain a deeper understanding of the behavior in the vicinity

of the pressure-induced separation a numerical investigation

by Large Eddy Simulation (LES) was carried out which is re-

ported in the following.

Figure 1: Experimental setup in the test section of a wa-

ter tunnel. The computational domain of the present LES

is marked by the dashed white line.

It should be noted that under the considered conditions the

APG leads to massive separation with a thickness of about

2δ∗ in terms of the attached boundary layer thickness. The

pressure-gradient induced separation is highly unsteady. In

our LES, the instantaneous separation line has excursions

which are significantly larger than the mean boundary-layer

thickness of the incoming flow.

NUMERICAL METHOD

Implicit-LES methodology and subgrid-scale modeling

Further development of LES faces as major obstacle the

strong coupling between subgrid-scale (SGS) model and the

truncation error of the numerical discretization. SGS mod-

els for LES generally operate on a range of scales which is

marginally resolved by the underlying discretization scheme.

One can exploit this link by developing discretization meth-

ods where the truncation error itself functions as implicit

SGS model. Approaches where SGS model and numerical

discretization are merged are called implicit LES. Many ap-

proaches to implicit LES can be taken, a comprehensive review

is given in the book of Grinstein et al. (2007). Mostly, given

nonlinearly stable discretization schemes for the convective
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fluxes are used as main element of implicit SGS models. A

numerical analysis of Garnier et al. (1999), however, comes to

the conclusion that the application of off-the-shelf upwind,

variation-limited, or non-oscillatory schemes is not recom-

mendable.

Using implicit LES for prediction requires discretization

schemes which are specially designed, optimized, and vali-

dated for the differential equation to be solved. In order to

avoid that suitable schemes have to be found merely by conjec-

ture, we have recently developed a systematic framework for

ILES based on deconvolution methods (Adams et al., 2004;

Hickel et al., 2006). The resulting so-called Adaptive Local

Deconvolution Method (ALDM) represents a full merging of

numerical discretization and subgrid-scale model.

Optimal model parameters of ALDM are determined by

minimizing a cost function which measures the difference be-

tween spectral numerical viscosity and the eddy viscosity from

EDQNM theory for isotropic turbulence (Hickel et al., 2006).

With these parameters, the spectral eddy viscosity of the

ALDM scheme exhibits a low-wavenumber plateau at the cor-

rect level and reproduces the typical cusp shape up to the

cut-off wave number at the correct magnitude when applied

to canonical inertial-range turbulence. Recently, this analy-

sis has been extended to the passive-scalar transport equation

(Hickel et al., 2006).

ALDM has been established as a reliable, accurate, and ef-

ficient method for LES. Predictions of ALDM agree well with

theory and experimental data. Various applications, e.g. to

three-dimensional homogeneous isotropic turbulence (Hickel

et al., 2006), to plane channel flow (Hickel et al., 2005), and

to the separated flow in a channel with periodic restrictions

(Hickel et al., 2006), demonstrate the good performance of

the implicit model. It has been shown that the implicit SGS

model performs at least as well as established explicit mod-

els. This is attributed to the fact that physical SGS modeling

approaches are incorporated into the design of the discretiza-

tion scheme, and that discretization effects are fully taken into

account within the SGS model formulation.

Implementation

The incompressible Navier-Stokes equations are discretized

on a staggered Cartesian mesh. For time advancement an

explicit third-order Runge-Kutta scheme with coefficients as

proposed by Shu (1988) is used. We use a Courant-Friedrichs-

Lewy limit of CFL = 1.0 for all simulations. All results

presented in this paper are obtained by the simplified adap-

tive local deconvolution method (Hickel and Adams, 2006)

that represents a computationally more efficient implementa-

tion of the original ALDM. The pressure-Poisson equation and

diffusive terms are discretized by second-order centered differ-

ences. The Poisson solver employs fast Fourier transforms in

the spanwise direction and the stabilized bi-conjugate gradi-

ent method in the streamwise and wall-normal directions. The

Poisson equation is solved at every Runge-Kutta substep.

Computational grid and boundary conditions

The computational domain considered in the LES, as indi-

cated by a dashed white line in Fig. 1, represents only a part

of the experimental setup. The flow within this domain is de-

termined by the surrounding flow which has to be modeled by

imposing appropriate boundary conditions.

The computational domain of the LES has an overall length

of 1.01 meters and is discretized by 2038 × 144 × 144 finite

volumes. The spanwise and wall-normal extents are 0.036 me-

ters and 0.15 meters, respectively. For comparison, the inflow

boundary layer thickness is δ∗(x = 0) = 0.0008 meters. The

grid spacing is homogeneous in streamwise and in spanwise

directions. In wall-normal direction a hyperbolic stretching

is used to increase resolution near the wall. At the domain

boundaries three layers of ghost cells are added so that sten-

cils reaching beyond the domain boundary can be used. The

employed methods for filling these ghost cells are described

below.

Spanwise periodicity was imposed since the flow is supposed

to be homogeneous in this direction. At the surface of the flat

plate a no-slip condition is imposed. The boundary layer is

resolved and no wall model is used. The ghost cells are filled

with the analytical solution for Stokes flow as recommended

by Morinishi et al. (1998).

The free-stream interface is modeled by prescribing pres-

sure p = pfs and face-normal derivatives of the mean ve-

locity ∂y〈u〉 = 0, and by solving for velocity fluctuations

∂yu′ = −αu′ with α = 1/(4∆y). The latter results in the

decay condition u′(y) ∝ exp (−αy). The value of the param-

eter α was determined from the wavelength of numerically

induced oscillations that were observed when the decay condi-

tion was not used. Ghost cells are filled by solving a discrete

second-order approximation of the above equations.

At the inlet, fully turbulent inflow data are generated us-

ing a recycling technique, similar to that of Lund et al. (1998):

Instantaneous turbulent structures are extracted at a down-

stream distance lrec ≈ 10δ. Inside the boundary layer, target

profiles for the fluctuating velocities are taken from Spalart’s

zero-pressure-gradient boundary-layer DNS (Spalart, 1988) at

Reθ = 670. In the outer flow region, isotropic turbulence is

assumed with a turbulence level of Tu = 0.03 matched to

the water-tunnel experiment. Recycling techniques can sus-

tain spurious oscillations with a wavelength proportional to

the recycling length. In order to damp these oscillations the

re-scaling factors are computed for each ghost-cell plane sep-

arately: For the innermost ghost-cell plane, target profiles are

taken from the DNS of Spalart (1988). For the remaining two

upstream planes, the target fluctuation profiles are damped

such that ∂x〈u′〉 = 〈u′〉/lrec is satisfied.

At the outlet, the ghost cells are filled by extrapolation

in such a way that ∂xp = 0 and ∂2
xu = 0 are fulfilled for a

second-order centered discretization. No artificial damping or

sponge zone is used.

RESULTS AND DISCUSSION

General overview

A first impression of the investigated flow can be obtained

from mean profiles of streamwise and wall-normal velocity

components that are shown for the entire computational do-

main in Fig. 2. The influence of a strong adverse pressure

gradient is evident. The mean-flow deceleration results in an

increasing fraction of back-flow events and eventually causes

strong boundary-layer separation. The boundary-layer sepa-

ration is accompanied by a strong wall-normal velocity compo-

nent and intense interactions with the outer flow. The shape of

the separation bubble is indicated by two lines that represent
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different criteria: The locations where the mean streamwise

velocity component does vanish 〈u〉 = 0 and the locations

where forward flow and upstream flow have equal probability

(χ = 0.5). Both criteria give a similar impression, however,

notable differences are observed close to the separation point.
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Figure 2: Mean velocity profiles for present LES of an APG

turbulent boundary layer. −−−−−−− mean velocity, −−−−
〈u〉 = 0 , ·−·−·− χ = 0.5 .
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Figure 3: Reverse flow parameter for present LES of an APG

turbulent boundary layer.

The probability of back flow is measured by the reverse-flow

parameter

χ =
1

2
− 1

2

fi
u

|u|

fl
, (1)

where χ denotes the fraction of time that the flow moves up-

stream. Wall-normal profiles of the value of χ are shown in

Fig. 3 and streamwise profiles are shown in Fig. 4. We observe

that flow separation is accompanied by the shift of the loca-

tion of maximum χ away from the wall towards the detached

shear layer.

The following terminology has been proposed by Simpson

(1981, 1989) to define the separation state quantitatively: In-

cipient detachment (ID) occurs with χ = 0.01, intermittent

transitory detachment (ITD) occurs with χ = 0.2, transitory

detachment (TD) occurs with χ = 0.5, and detachment (D)

occurs where the time-averaged wall shearing stress is zero.

The corresponding locations for the LES of the present con-

figuration are given in Tab. 1. As most available data, our

computational results confirm that TD and D occur at the

same location.

The mean static pressure imposed as a boundary condition

at the free-stream interface is shown in Fig. 4b. The mean

pressure distribution at the wall, see Fig. 4b, is the nonlinear

response of the flow and strongly influenced by the boundary-

layer separation. The oscillatory motion of detached flow

zones have a significant effect on the upstream flow that re-

sults in substantial deviation of the wall pressure from the

imposed free-stream condition. In the experiments, the pres-

sure has been measured at the plate surface only. Hence, the

free-stream pressure boundary condition for the present LES

Table 1: Separation state near the wall for present LES in

Simpson’s terminology (Simpson, 1981).

Term Definition Location

ID χ = 0.01 x = 0.287

ITD χ = 0.2 x = 0.457

TD χ = 0.5 x = 0.489

D 〈τw〉 = 0 x = 0.490
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Figure 4: (a) Reverse-flow parameter: −−−−−−− at the wall

and −−−− maximum value. (b) Mean static pressure at the

−−−− free-stream interface and at the −−−−−−− wall. The

·········· dotted line denotes the target pressure gradient of 810

Pa/m according to experimental reference data.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.3

0.6

0.9

1.2(a)
〈∂

x
p
〉/

ρ

x
0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.7

0.8

0.9

1

1.1

(b)

Ue

x

Figure 5: (a) Mean pressure gradient at the wall, and (b) free-

stream velocity at the boundary-layer edge for ◦ experiment

and −−−−−−− LES.

had to be reconstructed by a large number of low-resolution

trials to obtain best possible agreement of the wall-pressure

distribution with the experimental data.

Cross-validation of numerical and experimental results

The resulting wall-pressure gradients for LES and the ex-

periment are shown in Fig. 5a. Despite the the usual noise

in derivatives computed from experimental data, LES results

and experiment agree well. This first impression is confirmed

by the observed deceleration of the free-steam velocity Ue , see

Fig. 5b, that can be measured more accurately. Mean-flow de-

celeration is directly caused by the APG through Bernoulli’s

equation and the excellent agreement of Ue confirms that both

the pressure gradient and the curvature of streamlines are re-

produced correctly.

The relevant velocity scale for flow in the near-wall re-

gion within the boundary layer is the wall-friction velocity

Uτ =
p

ν| 〈∂yu〉 |wall. Fig. 6a shows the wall-friction velocity

from Indinger (2005) and for the present LES. The graph in-

dicates differences between LES and experiment that become

more pronounced in the local non-dimensional wall-friction

coefficient Cf = 2U2
τ /U2

δ , see Fig. 6b. We believe that these

differences mostly result from errors in the experimental de-

termination of Uτ (Indinger, personal communication).

Indinger et al. (2006) used a Preston tube to measure the
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Figure 6: (a) Wall-friction velocity Uτ −−−−−−− present LES, ◦
Preston-tube measurement. (b) Local wall-friction parameter

Cf −−−−−−− from present LES, ◦ Preston-tube measurement,

−−−− correlation of Fernholtz (1964) using LES data, 2

correlation of Fernholtz (1964) using LDA measurements.

dynamic pressure at the wall. The wall-friction velocity Uτ

has been computed by means of tabulated calibration data of

Head and Ram (1971). By construction, Preston-tube mea-

surements are erroneous in flow regions with instantaneous

backflow, i.e. from ID onwards. The applicability of this

method to attached flow is questionable in case of strong pres-

sure gradient (Patel, 1965). Our claim is corroborated by an

empirical correlation for Cf . Following Fernholtz (1964),

Cf = 0.058lg(8.05/H1.818
12 )1.705Re−0.268

θ (2)

allows to approximate the local wall-friction coefficient by a

functional of non-dimensional integral parameters, that can

be measured rather accurately. In Fig. 6b this correlation is

applied to both experimental and numerical data. A good

agreement of simulation and experiment is observed. In the

region with significant backflow, between ID and D, the corre-

lation functional of Fernholtz (1964) gives Cf almost identical

to that computed from the wall-friction of the LES.

A turbulent boundary layer can by characterized by several

length scales. The boundary-layer thickness δ serves as a mea-

sure for the largest structures in the boundary-layer flow. δ is

defined as the distance from the wall where 99 percent (δ99)

of the free-stream velocity Ue is reached. In APG boundary

layer flow, however, the velocity is not constant in the free

stream. For the experimental data, the LDA measurement

points representing the transition between boundary layer and

free stream were chosen by Indinger (2005) manually. For the

LES data, the boundary layer edge is determined as the point

where the streamwise velocity starts to diverge from the linear

dependency, which is valid for the external flow, with decreas-

ing wall distance. The velocity at this point is defined as Ue

and δ follows from δ = y|〈u〉=Uδ
with Uδ = 0.99Ue. The vis-

cous length scale l+ = ν/Uτ is used to characterize the size of

the smallest coherent structures that occur close to the wall.

Graphs for both length scales are shown in Fig. 7. The vis-

cous length scale l+ is computed from its definition l+ = ν/Uτ

using the wall-friction velocity Uτ that has been discussed al-

ready. Differences between LES and experiment result from

the Preston-tube measurement of Uτ .

Because of such uncertainties, length scales based on inte-

gral definitions are more robust than δ and l+. Fig. 8 shows

the boundary-layer displacement thickness

δ∗ =

Z ∞

0

„
1− 〈u〉

Uδ

«
dy, (3)

and the boundary-layer momentum-loss thickness

δθ =

Z ∞

0

〈u〉
Uδ

„
1− 〈u〉

Uδ

«
dy. (4)
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Figure 7: (a) viscous length-scale for: −−−−−−− present LES

and ◦ Preston-tube measurement, (b) boundary-layer thick-

ness for: −−−−−−− present LES and ◦ LDA measurement.
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Figure 8: Integral measures for the boundary-layer thickness:

(a) displacement thickness, (b) momentum thickness. −−−−−−−
present LES , ◦ LDA measurement.
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Figure 9: Shape parameters: (a) H12 displacement thickness

to momentum-loss thickness, (b) H32 energy-loss thickness to

momentum-loss thickness. −−−−−−− present LES , ◦ LDA mea-

surement.

Pressure gradient and incipient separation result in a fast

growth of the boundary-layer thicknesses. We observe a good

agreement between experiment and simulation for δ∗ and δθ.

The different thickness measures are frequently used to de-

fine non-dimensional parameters characterizing the shape of

the mean velocity profile. Fig. 9 show the shape parameters

H12 and H32 which are defined as the ratio of displacement

thickness to momentum thickness, and as the ratio of en-

ergy thickness to momentum thickness, respectively. At the

inflow, H12 is almost constant at a level of 1.5. The pa-

rameter H12 increases with incipient backflow and doubles its

value before boundary-layer separation. H23 shows a notable

inflow transient, that might result from the fact that zero-

pressure-gradient (ZPG) velocity profiles and statistics were

imposed at the inflow. After this transient, H23 decreases

from about 1.75 to a minimum of about 1.5 at detachment.

Simulation and experiment show identical qualitative behav-

ior, however, LES predicts slightly higher values for H32 and

slightly lower values for H12 than determined experimentally.

Fig. 10 shows Reynolds numbers Reδ∗ and Reδθ
based on dis-

placement thickness and momentum thickness, respectively,

for experiment and computation.

Numerous dimensionless pressure-gradient parameters have

been proposed in order to classify and to compare APG

boundary-layer flows. Fig. 11 shows four widely used param-
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Figure 10: Reynolds numbers: (a) Reynolds number based

on displacement thickness, (b) Reynolds number based on

momentum-loss thickness, −−−−−−− present LES , ◦ LDA mea-

surement.
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Figure 11: Pressure-gradient parameters (a) Clauser pressure-

gradient parameter, (b) Patel pressure gradient, (c) dimen-

sionless pressure-gradient parameter K, (d) dimensionless

pressure-gradient parameter Λθ.

eters, namely the Clauser pressure parameter

β =
δ∗

ρU2
τ

〈∂xp〉 , (5)

the Patel pressure gradient

∆P =
ν

ρU3
τ

〈∂xp〉 , (6)

the pressure-gradient parameter

Λθ =
δθ

ρU2
δ ∂xδθ

〈∂xp〉 , (7)

and the pressure-gradient parameter

K =
ν

U2
δ

〈∂xUδ〉 . (8)

The latter parameter has the advantage that it does not in-

corporate pressure gradient and wall-shear stress. For all

pressure-gradient parameters LES results and experimental

data agree reasonably well.

Scaling of mean velocity profiles

A special focus has been on the scaling of the mean veloc-

ity profile under non-equilibrium conditions in the vicinity of

pressure-induced separation. Present LES and experimental

results show consistently that the mean velocity profile can no

longer be described by the classical log law. Figure 12 shows

mean velocity profiles from LES of the APG boundary layer

approaching separation in inner scaling with the friction veloc-

ity Uτ and viscous length scale l+. The scaled velocity profiles
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Figure 12: Classical inner scaling tested for mean velocity

profiles of attached, decelerated boundary layer flow (a) with

negligible backflow (b) approaching separation 0.1 ≤ χ ≤ 0.5.

do not collapse in the wake region and the classical log region

is shortened.

Indinger (2005) found that also the level the log region

shows an effect of the pressure gradient and reasoned that the

failure of the classical inner scaling coincides with the very first

occurrence of instantaneous reverse flow. The present LES re-

veals that inner scaling remains valid for substantial backflow

and intermittent transitory detachment even for the shortened

log layer. This mismatch between experiment and LES can be

attributed to the Preston-tube measurement technique, used

for determining l+. The agreement of experiment and LES

improves significantly, however, when the correlation of Fern-

holtz (1964) is used for determining the scaling parameters

for the experimental velocity profiles. The inner scaling fails

only close to the separation where the wall-friction velocity

becomes smaller than Simpson’s velocity scale based on the

pressure gradient. It is worth to note that inner scaling can

be improved locally at detachment when the pressure gradient

is incorporated (Manhart et al., 2007).
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Figure 13: ZS scaling tested for mean velocity profiles of at-

tached, decelerated boundary layer flow (a) with negligible

backflow (b) approaching separation 0.1 ≤ χ ≤ 0.5.

Zagarola and Smits (1998) (ZS) propose a scaling based on

the velocity scale Uδδ∗/δ. This scaling leads to much better

collapse in the outer region that covers almost 90 percent of

the boundary layer thickness, see Fig. 13. These findings are

consistent with experimental results of Indinger et al. (2006).

CONCLUSIONS

We have presented a well resolved Large Eddy Simulation

(LES) of turbulent boundary-layer separation. Investigated

is an incompressible fully-turbulent flat-plate boundary layer

subjected to a constant adverse pressure gradient (APG). The

APG leads to a streamwise increasing fraction of back-flow

events that eventually results in strong boundary-layer separa-

tion. Reynolds number and pressure-gradient parameters are

adapted to measurements conducted by Indinger (2005) and

Indinger et al. (2006, 2004) in a closed-circuit water tunnel.

The computational results are discussed in detail and vali-

dated against experimental data. Conclusions are drawn con-

325



cerning the employed measurement technique and the scaling

of the mean velocity profile of turbulent boundary-layer flow

under non-equilibrium conditions in the vicinity of pressure-

induced separation. Present LES and experimental results

show consistently that the mean velocity profile can no longer

be described by the classical log law. However, whereas In-

dinger found that the failure of inner scaling coincides with the

very first occurrence of instantaneous reverse flow, the present

numerical study reveals that inner scaling remains valid for in-

termittent transitory detachment. The same is found for the

experimental data when Fernholtz’s correlation technique is

used for determining the scaling parameters of the experimen-

tal velocity profiles. Our results suggest that classical inner

scaling is valid for 0 ≤ y < 20l+ and the scaling of Zagarola

and Smits (1998) is valid for 0.1δ < y ≤ δ.
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