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ABSTRACT

Some subgrid turbulence models are analysed ac-

cording to the symmetry group of the Navier–Stokes

equations. Since a major part of them destroy the

symmetry properties of the equations, a new class of

subgrid models is proposed. These new models are

expected to restore the fundamental physical proper-

ties of the equations (conservation laws, scaling laws,

...) which are contained in the symmetries. Moreover,

the derived models are conform with the second law of

thermodynamics. A numerical test is presented.

INTRODUCTION

Symmetry represents a certain invariance in the

evolution of nature. And it is now recognized that it

plays a fundamental role in physics. Some principles

which argue this are the Galilean invariance, embodied

by Newton’s laws of mechanics, and the relativity prin-

ciples. Moreover, the Nœther’s theorem, which shows

that a conservation law can be derived from any contin-

uous symmetry of the action of a Lagrangian (Nœther

and Tavel, 1971), has a central importance in theo-

retical physics. The symmetry theory provides also

efficient analytical methods to solve differential equa-

tions.

If symmetry is adopted as the most dominant con-

cept in the exploration and formulation of fundamental

laws in some field of physics, such as in quantum me-

chanics and gauge theory, its application in the study

of turbulence is at its first steps. However, some works

already show that the symmetry approach can lead to

extremely important results in turbulence. For exam-

ple, Ünal (1994) showed that the Kolmogorov cascade

of energy is a manifestation of a particular scaling

symmetry of the Navier–Stokes equations. This sym-

metry is a combination of transformations (6) and (7)

below which leaves the dissipation rate invariant. Sec-

ondly, Razafindralandy and Hamdouni (2006) pointed

out that even if the Navier–Stokes equations do not

have a Lagrangian formulation, Nœther’s theorem can

be applied to them. They used an idea proposed by

Ibragimov and Kolsrud (2004) which consists in adding

to the equations new (adjoint) equations such that to-

gether, they can be writen in a Lagrangian form. Next,

Oberlack (2001) used the symmetry theory to derive

classical and new scaling laws for turbulent flows. Gan-

darias et al. (1998) proved also the existence of a

bounded travelling wave solution for the k − ǫ turbu-

lence model. Finally, we mention that Grassi et al.

(2000) got, from the symmetry approach, solutions of

the Navier–Stokes equations which represent models of

vortices. Such solutions are useful to study the insta-

bilities present in a turbulent flow.

There exist two strategies to use symmetry. The

first one is that, knowing the evolution law of a physical

system, one calculates the symmetry transformations

of the equations and deduces some properties or solu-

tions. It is the way generally used in turbulence. The

reverse strategy is that, observing some symmetries

of a physical system, one deduces the evolution law.

This way has been used for example to construct the

relativity theories. In our case, the symmetry transfor-

mations of the Navier–Stokes equations are known. In

this communication, we then propose to use the reverse

way to derive a general form of turbulence models.

Such models should be more capable to represent cor-

rectly a flow compared to symmetry-breaking models

because the latter are unable to reproduce the phys-

ical properties of the flow which are contained in the

symmetries (conservation laws, scaling laws, ...).

In conjunction with the symmetry approach, we

use the second principle of thermodynamics for the
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construction of turbulent models. Note that the con-

formity to this principle leads to the stability of the

models (Razafindralandy et al., 2007).

This paper is structured as follow. The symmetry

group of the Navier–Stokes equations are recalled in

the next section. Some usual subgrid turbulence mod-

els are then analysed according to their compatibility

with this group. This analysis is an extension of the

work of Oberlack (1997) to a wider class of turbulence

models. Next, a new class of symmetry preserving sub-

grid models is built. This class is then refined to the

models which are conform to the second principles of

thermodynamics. Lastly, a numerical test is presented.

THE SYMMETRIES OF THE NAVIER–STOKES

EQUATIONS

Consider an incompressible and isotherm newto-

nian fluid, with density ρ and kinematic viscosity ν.

The motion of this fluid is governed by the Navier–

Stokes equations
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>

:

∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p = divT

divu = 0

(1)

where u = (ui)i=1,2,3 and p are respectively the ve-

locity and pressure fields and t the time variable. T

is the tensor such that ρT is the viscous constraint

tensor. It can be linked to the strain rate tensor

S = (∇u + T∇u)/2 according to the relation:

T =
∂ψ

∂S
,

ψ being the positive and convex “potential” defined

by:

ψ = ν tr S
2.

A symmetry transformation of the Navier–Stokes

equations is a transformation, acting on the depen-

dant and independant variables, which remains the

equations unchanged (Olver, 1986; Ibragimov, 1994).

Equivalently, a symmetry transformation is a transfor-

mation which maps a solution to another solution. The

set of the symmetry transformations of the Navier–

Stokes equations forms a Lie group spanned by the fol-

lowing transformations (Danilov, 1967; Pukhnachev,

1972):

– the time translation:

(t,x,u, p) 7→ (t+ a,x,u, p) (2)

where x = (xi)i=1,2,3 is the spatial variable and

a is the parameter of the transformation,

– the pressure translation:

(t, x,u, p) 7→ (t, x,u, p+ ζ(t)) (3)

where ζ is an arbitrary function,

– the rotation:

(t, x,u, p) 7→ (t,Rx,Ru, p) (4)

where R is a rotation matrix,

– the generalized Galilean transformation:

(t,x,u, p) 7→
`

t,x + α(t),u + α
′(t),

p− ρx � α
′′(t) − α

′(t) � α
′′(t)/2

´

(5)

where α is an arbitrary vector and the symbol

“�” represents the Euclidean scalar product

– and the first scale transformation:

(t,x,u, p) 7→ (e2at, ea
x, e−a

u, e−2a p). (6)

If we consider moreover transformations which act

on the viscosity in addition to t, x, u and p, we obtain

the second scaling symmetry (Ibragimov and Ünal,

1994):

(t, x,u, p, ν) 7→ (t, ea
x, ea

u, e2ap, e2aν). (7)

Note that the invariance of the Navier–Stokes equa-

tions under the pressure translation (3) is due to the

fact that these equations determine the pressure only

up to an additive temporal function. Next, when α is

linear, transformation (5) gives the classical Galilean

transformation. The scale symmetry (6) (respectively

(7)) shows how the solution (u, p) changes when the

spatio-temporal scale (resp. the spatial scale and the

viscosity or the Reynolds number) changes.

The Navier–Stokes equations have two last known

symmetries:

– the reflection:

(t,x,u, p) 7→ (t,Λx,Λu, p), (8)

where

Λ =

0

@

ι1 0 0

0 ι2 0

0 0 ι3

1

A with ιi = ±1, i = 1, 2, 3

– and the material indifference in the limit of a 2D

flow (Cantwell, 1978):

(t,x,u, p) 7→ (t, bx, bu, bp), (9)

with

bx = R(t) x, bu = R(t) u + Ṙ(t) x, (10)

and

bp = p − 3ωϕ+
1

2
ω2

‖x‖
2 (11)

where R(t) is a 2D rotation matrix with angle

ωt, ω an arbitrary real constant, ϕ the usual 2D

stream function defined by:

u = curl(ϕe3),

e3 the unit vector perpendicular to the plane of

the flow and ‖.‖ indicates the Euclidean norm.

Symmetries have an important role, as seen in the

introduction. To some extent, they contain the physics

of the equations. So, turbulent models have to respect

them. In the next section, we analyze some standard
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LES models according to their compatibility with the

symmetries.

MODEL ANALYSIS

LES consists in reducing the computation time by

dropping the small scales of the unknown fields u and

p. This is done by using a filter, symbolized herein by

the symbol bar ( ) and having a width δ. (u, p) is then

approximated by the filtered couple (u, p). To obtain

(u, p), one applies the filter to (1). It gives:

8

>

>

>

<

>

>

>

:

∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p = div(T + Ts),

divu = 0.

(12)

In these equations, Ts is the subgrid constraint tensor,

defined by

Ts = u ⊗ u − u⊗ u, (13)

which represents the effect of the (dropped) small

scales on the bigger ones and which must be modeled

in order to close the equations. Currently, a large num-

ber of models exists. Some of the most common ones

are reminded below (see Sagaut (2004); John (2004)):

– the Smagorinsky model:

T
d
s = (Cδ)2|S|S (14)

where the superscript d represents the deviatoric

part of a tensor and |S| =
√

2 ||S||,

– the dynamic model:

T
d
s = Cdδ

2
|S|S (15)

where Cd = [ tr(LM)]/[ tr M
2], L = eu ⊗ eu −

ũ ⊗ u, and M = δ
2
g

|S|S −
eδ
2
|
e

S|
e

S,

– the structure function model:

T
d
s = CSF δ

q

F 2(δ) S (16)

where

F 2(δ) =

Z Z

‖z‖=δ

‖u(x) − u(x + z)‖2 dz dx,

– the gradient model:

Ts = −
δ
2

12
∇u

T
∇u, (17)

– the Taylor model:

Ts = −
δ
2

12
∇u

T
∇u + Cδ

2
|S|S, (18)

– the rational model:

Ts = −
δ
2

12
G ∗ [∇u

T
∇u] + Cδ

2
|S|S (19)

where G is the kernel of the Gaussian filter,

– the similarity model:

Ts = eu ⊗ eu − ũ ⊗ u, (20)

– the Lund–Novikov model:

T
d
s = C1δ

2
|S|S + C2δ

2
(S

2
)d + C3δ

2
(W

2
)d+

C4δ
2
(S W − W S) + C5δ

2 1

|S|
(S

2
W − S W

2
)

(21)

– and the Kosovic model:

T
d
s = (Cδ)2

»

2|S|S+C1(S
2
)d+C2(S W−W S)

–

.

(22)

Here, the symbol tilde (e) represents a test filtering,

with a filter width eδ, W is the vorticity tensor and C

and Ci are real constants.

The introduction of turbulence models may destroy

the symmetry properties of the equations. Indeed,

equations (12) may not have the same invariance prop-

erties as the Navier–Stokes equations (1) under the

transformations (2)-(9). As a consequence, the solu-

tion given by a symmetry-breaking turbulence model

may not restore the fundamental physical information

contained in the actual solution (conservation laws,

spectral properties, ...).

In this section, we investigate the cited turbulence

models under their compatibility with the symmetries

of the Navier–Stokes equations. We will say that a

model is invariant under a symmetry transformation of

(1) if the same transformation, applied to (t,x,u, p, ν),

is also a symmetry of the filtered equations (12) when

this model is used.

Since the importance of the invariance of a turbu-

lence model under the time translation (2), the rota-

tion (4), the classical Galilean transformation and the

reflection (8) has been understood for a long time, all

turbulence models are invariant under these transfor-

mations. This invariance extends to the generalized

Galilean transformation (5). Moreover, the above tur-

bulence models are autonomous in pressure. Conse-

quently, they are invariant under the pressure transla-

tion (3).

The two scale transformations (6) and (7) can

be combined into the following two-parameter scaling

transformation:

(t,x,u, p, ν) 7→

(e2at, eb+a
x, eb−a

u, e2b−2ap, e2bν). (23)

The first scale transformation (6) corresponds to b = 0

and the second, (7), to a = 0. Equations (12) are

invariant under (23) if and only if the image bTs of Ts

is
bTs = e2b−2a

Ts. (24)

Relation (24) is then the condition for a turbulence

model to be invariant under the scale transformations

(6) and (7).

If we take the Smagorinsly model (14), we have:

bT s = e−4a
T s. (25)

Since condition (24) is violated as well when a = 0

as when b = 0, we conclude that this model is invari-

ant neither under the first nor under the second scale
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transformation. Note that the filter width δ does not

vary since it is an external length scale and has no

functional dependence on the variables of the flow.

Using similar arguments, it is straight forward to

prove that, among the presented turbulence models,

only the dynamic and the scale similarity models verify

(24) and are invariant under the scale transformations.

The last symmetry of the Navier–Stokes equations

to be considered is the material indifference (9) in the

limit of 2D flow. A turbulence model is invariant under

this symmetry if the following condition is verified (the

explicit dependence on time of R is not written):

bTs = RTs
T

R. (26)

The objectivity of S directly leads to the invariance

of the Smagorinsky model.

Under a good condition on the test filter (see

Razafindralandy et al. (2007)), the similarity model

and the dynamic model verify condition (26) and are

invariant. On the other hand, the non-objectivity of

the structure function leads to the non-invariance of

the structure function model (16). Next, because of

the non-objectivity of the gradient of the velocity, con-

trarily to the strain rate tensor, the gradient and the

taylor models are also non-invariant under the mate-

rial indifference. In the same way, the non-objectivity

of the vorticity tensor W leads to the non-invariance

of the Kosovic and the Lund–Novikov models.

In conclusion, only the dynamic and the scale sim-

ilarity models are invariant under the scale transfor-

mations. In addition to the Smagorinsky model, these

two models are also the only models, among the ones

presented, which are material indifferent.

The non-invariance of a turbulence model under

the symmetries of the Navier–Stokes equations has a

grave consequence. Indeed, for instance, if we perform

a zoom operation, in which the spatio-temporal scale is

mutliplied by (e2a, ea), the actual solution (u, p) is af-

fected by a factor (e−a, e−2a), according to (6), but the

the solution (u, p) given by a non-invariant model does

not follow the same rule. Moreover, as we said, sym-

metry contains fundamental information on the flow,

which may be lost when we use a non-invariant model.

In the next section, we propose a class of new sub-

grid turbulence models whose derivation is based on

the respect of the symmetries of the Navier–Stokes

equations. This class is then refined to models which,

contrarily to some popular models like the dynamic

model which may induce negative dissipation, are con-

form to the second law of thermodynamics.

SYMMETRY AND THERMODYNAMICALLY CON-

SISTENT MODELS

In order to have models which are invariant under

the translations (2), (3), (5) and under the rotations

(4) and (9), the subgrid stress tensor Ts is taken to

be a function of the filtered strain rate tensor S, and

of the objective scalar quantities q, the subgrid-scale

energy, and ε, the dissipation rate. The invariance

theory leads to the following form of the deviatoric

part of the model:

T
d
s = A0(χ, ζ, q, ε) S + B0(χ, ζ, q, ε) Adjd S (27)

where χ = tr S
2

and ζ = det S are the invariants of

S. A0 and B0 are arbitrary scalar functions and the

operator Adj is defined by

(Adj S)S = (det S)Id, (28)

Id being the identity operator. Finally, the invariance

under the scale transformations (6) and (7) lead to:

T
d
s =

q2

ε

 

A(v) S +
1
√
χ
B(v) Adjd S

!

. (29)

where v =
ζ

χ3/2
. A and B are arbitrary scalar func-

tions.

Relation (29) defines then a class of symmetry pre-

serving subgrid turbulence models. Let us now con-

sider the second law of thermodynamics.

On molecular scale, the viscous constraint T can

be written in a “potential” form:

T =
∂ψ

∂S
(30)

where ψ = ν tr S
2. This potential form is important

because the convexity and positivity of ψ ensures that

the molecular dissipation is positive. Since the subgrid

tensor T s can be considered as a constraint, we assume

that it can also be written in a potential form:

Ts =
∂ψs

∂S
(31)

where ψs is a function of S. This hypothesis holds if

and only if:

∂

∂ζ

„

1

2
A(v)

«

=
∂

∂χ

„

1
√
χ
B(v)

«

. (32)

This condition requires the existence of a dimensionless

function g such that

T
d
s =

q2

ε

»„

2g(v) − 3vġ(v)

«

S +
1
√
χ
ġ(v) Adjd S

–

.

(33)

If ΦT is the total dissipation, we have:

ΦT = ρ tr[(T + Ts)S]. (34)

Finally, ΦT is positive if and only g verifies the follow-

ing condition:

ν +
q2

ε
g(v) ≥ 0. (35)

In summary, models of form (33) and verifying (35)

are invariant under the symmetry group of NS and are

conform with the second law of thermodynamics.

NUMERICAL TEST

Numerical tests on model (33) are still ongoing. In

what follows, a numerical test on another model built

in Razafindralandy and Hamdouni (2005) is presented.
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Like the present one, this model is invariant under the

symmetry group of NS equations, but it has an explicit

dependence on the viscosity instead of a dependence

on q and ε. However, as will be seen, it already gives

encouraging results.

An air flow inside a ventilated room (Nielsen cav-

ity, figure 1) which interests us for applications in

building domain is considered. The Reynolds num-

ber, computed from the height of the intake opening

is about 5000. The function g is chosen linear. The

numerical scheme, based on a finite difference discreti-

sation method, is described in Chen et al. (2001). A

72×52×26 grid is used. The time step is 7.10−3s and

the calculation is led to 1200s.

Figure 2 reports the horizontal velocity profiles,

along the vertical line defined by (x1 = 2L/3, x3 =

W/2), given by the Smagorinsky model, the dynamic

model and our model (called here “invariant model”).

It can be observed that the invariant model gives a re-

sult in good agreement with experiments, except near

the floor, but in all cases better than those provided by

the two other models. Near the upper wall, it predicts

particularly well the velocity profile. Note that no wall

function was used.

CONCLUSION

As in (Oberlack, 1997), we conclude that many

existing turbulence models are not compatible with

the symmetries of the Navier–Stokes equations. The

same conclusion has been drawn in the case of a non-

isothermal fluid in (Razafindralandy and Hamdouni,

2007). Next, we showed that the symmetry approach,

combined to the second law of thermodynamics, can

be used to derive turbulence models. Finally, the pre-

liminary test showed that these models, since they are

consistent with the physics of the equations, may lead

to numerically performant results.
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