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ABSTRACT

In this paper the properties of a simple two-point average

have been examined. It results that the associated subgrid

stress is expressed by the product of the velocity increments

and that its statistical average is related to the second order

structure function. It is shown that this result is not peculiar

of this particular filtering operator but can be extended to

discrete filters and generally to all filtering operator. The

energy transfer between the resolved scale and the subgrid

scale has been examined both from the point of view of the

energy extracted by the subgrid stress and from the point of

view of the statistical properties of the structure functions

associated to the velocity increment. The two point average

applied to a filtered field has been finally examined in the

context of the theoretical interpretation of a real large eddy

simulation.

INTRODUCTION

The large eddy simulation of turbulent flows is a topic of

great interest for many reasons. First of all it is very impor-

tant for the computation of turbulent fields that cannot be

resolved in all details due to the large Reynolds numbers. In

this case we are obliged to model the small scales, and the

effects of the model on the results as concerns the statistical

properties of the turbulent flow are very difficult to predict.

Then we have to consider that the results are affected not

only by the model but also by the numerical scheme that

we apply. Obviously an ideal simulation should only depend

on the model that we add to the Navier-Stokes equations

and that represents the effect of the resolved scales, but

in many cases there is an interference between the model

and the numerical scheme with effects on the results which

are of the same order. We remark that the no model ap-

proach is based on the numerical dissipation associated to

the numerical scheme, and all that poses to the theoreti-

cal interpretation and to the mathematical formalization of

the large eddy simulation techniques a real challenge. From

the beginning, starting from the papers of Leonard (1974)

and Schumann (1975), the basic idea is that the results that

we obtain can be read as the real results modified by some

operator, an analytical convolution or a truncating numer-

ical discretisation applied to the ideal full representation of

the turbulent field. Following this idea, in the succeeding

thirty years a lot of work has been done. Many modeling ap-

proaches have been proposed and tested, see Sagaut (2005)

for a recent review on the different numerical, physical and

mathematical aspects, and a significative advancement has

been done in the numerical simulation not only of turbu-

lent fields of academic interest but also of turbulent flows

relevant for the engineering applications.

In this complex context this contribution is related to a

research devoted to explore the formal properties of filtering.

Basic problems are to derive the subgrid stress associated

to a given filtering average, and we refer to previous results

concerning the subgrid stress associated to the product (Ger-

mano, 1992) and to the sum (Germano, 2004) of filtering

operators. The main interest and the possible applications

are obviously in the field of the Large Eddy Simulation of

turbulent flows, and we refer in particular to the dynamic

modeling procedures and to the hybrid models. Principally

in this paper we have directed our interest to the discrete fil-

ters. They can be generally read as multipoint averages, and

the simplest one is the centered two-point average defined

as

G(x− ξ) = 0.5δ(x +
r

2
− ξ) + 0.5δ(x−

r

2
− ξ) (1)

where r is a constant length. We will derive the sub-

grid stress associated to this operator and we will extend

this result to a general multipoint discrete filter. A new

formulation of the subgrid stress (Germano, 2007) will be

particularly useful to derive the subgrid stress associated to

all filtering averages, owing to the fact that a continuous

operator can always be reduced to a discretised form. The

product of a discrete operator with a generic average will

be examined formally and some conclusions will be derived

as regards the practical interest of these results from the

computational point of view in the context of the large eddy

simulation of turbulent flows.

THE TWO-POINT AVERAGE

The analytical formulation of the large eddy simulation

stands on the Leonard (1974) definition where a new fil-

tered component of the velocity field ūi is introduced by the

smoothing convolution

ūi(x) =

∫
G(x− ξ)ui(ξ)dξ (2)

The simplest case is obviously given by a kernel G(x − ξ)

expressed by a delta function

G(x− ξ) = δ(x− ξ) (3)

where

δ(x− ξ) =

3∏
k=1

δ(xk − ξk) (4)

that corresponds to the identity operator

ūi(x) = ui(x) (5)

and a first case of interest is given by the two-point average

associated to the kernel

G(x− ξ) = 0.5δ(x +
r

2
− ξ) + 0.5δ(x−

r

2
− ξ) (6)
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where r is a constant length and where

δ(x +
r

2
− ξ) =

3∏
k=1

δ(xk +
rk

2
− ξk)

δ(x−
r

2
− ξ) =

3∏
k=1

δ(xk −
rk

2
− ξk) (7)

In this case we have

ūi(x, r) = 0.5ui(x +
r

2
) + 0.5ui(x−

r

2
) (8)

and the basic problem as regards its possible application to

the large eddy simulation of turbulent flows is to derive a

subgrid model associated to the generalized central moment

τij of the two velocity components ui and uj given by

τij = uiuj − ui uj (9)

If we write formally

uiuj = 0.5ui(x+
r

2
)uj(x+

r

2
)+0.5ui(x−

r

2
)uj(x−

r

2
) (10)

we obtain

τij =
dij

4
(11)

where

dij = [ui(x +
r

2
)− ui(x−

r

2
)][uj(x +

r

2
)− uj(x−

r

2
)] (12)

and it is interesting to remark that the mean statistical value

of the subgrid stress is directly related to the second order

structure function 〈dij〉

〈dij〉 =< [ui(x +
r

2
)− ui(x−

r

2
)][uj(x +

r

2
)− uj(x−

r

2
)] >

(13)

where the angular brackets denote the ensemble average. We

have directly

< τij >=
〈dij〉

4
(14)

Obviously this exact relation cannot be practically uti-

lized in a large eddy simulation that only produces the

filtered values ūi, ūj . In order to associate to τij a subgrid

model Mij function of the filtered values ūi, ūj we can use

the Van Cittert deconvolution applied by Stolz and Adams

(1999) as an approximate defiltering procedure. As a first

approximation we can write

ui(x) ∼ ūi(x) , uj(x) ∼ ūj(x) (15)

and we obtain as a first order subgrid model

Mij = 0.25[ūi(x +
r

2
)− ūi(x−

r

2
)][ūj(x +

r

2
)− ūj(x−

r

2
)]

(16)

while a second order approximations is given by

ui(x) ∼ 2ūi(x)− ¯̄ui(x) =

= 2ūi(x)− 0.5ūi(x +
r

2
)− 0.5ūi(x−

r

2
)

uj(x) ∼ 2ūj(x)− ¯̄uj(x) =

= 2ūj(x)− 0.5ūj(x +
r

2
)− 0.5ūj(x−

r

2
)(17)

It is interesting to remark that this reconstruction model

associated to the two-point average is similar to the veloc-

ity increment model introduced and applied by Brun and

Friedrich (2001) and Brun, Friedrich and da Silva (2006)

following different arguments.

THE ENERGY TRANSFER

Let us now examine the energy transfer between the re-

solved scale represented by the two point average and the

subgrid scale represented by the velocity difference. In or-

der to do that we apply the analytical procedure used to

derive the velocity structure functions, see Hill (2001) and

Hill (2002). By definition we have

ūi(y, z) = 0.5ui(yk) + 0.5ui(zk) =

= 0.5ui(xk +
rk

2
) + 0.5ui(xk −

rk

2
) = ūi(x, r) (18)

where

yk = xk +
rk

2

zk = xk −
rk

2
(19)

and the Navier-Stokes equations for the velocity components

ui(yk) and ui(zk) are respectively

∂ui(y)

∂t
+ un(y)

∂ui(y)

∂yn
= −

∂p(y)

∂yi
+ ν

∂2ui(y)

∂yn∂yn
(20)

∂ui(z)

∂t
+ un(z)

∂ui(z)

∂zn
= −

∂p(z)

∂zi
+ ν

∂2ui(z)

∂zn∂zn
(21)

coupled with the incompressibility conditions

∂un(y)

∂yn
= 0

∂un(z)

∂zn
= 0 (22)

where ν and p are the kinematic viscosity and pressure. Let

us now consider the independent variables xk and rk given

explicitly by

xk =
yk + zk

2

rk = yk − zk (23)

The relationships among the partial derivatives are

∂

∂yi
=

∂

∂ri
+

1

2

∂

∂xi

∂

∂zi
= −

∂

∂ri
+

1

2

∂

∂xi

∂

∂xi
=

∂

∂yi
+

∂

∂zi

∂

∂ri
=

1

2

(
∂

∂yi
−

∂

∂zi

)
∂2

∂yn∂yn
+

∂2

∂zn∂zn
= 2

∂2

∂rn∂rn
+

1

2

∂2

∂xn∂xn

(24)

and we have the incompressibility relations

∂ūn(x, r)

∂xn
= 0

∂ūn(x, r)

∂rn
= 0 (25)
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If we now introduce the velocity difference vi(y, z) defined

as

vi(y, z) = ui(yk)− ui(zk) =

= ui(xk +
rk

2
)− ui(xk −

rk

2
) = vi(x, r) (26)

the two-point mean pressure p̄(y, z)

p̄(y, z) = 0.5p(yk) + 0.5p(zk) =

= 0.5p(xk +
rk

2
) + 0.5p(xk −

rk

2
) = p̄(x, r) (27)

and the pressure difference q(x, r) given by

q(y, z) = p(yk)− p(zk) =

= p(xk +
rk

2
)− p(xk −

rk

2
) = q(x, r) (28)

it is easy to obtain from (20) and (21) the following equations

for the two point velocity mean

∂ūi(x, r)

∂t
+ ūn(x, r)

∂ūi(x, r)

∂xn
+

∂τin(x, r)

∂xn
=

= −
∂p̄(x, r)

∂xi
+ ν

∂2ūi(y, z)

∂yn∂yn
+ ν

∂2ūi(y, z)

∂zn∂zn
(29)

and the two point velocity difference

∂vi(x, r)

∂t
+ ūn(x, r)

∂vi(x, r)

∂xn
+ 4

∂τin(x, r)

∂rn
=

= −
∂q(x, r)

∂xi
+ ν

∂2vi(y, z)

∂yn∂yn
+ ν

∂2vi(y, z)

∂zn∂zn
(30)

where we remark that

τin(x, r) =
vi(x, r)vn(x, r)

4
(31)

and where we temporarily retain the dependence of the vis-

cous terms on y and z. We notice that the two point means

and differences are related by the derivation rules

∂ūi(x, r)

∂xn
=

∂vi(x, r)

∂rn
;

∂ūi(x, r)

∂rn
=

1

4

∂vi(x, r)

∂xn

∂p̄(x, r)

∂xn
=

∂q(x, r)

∂rn
;

∂p̄(x, r)

∂rn
=

1

4

∂q(x, r)

∂xn

(32)

and also in this case we have the incompressibility relations

∂vn(x, r)

∂xn
= 0

∂vn(x, r)

∂rn
= 0 (33)

We can now derive the balance equations for the resolved

turbulent kinetic energy K

K =
ūiūi

2
(34)

and the subgrid turbulent kinetic energy k given by

k =
τii

2
=

vivi

8
(35)

We remark that the mean kinetic energy E is given by

E =
uiui

2
= K + k (36)

due to the fact that by definition

uiuj = ūiūj + τij (37)

and we notice that in the case of homogeneous turbulence

we have

〈E〉 = 〈E〉

〈k〉 = 0 r = 0

〈k〉 →
〈E〉
2

r →∞

〈K〉 = 〈E〉 r = 0

〈K〉 →
〈E〉
2

r →∞ (38)

From the previous equations it is now easy to write

∂K

∂t
+

∂(ūnK + ūiτin)

∂xn
−

∂(vnk)

∂rn
=

= −
∂(p̄ūn)

∂xn
+ 2ν

∂2K

∂rn∂rn
+

ν

2

∂2 (K − p̄)

∂xn∂xn
−

ε̄

2
(39)

∂k

∂t
+

∂(ūnk)

∂xn
+

∂(vnk)

∂rn
=

= −
∂

∂xn

(
qvn

4

)
+ 2ν

∂2k

∂rn∂rn
+

ν

2

∂2 (k − p̄)

∂xn∂xn
−

ε̄

2
(40)

where we have applied the identity

τin
∂ūi

∂xn
=

∂(vnk)

∂rn
(41)

and where ε̄ is the two-point average of the local dissipation,

see the appendix I,

ε̄ =
ε(y) + ε(z)

2
(42)

We remark that the equation for k is the equation for

the velocity difference recently derived by Hill (2002), re-

lated both to the structure functions and to the statistical

inertial and viscous range laws of Kolmogorov (1941). We

notice that the dissipation is equally distributed between the

resolved turbulent kinetic energy K and the subgrid turbu-

lent kinetic energy k and we see that the reciprocal energy

transfer F is given by the term

F =
∂(vnk)

∂rn
=

1

8

∂diin

∂rn

where

diin = vivivn

and we can finally conclude that the statistical transfer of

energy between the resolved scale and the subgrid scale is in

the case of the two-point average simply related to the third

order structure function 〈diin〉 by the expression

〈F 〉 =
1

8

∂〈diin〉
∂rn

DISCRETE FILTERS
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Let us now extend the results to a generic discrete filter

given by

G(x− ξ) =
∑

α

gαδ(x + rα − ξ) =

=
∑

α

gα

3∏
k=1

δ(xk + rαk − ξk) (43)

where ∑
α

gα = 1 (44)

In this case we have

ūi(x) =

∫
G(x− ξ)ui(ξ)dξ

=
∑

α

gαuiα (45)

where

uiα = ui(x + rα) (46)

and we remark that discrete filters have been studied and

applied in the context of the large eddy simulation of turbu-

lent flows by many authors, see Sagaut and Grohens (1999)

and Stolz, Adams and Kleiser (2001), in particular as re-

gards their application as test filters for the dynamic model,

see Najjar and Tafti (1996). Here we will derive explicitly

the subgrid stress associated to a discrete filter. If we write

uiuj =
∑

α

gαuiαujα (47)

it is easy to obtain after simple manipulations

τij =
1

2

∑
α,β

gαgβdijαβ (48)

where

dijαβ =
(
uiα − uiβ

) (
ujα − ujβ

)
(49)

A NEW FORMULATION OF THE SUBGRID STRESS.

The formulation of the subgrid stress in terms of the ve-

locity increments is not peculiar of the two-point average

and the discrete filters but can be extended to all filtering

operators. It is easy to see that starting from the classical

definition of the subgrid stress we can write an equivalent

formulation in terms of the local velocity increments, Ger-

mano (2007). This expression suggests that the subgrid

stress is the sum of local contributions due to local veloc-

ity increments.

We recall that the subgrid stress τij(x) can be explicitly

written as

τij(x) = uiuj − ūiūj =

=

∫
G(x− ξ)ui(ξ)uj(ξ)dξ −

−
∫

G(x− ξ)ui(ξ)dξ

∫
G(x− ξ′)uj(ξ

′)dξ′

(50)

and it is interesting to notice that we can equivalently write,

see the Appendix II,

τij(x) =
1

2

∫∫
G(x− ξ)G(x− ξ′)dij(ξ, ξ′)dξdξ′ (51)

where

dij(ξ, ξ′) =
(
ui(ξ)− ui(ξ

′)
) (

uj(ξ)− uj(ξ
′)
)

(52)

due to the fact that ∫
G(x− ξ)dξ = 1 (53)

If we now introduce the coordinates r and s defined as

r = ξ − ξ′

s =
ξ + ξ′

2
(54)

we can write

τij(x) =
1

2

∫ ∫
G(x−s−

r

2
)G(x−s+

r

2
)dij(r, s)drds (55)

and it is easy to verify that the subgrid stress force fi

fi =
∂τij

∂xj
(56)

is given by

fi =
1

2

∫ ∫
G(x− s−

r

2
)G(x− s +

r

2
)
∂dij

∂sj
drds (57)

We remark finally that this formulation of the turbulent

stress in terms of velocity increments can also be extended to

the Reynolds stresses Rij . If we define as usual the statistical

mean in terms of a long time average we can write

Rij = 〈uiuj〉 − 〈ui〉〈uj〉 =

= lim
T→∞

1

T

∫ t

t−T

ui(t
′)uj(t

′)dt′ −

− lim
T→∞

1

T

∫ t

t−T

ui(t
′)dt′ lim

T→∞

1

T

∫ t

t−T

uj(t
′′)dt′′

(58)

and we can equivalently write both the relation

Rij = lim
T→∞

1

2T 2

∫ t

t−T

∫ t

t−T

dij(t
′, t′′)dt′dt′′ (59)

and the relation

Rij = lim
T→∞

1

2T 2

∫ t

t−T

∫ t

t−T

〈dij(t
′, t′′)〉dt′dt′′ (60)

where

dij(t
′, t′′) = (ui(t

′)− ui(t
′′))(uj(t

′)− uj(t
′′)) (61)

and 〈dij(t
′, t′′)〉 is the second order temporal structure func-

tion associated to the velocity components ui and uj .

THE TWO-POINT AVERAGE APPLIED TO A FILTERED

FIELD

The two-point average till now considered is applied to

the original unfiltered velocity field. It is interesting, in the

context of the theoretical interpretation of a real large eddy

simulation, to consider also the application of the two-point

average to a previously filtered field. We remark that in
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a real numerical computation we can represent the com-

bined effect of an explicit subgrid model and a numerical

scheme as due to the product of an implicit functional filter

F , following the terminology introduced by Sagaut (2003),

and an additional structural operator D applied to the fil-

tered equation, whose exact nature is usually unknown, see

Carati, Winckelmans and Jeanmart (2001). The first filter

is usually dissipative and usually implicit, and its effect is

to produce an additive force, the divergence of the subgrid

stress. The second filter mainly is the discretization opera-

tor, and we here assume that it can be represented as a first

approximation by a two-point average along a characteristic

length r of the same order of the grid length. We remark

that the characteristic length associated to the dissipative

physical filter, typically the characteristic length associated

to an eddy viscosity, can be different of r, so that it is rea-

sonable to assume that some reversibility is associated to the

discretization filter, while nothing usually can be recovered

from the first filter that truncates the information related to

the unrepresented scales. In conclusion let us now consider

formally the product P of our discrete two-point averaging

operator D with a generic filter F

P = DF (62)

In this case we have formally

τp(ui, uj) = 〈τf (ui, uj)〉d + τd(〈ui〉f , 〈uj〉f ) (63)

where now the brackets stand for the filtering operation

〈· · ·〉f = F(· · ·)
〈· · ·〉d = D(· · ·) (64)

and where we use the operational definition, Germano

(1992), of the generalized central moment of second order

τ associated to two generic quantities a and b

τf (a, b) = 〈ab〉f − 〈a〉f 〈b〉f
τd(a, b) = 〈ab〉d − 〈a〉d〈b〉d (65)

More explicitly we can write that

〈ui〉p = 〈〈ui〉f 〉d =

= 0.5〈ui〉f (x +
r

2
) + 0.5〈ui〉f (x−

r

2
) (66)

and if we assume that the subgrid model associated to the

operator F is known

τf (ui, uj) ∼ Mf (〈ui〉f , 〈uj〉f ) (67)

we can write

Mp(〈ui〉f , 〈uj〉f ) = 0.5Mf (x +
r

2
) + 0.5Mf (x−

r

2
)+

+0.25

(
〈ui〉f (x +

r

2
)− 〈ui〉f (x−

r

2
)

)
·

·
(
〈uj〉f (x +

r

2
)− 〈uj〉f (x−

r

2
)

)
(68)

where

Mf (x +
r

2
) = Mf

(
〈ui〉f (x +

r

2
), 〈uj〉f (x +

r

2
)

)
Mf (x−

r

2
) = Mf

(
〈ui〉f (x−

r

2
), 〈uj〉f (x−

r

2
)

)
We remark that the coupled subgrid stress consists of two

parts, the first related to the dissipative functional operator

that models the unrecoverable small scales, and the second

related to the structural and partly recoverable numerical

operator here simply expressed as a first approximation in

terms of a two-point average. One problem obviously re-

mains, due to the fact that the simulation produces the

resolved values 〈ui〉p, so that we have to reconstruct 〈ui〉f
with an appropriate deconvolution applied to the computed

velocity field 〈ui〉p.

CONCLUSIONS

We have examined the simplest filtering operator applied

to the Navier Stokes equation : the two-point average in

space, function both of the mean position x and the distance

r between the two points selected. The associated subgrid

stress depends on the velocity difference between the two

points and its mean statistical value is given by the sec-

ond order structure function. In order to better understand

the interaction between the resolved field and the subgrid

component we have written the balance equations for the

subgrid turbulent energy k and the resolved turbulent energy

K. The first one is the equation for the velocity difference,

see Hill (2002), that is related both to the structure func-

tions and to the statistical inertial and viscous range laws

of Kolmogorov (1941), while the second is dual of the first

and stands at the basis of a simple two-point large eddy ap-

proach. Then we have extended these results to a generic

discrete filter and we have shown that the formulation of the

subgrid stress in terms of velocity increments is not peculiar

of the two-point average and the discrete filter but is a gen-

eral property of the subgrid stress. As a consequence the

statistical mean subgrid stress is a direct biconvolution of

the second order structure function, and the subgrid force is

related to its derivative in space. The product of a two-point

average with a general dissipative filter has been finally ex-

amined in order to understand what happens in a real large

eddy simulation where a numerical operator is usually cou-

pled to an implicit dissipative filter generally expressed in

terms of an eddy viscosity model. The coupled subgrid stress

has been formally written and consists of two parts, the first

related to the dissipative functional operator that models the

unrecoverable small scales, and the second related to the

structural and partly recoverable numerical operator here

simply expressed as a first approximation in terms of a two-

point average.

APPENDIX I

Let us write here some useful relations that can help to

derive the equations (39) and (40) in the text. First of all

we remark that by using the Poisson’s equation

∂2p(y)

∂yn∂yn
= −

∂ui(y)

∂yn

∂un(y)

∂yi
(69)

and the definition of the dissipation ε

ε(y) = ν
∂ui(y)

∂yn

∂ui(y)

∂yn
+ ν

∂ui(y)

∂yn

∂un(y)

∂yi
(70)

we can write

ε(y) = −ν
∂2p(y)

∂yn∂yn
+ ν

∂ui(y)

∂yn

∂ui(y)

∂yn
(71)

and similarly

ε(z) = −ν
∂2p(z)

∂zn∂zn
+ ν

∂ui(z)

∂zn

∂ui(z)

∂zn
(72)
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With reference now to the derivation of (39) and (40) we

can write the following chain of relations

ūi
∂2ūi

∂yn∂yn
+ ūi

∂2ūi

∂zn∂zn
=

=
1

2

∂2(ūiūi)

∂yn∂yn
+

1

2

∂2(ūiūi)

∂zn∂zn
−

∂ūi

∂yn

∂ūi

∂yn
−

∂ūi

∂zn

∂ūi

∂zn
, (73)

vi
∂2vi

∂yn∂yn
+ vi

∂2vi

∂zn∂zn
=

=
1

2

∂2(vivi)

∂yn∂yn
+

1

2

∂2(vivi)

∂zn∂zn
−

∂vi

∂yn

∂vi

∂yn
−

∂vi

∂zn

∂vi

∂zn
(74)

∂vi

∂yn

∂vi

∂yn
+

∂vi

∂zn

∂vi

∂zn
=

= 4

(
∂ūi

∂yn

∂ūi

∂yn
+

∂ūi

∂zn

∂ūi

∂zn

)
=

=
∂ui(y)

∂yn

∂ui(y)

∂yn
+

∂ui(z)

∂zn

∂ui(z)

∂zn
=

=
ε(y) + ε(z)

ν
+

∂2p(y)

∂yn∂yn
+

∂2p(z)

∂zn∂zn
=

=
2ε̄

ν
+ 2

∂2p̄

∂xn∂xn
(75)

where ε̄ represents the mean dissipation

ε̄ =
ε(y) + ε(z)

2

and where we remark that owing to the derivation rules (24)

and (32) we have

∂2p̄

∂yn∂yn
+

∂2p̄

∂zn∂zn
=

∂2p̄

∂xn∂xn
(76)

APPENDIX II

Following Uberoi and Kovasznay (1953) we can relate the

correlations of the original

〈cij(x, x′)〉 = 〈ui(x)uj(x
′〉 (77)

and filtered fields

〈Cij(x, x′)〉 = 〈ūi(x)ūj(x
′〉 (78)

by the expression

〈Cij(x, x′)〉 =

∫∫
G(x−ξ)G(x′−ξ′)〈cij(ξ, ξ′)〉dξdξ′ (79)

and it is interesting to derive here a similar relation for the

structure functions.

We remark that if we define a quantity analogous to dij

dij(x, x′) =
(
ui(x)− ui(x

′)
) (

uj(x)− uj(x
′)
)

(80)

composed now by the velocity increments of the filtered val-

ues ūi, ūj

Dij(x, x′) =
(
ūi(x)− ūi(x

′)
) (

ūj(x)− ūj(x
′)
)

(81)

we have

Dij(x, x′) =

∫∫
G(x− ξ)G(x′ − ξ′)dij(ξ, ξ′)dξdξ′ −

− τij(x)− τij(x
′) (82)

and this relation deserves some interest. First of all if we put

in the relation (82) x = x′, we recover the relation (51) of

the paper. Secondly it shows, by averaging statistically the

terms, that the second order structure function of the filtered

velocity is equal to a double convolution of the second order

structure function of the original field minus the difference

of the mean values of the subgrid stress

〈Dij(x, x′)〉 =

∫∫
G(x− ξ)G(x′ − ξ′)〈dij(ξ, ξ′)〉dξdξ′ −

− 〈τij(x)〉 − 〈τij(x
′)〉 (83)
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