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ABSTRACT 
The temporal dynamics of vortical structures in the wall 

region of turbulent channel flow is investigated. The 
Navier-Stokes equations are integrated numerically at 
friction Reynolds number 180=τRe , using a compu-
tational code that utilizes a mixed spectral-finite difference 
technique and following the DNS approach.  

A turbulent-flow database representing the turbulent 
statistically steady state of the velocity field through 10 
viscous time units is computed and the method of the 
“imaginary part of the complex eigenvalue pair of the 
velocity-gradient tensor” is applied for vortex eduction. 

Flow visualizations are provided that support a visual 
description of the evolutionary process with time of single 
and multiple hairpin vortical structures in the wall layer. 

 
 

INTRODUCTION 
The phenomena occurring in the wall region of 

turbulent shear flows have been investigated with different 
methods. One of the first results in studying the structure of 
the boundary layer is due to Kline et al. (1967) who showed 
that very near to the wall the flow organizes in alternating 
arrays of unsteady high- and low-speed regions aligned in 
the streamwise direction, called the streaks. Thereafter, 
much work has been accomplished.  

Techniques for the detection of turbulent events have 
been introduced. Conditional sampling and averaging 
(Antonia, 1981), quadrant analysis (Willmarth and Lu, 
1972), variable interval time averaging (Blackwelder and 
Kaplan, 1976) and also variable interval space averaging 
(Johansson et al., 1991) are examples of such techniques. 

Vortical structures have been investigated. Theodorsen 
(1953) introduced the hairpin vortex model. Robinson 
(1991) confirmed the existence of arch vortices and quasi-
streamwise vortices on the basis of DNS results. The 
composition of a quasi-streamwise vortex with an arch 
vortex may result in a hairpin vortex, but this result may 
strongly depend on the particular technique used for vortex 

detection. The most relevant processes of vortex interaction 
(with the surrounding ambient fluid and other vortices) are: 

 i) vortex compression and stretching in regions of 
increasing shear;  

ii) spanwise vortex expansion and relaxation in regions 
of decreasing shear;  

iii) vortex coalescence resulting in larger vortices;  
iv) vortex reconnection into rings.  
The leg of a vortex, considered in isolation, may appear 

as a quasi-streamwise vortex. The vortex head instead, rises 
through the flow field entering regions of decreasing shear. 
As a consequence, the vorticity in the vortex head 
diminishes (Head and Bandyopadhay, 1981).  

The relation between vortical structures and turbulent 
events has been studied. The wall layer is subjected to a 
local breakdown and erupts into the outer region. Vorticity 
concentrated near the wall is ejected outward, the eruptive 
events providing new vorticity in the outer region. After the 
eruption, sweep events take place, in terms of high-speed 
fluid penetrating from upstream, close to the wall. The wall-
layer breakdown is often interpreted as a viscous reaction of 
wall-layer fluid to the passage of hairpin vortices (Smith et 
al., 1991).  

Conceptual models of boundary-layer turbulence based 
on vortex dynamics have also been provided by some 
authors (Willmarth and Tu, 1967, Offen and Kline, 1975, 
Praturi and Brodkey, 1978, Thomas and Bull, 1983, Acarlar 
and Smith, 1987, Robinson, 1991). Extensive reviews about 
boundary-layer turbulence can be found in Panton (2001) 
and Alfonsi (2006).  

In spite of the amount of work accomplished, still there 
are no definite conclusions on the character of the 
phenomena occurring in the near-wall region of wall-
bounded turbulent flows, mainly due to the fact that the 
majority of the results are based on flow visualizations or 
poitwise experimental measurements.  

With the advent of DNS (Direct Numerical Simulation 
of turbulence) turbulent-flow databases of numerical nature 
became   available,   with   the  possibility  of  implementing  
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Figure 1. Mean velocity profile in wall coordinates:  

(—) present work; (+) data from Moser et al. (1999);  
(---) law of the wall ++ = yu , 5552 .yln.u += ++  

 
 

mathematically-based definitions of flow structures for 
vortex eduction. 

Mathematically-founded methods for the identification 
of vortical structures have been introduced by:  

i) Perry and Chong (1987) based on the complex eigen-
values of the velocity-gradient tensor;  

ii) Hunt et al. (1988) based on the second invariant of 
the velocity-gradient tensor;  

iii) Zhou et al.  (1999)  based on the  imaginary  part  of 
the complex eigenvalue pair of the velocity gradient tensor;  

iv) Jeong and Hussain (1995) based on the analysis of 
the Hessian tensor of the pressure. 

In the present work the issue of the evolution of vortical 
structures in the wall region of turbulent channel flow is 
addressed. The turbulent structures are educed from a DNS 
database that has been assembled by using a computational 
code that utlilizes a hybrid spectral-finite difference 
technique for the numerical integration of the unsteady 
three-dimensional Navier-Stokes equations at 180=τRe . 

The method used for vortex detection is that of the 
“imaginary part of the complex eigenvalue pair of the 
velocity-gradient tensor” of Zhou et al. (1999).  
 
 
NUMERICAL SIMULATIONS 

The unsteady Navier-Stokes equations for incom-
pressible flow in nondimensional conservative form are 
considered ( 321 ,,j,i = ): 
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where iu  is the velocity vector. Variables are nondimen-
sionalized by the channel half-height h  for lengths, wall-

shear velocity ρττ wu =  for velocities, 2
τρu  for pressure  

 
 

Figure 2. Rms velocity fluctuations in wall coordinates:  
(—) rmsu′ , (---) rmsv′ , (···) rmsw′ , present work; 

(+) rmsu′ , (× ) rmsv′ , (*) rmsw′ , data from Moser et al. (1999) 
 
 
and τuh  for time, being νττ huRe =  the friction Rey-
nolds number, ρ  the fluid density and ν  the fluid 
kinematic viscosity. The fields are admitted to be periodic 
in the streamwise ( x ) and spanwise ( z ) directions and 
equations (1-2) are Fourier transformed accordingly. The 
nonlinear terms in the momentum equations are evaluated 
pseudospectrally, by antitransforming the velocities back to 
physical  space  to  perform  the  products (FFTs are used). 
A dealiasing procedure is applied to avoid errors in trans-
forming the results back to Fourier space. To have a better 
spatial resolution near the walls, a grid stretching law of 
hyperbolic tangent type is introduced for the grid points 
along y , the direction normal to the solid walls. For time 
advancement, a third-order Runge-Kutta algorithm is 
implemented and time marching is accomplished with the 
fractional step method (Kim et al., 1987).  

By recalling the wall formalism, one has: ντuxx ii =+ , 

ντ
2tut =+ , τuUu =+ , where U  denotes a x-velocity 

averaged on a x-z plane and time.  
 

Table 1: Characteristic parameters of the simulations 
__________________________________________ 

 
computing domain 

 xL  yL  zL  +
xL  +

yL  +
zL  

 hπ2  h2  hπ  1131 360 565 
__________________________________________ 

 
computational grid 

 xN  yN  zN  
 96 129 64 

__________________________________________ 
 

grid spacing 
 +∆x  +∆ centery  +∆ wally  +∆z  
 11.8 4.4 0.87 8.8 

__________________________________________ 
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The characteristic parameters of the simulations are 
reported in Table 1. It can be verified that there are six grid 
points in the y-direction within the viscous sublayer 
( 5≤+y ). The Kolmogorov spatial microscale, estimated 
using the criterion of the average dissipation rate per unit 
mass across the width of the channel, results 81.≈+η . 

After the insertion of appropriate initial conditions, the 
initial transient of the flow in the channel is first simulated, 
the turbulent statistically steady state is reached and then 
calculated for a time τuht 10=  ( 1800=+t ). 20000 time 
steps are computed with a temporal resolution of 

τuh4105 −×  ( 090.t =∆ + ). The estimated Kolmogorov 

time scale results ττ uh. 210891 −×≈ .  
In Table 2 the predicted and computed values of a 

number of mean-flow variables are reported ( bU  is the bulk 
velocity, bRe  is the related Reynolds number, cU  is the 
mean centerline velocity, cRe  the related Reynolds 
number). The predicted values of  bc UU  and fC  reported 
in Table 2 are obtained from the experimental correlations 
suggested by Dean (1978): 
 

 ( ) 011602281 .
b

b

c Re.
U
U −=  (3) 

 
 ( ) 25020730 .

bf Re.C −=  (4) 
 
while the computed skin-friction coefficient: 
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where ( )wallw yU ∂∂= µτ , is calculated using the value of 
the shear stress at the wall actually obtained in the compu-
tations. 
 

Table 2: Predicted vs. computed mean-flow variables 
____________________________________________ 

  
 τRe  bRe  cRe  τuU b τuU c bc UU  fC  

____________________________________________ 
     
    predicted 
 180 2800 3240 15.56 18.02 1.16 310448 −×.  
    computed 
 178.7 2786 3238 15.48 17.99 1.16 310238 −×.  

____________________________________________ 
 

 
In Figure 1, the mean-velocity profile normalized by the 

friction velocity in wall coordinates is compared with the 
data obtained by Moser et al. (1999) and with the law of the 
wall. In Figure 2, the rms velocity fluctuations normalized 
with the friction velocity in wall coordinates are compared 
with the data obtained by Moser et al. (1999). The 
agreement is rather satisfactory. 

 
 

Figure 3. Vortical structures at 81036.t =+  
 

 
VORTEX-EDUCTION TECHNIQUE 

By considering the Navier-Stokes equations, an arbi-
trary point O can be chosen in the flow field and a Taylor-
series expansion of each velocity component can be perfor-
med in terms of the space coordinates, with the origin in O. 
One obtains: 
 
 ....xxAxAAu kjijkjijii +++=  (6) 
 
and the first-order approximation is: 
 
 jijii xAAu +=  (7) 
 

If O is located at a critical point, the zero-order terms 
are equal to zero and: 
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i
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∂
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is the velocity-gradient tensor. From the characteristic 
equation of ijA  one has: 
 
 023 =+++ RQP λλλ  (9) 
 
where: 
 
 ( )AtrP −=  (10) 
 

 ( )( ) ( )( )2AA trtrQ −= 2

2
1  (11) 

 
 ( )AdetR −=  (12) 
 
are the scalar invariants of the velocity-gradient tensor (tr is 
trace, det is determinant). In incompressible fluids 0=P  
and equation (9) becomes: 
 
 03 =++ RQλλ  (13) 
 
where the discriminant of ijA  is defined as: 
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Figure 4. Single hairpin vortex at 41022.t =+ :  
a) top view; b) side view 
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When 0>D  the velocity-gradient tensor has one real 

eigenvalue ( 1λ ) and a pair of complex-conjugate eigen-
values ( 32 λλ , ). According to Zhou et al. (1999), isosurfaces 
of the imaginary part of the complex eigenvalue pair 
(actually the square of) can be used to visualize vortices. 
The method is frame independent and due to the fact that 
the eigenvalue is complex only in  regions  of  local  
circular or spiralling streamlines, it automatically eliminates 
regions having vorticity but not local spiralling motion.  

With reference to equation (13) and defining the 
quantities: 
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one has: 

 
  

 
 

 
 

Figure 5. Single hairpin vortex at 21051.t =+ :  
a) top view; b) side view 
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RESULTS 

After the application of the vortex-detection technique, 
through the simulated time frame ( 18000 ≤≤ +t ) a flow 
field appears populated by turbulent-flow structures 
adjacent to both the upper and lower wall of the domain. 

In the temporal subframe 10801008 ≤≤ +t a hairpin-
like vortical structure forms on the right side of the bottom 
wall. An overall view of this phenomenon at 81036.t =+  is 
shown in Figure 3 (the flow goes from left to right). 

 
 

Single Hairpin 
Figures 4-5 show the morphological evolution of the 

hairpin vortex - considered in isolation - through four time 
steps.  

At 41022.t =+ (Figure 4a) the vortex is relatively small, 
with one leg shorter than the other and the head slightly 
oriented rightward. Moreover, the two legs are not parallel 
but convergent. Legs and neck (Figure 4b) are inclined at an  
angle with respect to the horizontal bottom plane, with the 
head entering regions of decreasing shear. 
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Figure 6: Multiple hairpin vortex at 1044=+t  
 

 
 

Figure 7: Multiple hairpin vortex at 61047.t =+  
 

 
At 81036.t =+  (not shown) the vortex has increased its 

size and the legs are almost parallel, with one leg still 
shorter with respect to the other. The vortical structure 
grows, and the inclination of the neck is slightly larger with 
respect to the previous instant. 

At 21051.t =+ (Figure 5a) the size of the hairpin has 
increased considerably, both in the  length  of  the  two  legs  
and in the height reached by the head. The angle at which 
the neck is inclined with respect to the bottom plane is 
slightly larger than that of the previous instants (Figure 5b). 

At 61065.t =+ (not shown) the process of growth of the 
hairpin vortex continues similarly to the instants previously 
considered. The legs become thinner due to vortex 
stretching near the wall. The head enters more deeply in 
regions of decreasing shear and expands in the spanwise 
direction. 

 
 

Multiple Hairpin 
Figures 6-9 show the evolution of a multiple-vortex 

configuration.  
The upper leg of the primary hairpin is elongated along 

the streamwise direction past the primary hairpin itself and 
constitutes the nucleous for the formation of a smaller, 
secondary hairpin-like vortical structure. The secondary 
hairpin propagates downstream with about  the  same  speed  

 

 
 

Figure 8: Multiple hairpin vortex at 21051.t =+  
 

 
 

Figure 9: Multiple hairpin vortex at 81054.t =+  
 
 

of the primary structure and, going from 1044=+t  to 

81054.t =+ , its upper leg becomes more elongated. The 
neck of the secondary hairpin is swirled with in the z-
direction (this is not visible from Figures 6-9) unveiling the 
secondary nature of its origin, with respect to the primary 
hairpin. 

The above process of evolution of the multiple vortical 
structure is in close agreement with the process described by 
Zhou et al. (1999) in their work based on numerical 
simulations performed with a hairpin-vortex initial 
condition. 

 
 

CONCLUDING REMARKS 
A direct numerical simulation is performed in the case 

of the turbulent channel flow at 180=τRe . A numerical 
database is assembled and  the  criterion  of  the  “imaginary  
part of the complex eigenvalue pair of the velocity-gradient 
tensor” (Zhou et al., 1999) is applied for vortex eduction. 

The results clearly show the characteristics of the 
evolutionary process of both single and multiple hairpin 
vortical structure, as educed by means of the aforemen-
tioned criterion. 
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