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ABSTRACT

The asymptotic behavior of large- and small-scale ve-

locity statistics in an homogeneous turbulent shear flow is

examined using direct numerical simulations of the incom-

pressible Navier-Stokes equations on a 5123 grid. We used a

novel pseudo-spectral algorithm (Brucker et al. 2007) that

allows us to set the initial value of the shear parameter in the

range 3–30. We have found that large-scale quantities such

as the ratio of kinetic energy production over dissipation,

and the nondimensional shear parameter reach a self-similar

state that depends sensitively on the initial value of the

shear parameter. Additionally, we show that the probabil-

ity density function (PDF) of the vorticity vector and the

rate-of-strain tensor approach a Gaussian distribution with

increasing initial shear parameter. On the other hand, the

tails of the PDFs of the velocity derivatives become more

stretched with increasing Reynolds number at fixed shear

parameter. We use Viscous Rapid Distortion Theory to ex-

plain some of these trends.

INTRODUCTION

Homogeneous shear flow is considered to be one of the

building blocks of turbulence. It is the next step up in com-

plexity from isotropic turbulence. This flow has the main

features of wall-bounded flows, i.e., Reynolds stress, tur-

bulence production, hairpin vortices, without introducing

the complexities of fully inhomogenous turbulence. Con-

sequently, this flow has been widely investigated in experi-

ments and direct numerical simulations.

Experimental work suggests the turbulent kinetic energy

and the integral length scale grow in time, approaching an

asymptotic state at long times (Harris et al, 1977; Tavoularis

and Corrsin, 1981; Rohr et al, 1988; Tavoularis and Karnik,

1989, De Souza et al, 1995). Direct numerical simulations

(DNS) of homogeneous turbulent shear flow support these

claims (Lee et al, 1990; Shih et al, 2000; Yu and Girimaji,

2005; Jacobitz et al, 1997; Jacobitz and Sarkar, 1999; Kida

and Tanaka, 1992).

Homogeneous shear flow is characterized by the initial

values of two parameters: the Reynolds number, Rλ, here

defined in terms of the Taylor microscale;1 and the shear

paramater, S∗

0
.2 Whether the asymptotic state of the flow is

a function of the initial value of those parameters remains a

controversy. Jacobitz et al, (1997) and Shih et al, (2000) sug-

gest that it is, whereas the Yu and Girimaji (2005) remark

that S∗

0
will only weakly affect the asymptotic statistics.

In this report, we address this controversy through a se-

ries of 5123 DNS using a new pseudo-spectral algorithm for

purely homogeneous turbulent shear flow that circumvents

the shortcomings of previous numerical schemes, allowing

us to vary the initial value of the shear parameter over the

range 3–30. We study the influence of the shear parame-

ter on large-scale and small-scale statistics. The results for

the high shear cases are compared with the predictions of

Viscous Rapid Distortion Theory (VRDT).

PROBLEM DEFINITION

Governing Equations

We are interested in the flow of an incompressible fluid in

a periodic box of length 2π in each direction. The governing

equations for the fluid, in rotational form, are

∂ui

∂xi

= 0 , (1)

∂ui

∂t
+ εijk ωj uk = −

∂
(
p/ρ + 1

2
u2

)

∂xi

+ ν
∂2ui

∂xj∂xj

, (2)

where ui is the velocity vector, u ≡
√

uiui is the magnitude

of the velocity vector, ρ is the fluid density, ν is the kinematic

viscosity, εijk is the alternating unit symbol, ωi = εijk
∂uk
∂xj

is the vorticity, and p is the pressure.

Introducing the Reynolds decomposition, ui = Ui + u′

i,

ωi = Ωi + ω′

i and p = P + p′, where capital letters represent

mean quantities and prime letters fluctuating quantities. For

shear flow we take Ui = (Sx2, 0, 0) , Ωi = (0, 0,−S) where

1Rλ ≡ q2
0

√

15/νε0, where q2
0/2 is the initial turbulent ki-

netic energy, ν is the kinematic viscosity, and ε0 is the initial
dissipation rate.

2S∗

0 ≡ Sq2
0/2ε0, where S is the spatially and temporally uni-

form mean shear imposed on the flow.
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S is the spatially uniform mean shear rate. Invoking ho-

mogeneity and combining and simplifying the terms that

involve the mean flow, the final form of the equation for the

fluctuating velocity is

∂u′

i

∂t
+Sx2

∂u′

i

∂x1

+Sδi1u′

2 + εijkω′

ju′

k = −
∂p∗

∂xi

+ ν
∂2u′

i

∂xj∂xj

,

(3)

where p∗ ≡ p′/ρ + 1

2
u′2 is the modified pressure.

Numerical Algorithm

The boundary condition for Eq. (3) in the x2 direction is

not periodic in the laboratory frame of reference due to the

presence of the uniform shear. Figure (1) shows a schematic

of the boundary condition in two dimensions. The dashed

lines show the deforming frame of reference in which the flow

is periodic. The solid lines indicate the orthogonal frame of

reference. Forward and reverse spectral transforms for a

generic variable φ in the orthogonal frame of reference are

defined as follows (Brucker et al. 2007)

φ(x, t) =
1

N3

∑

k

φ̂(k, t) exp [I (kixi − Stk1x2)] , (4)

φ̂(k, t) =
∑

x

φ(x, t) exp [−I (kixi − Stk1x2)] , (5)

where I ≡
√
−1. The cross term in the exponential, Stk1x2,

arises due to the shear-periodic boundary condition. As a

consequence of this term, it is not possible to calculate the

forward and reverse transforms using a standard 3D FFT.

Rogallo (1981) resolved this issue by transforming Eq. (3)

into a coordinate system that moves with the mean flow

(dashed line in Fig. 1). In this moving frame of reference, the

spectral transform reduces to the conventional 3D Fourier

transform, allowing the use of a standard 3D FFT. How-

ever, mean convection causes a distortion of the mesh in

physical space, leading to a growth in aliasing errors that

are incurred during the evaluation of the nonlinear terms on

the deformed mesh. To relieve this problem, Rogallo intro-

duced a remeshing step. Remeshing with dealiasing leads to

a sudden loss in both the turbulent kinetic energy and tur-

bulent energy dissipation rate. For higher shear rates, this

loss can be significant (20–40%; Lee et al, 1990).

We developed an alternative algorithm that works di-

rectly with Eqs. (4) and (5) in the orthogonal (laboratory)

frame of reference. The challenge was to accomplish the

3D transform, with the phase shift, in O(N3 ln N) oper-

ations, where N is the number of grid points in each di-

rection. This was accomplished by decomposing the three-

dimensional transform into a sum of products of one- and

two-dimensional transforms (i.e., pencils and planes). The

performance and validation of this new algorithm with ex-

periments and the Rogallo algorithm is discussed extensively

in Brucker et al (2007).

Initial Conditions

The initial velocity field was generated using a random

phase algorithm with a prescribed initial energy spectrum

given by

E(k) = Cκε
2/3

0
κ
−5/3

0






(k/κ0)2 k < κ0

(k/κ0)−5/3 κ0 6 k 6 κη

0 k > κη

, (6)

where Cκ ≈ 1.5 is the Kolmogorov constant, ε0 is the ini-

tial energy dissipation rate, κ0 is the wavenumber where

the peak in the energy spectrum occurs, and κη is the

maximum energy-containing wavenumber, defined to be con-

sistent with ε0 as

κη

κ0

≡

[
2ε1/3

3νCκκ
4/3

0

+
11

15

]3/4

. (7)

Note that in the study of the small-scale statistics, we first al-

lowed the initial velocity to decay by performing an isotropic

DNS without shear until the velocity derivative skewness,〈
( ∂u1

∂x1
)3

〉
/

〈
( ∂u1

∂x1
)2

〉3/2

, reached a value of −0.4. This al-

lowed the small scales to evolve to a more natural state

before applying the uniform shear. This initial velocity field

also was used in all of the comparisons with VRDT.

Because the initial shape of the energy spectrum is fixed

by Eq. (6), the turbulent shear flow is parameterized by: the

initial Reynolds number based on the Taylor microscale, Rλ;

and the initial value of the shear parameter, S∗

0
. A goal of

this study is to understand the dependence of the self-similar

statistics on these two parameters.

Computational Resolution

In homogeneous turbulent shear flow, the large scales

grow and the small scales decrease with time. We choose the

peak wavenumber, κ0, to control the initial integral length

scale so that it has room to grow within the box over the

duration of the DNS. Criteria must be developed for the

point in time that the simulation should be stopped due to

loss of resolution. Ideally, each run will fail at the large and

small scales simultaneously. We try to choose the location of

the peak in the initial energy spectrum such that this hap-

pens. Experimentally it has been found that the longitudinal

length scale, L11,1 ,3 grows monotonously with time (Harris

et al, 1977; Tavoularis and Corrsin, 1981; Rohr et al, 1988;

Tavoularis and Karnik, 1989, De Souza et al, 1995). Conse-

quently, we stopped our calculations when dL11,1/dt 6 0.

Resolution of the small scales requires that kmaxη > 1,

where kmax ≡
√

2N/3 is the maximum wavenumber and

η ≡
(
ν3/ε

)1/4
is the Kolmogorov length scale. Simulations

were discontinued when kmaxη dropped below unity.

RESULTS

Influence of the Shear Parameter on Large-Scale Statistics

As noted in the introduction, there is some question con-

cerning the sensitivity of the asymptotic turbulence statistics

in turbulent shear flow to the initial shear parameter, S∗

0
. If

the flow were insensitive, we would expect the evolution of

S∗(St) at long times (large St), would be independent of

S∗

0
. Figure 2 shows the time evolution of S∗ for various

initial conditions. Notice that each of the curves reaches

an apparent asymptotic value that depends sensitively upon

the initial value. It is important to note that most of the

earlier experimental and computational studies of homoge-

neous turbulent shear flow have been restricted to values of

the shear parameter below 10, as can be seen in Fig. 3. Ex-

ceptions include the experiments of De Souza et al, (1995)

that reached an experimental value of 21 and the simula-

tions of Lee et al, (1990) and Jacobitz and Sarkar, (1999)

that reached of 30. We have seen in our DNS that when

3L11,1 =
∫

∞

0
f11(r)dr,

where f11(r) =
〈

u′

1(x1)u
′

1(x1 + r)
〉

/
〈

u′

1

2
〉

1/2

.
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S∗

0
is below 10, the asymptotic statistics are insensitive to

it. It is only for S∗

0
> 10 that the dependence on S∗

0
is ob-

served. This may, in part, explain why the influence of this

parameter has been so controversial.

If we define the anisotropic Reynolds stress coefficient

as b12 ≡ −
〈
u′

1
u′

2

〉
/q2, we expect this quantity to approach

a steady value in the asymptotic regime. Figure 4 shows

the time evolution of b12(St); once again, we observe the

asymptote is a function of the initial shear parameter. The

anisotropy of the flow decreases as the shear parameter in-

creases. A similar trend was reported by Yu and Girimaji

(2005) and Jacobitz and Sarkar, (1999).

If we define the production of turbulent kinetic energy as,

P ≡ −S
〈
u′

1
u′

2

〉
, then we see that the ratio of kinetic energy

production to dissipation can be written as P/ε = 4b12S∗,

hence the asymptotic behavior of P/ε is controlled by the

asymptotic behaviors of b12(St) and S∗(St). Figure 5 shows

the behavior of P/ε for three initial values of S∗

0
. We observe

the long term asymptotes are again sensitive to S∗

0
.

Influence of the Shear Parameter on Small-Scale Statistics

It is known that the probability density function (PDF)

of the velocity derivatives in turbulence deviates from the

Gaussian distribution (Shen and Warhaft, 2000). Figures 6

and 7 show the time evolution of the PDFs of s11 = ∂u1/∂x1

and s33 = ∂u3/∂x3 over the time frame 4 6 St 6 10 for the

highest shear case (S∗

0
= 26.9). The solid curve in the plots

represents a Gaussian distribution with zero mean and unit

variance. Notice that the PDFs deviate from the Gaussian

curve in different ways. The s11 component is negatively

skewed, as would be expected in isotropic turbulence, how-

ever by an amount that increases with time. The PDF of

s33, in contrast, is symmetric, with tails that progressively

stretch with time. This may be correlated to the simultane-

ous growth in Rλ with time (from 30 to 70).

Figures 8 and 9 show the equivalent PDFs of vortic-

ity components ω1 and ω3 over the same time interval

4 6 St 6 10. As with the strain, they each deviate from

the Gaussian distribution differently. The PDF of ω1 (and

ω2 not shown) is symmetric with stretched exponential tails

while the PDF of ω3 is strongly skewed. This asymmetry is

due to the presence of the mean shear that enhances vorticity

that is aligned with the mean vorticity. The PDFs become

more stretched as time progresses as a result of the increas-

ing Rλ (30–70). On the other hand, for a fixed Rλ and

increasing S∗ the PDF of the vorticity approaches a Gaus-

sian distribution, as can be seen in Fig. 10.

Viscous Rapid Distortion Theory

As suggested by Hunt and Carruthers (1990), Lee et al

(1990), Rogers (1991) and others, when the mean deforma-

tion rate is large compared to the turbulence time-scales,

the governing equations can be linearized by neglecting

turbulence–turbulence interactions. In this “rapid” limit,

the spectral transform of Eq. (3) has an analytical solution

û
′(k, t) = exp (−Γ)A · û′(k0, 0) ,

where

A =




1
k2
0

k2
13

(
−

k2
3

k2
0

P +
k2
1

k2
0

Q

)
0

0
k2
0

k2 0

0 k1k3

k2
13

(P + Q) 1


 (8)

k2
0 =

(
k2
1 + k2

2 + k2
3

)
(9)

k2 =
(
k2
0 − 2k1k2St + (k1St)2

)
(10)

k2
13 =

(
k2
1 + k2

3

)
(11)

Γ = νt

[
k2
0 − k1k2St +

(k1St)2

3

]
(12)

Q =
St

(
k2
0
− 2k2

2
+ k1k2St

)

k2
(13)

α =
k2√

k2
1

+ k2
3

(14)

β =
k2 − k1St√

k2
1

+ k2
3

(15)

P =
k2
0

k1

√
k2
1

+ k2
3

(arctan α − arctan β) (16)

From the equation for û′(k, t), we can construct the 3D ve-

locity spectrum tensor

Φij = exp (−2Γ) AipAjqΦ0
pq (17)

where the matrix A and Γ are defined above. Φ0
pq is the

initial 3D velocity spectrum that is assumed to be isotropic

(Townsend, 1979)

Φ0
ij =

E (k)

4πk2

(
δij −

kikj

k2

)
(18)

where ki is the wave vector and k its magnitude. E(k) is the

initial energy spectrum that was obtained by the initializa-

tion procedure describe earlier.

Once the spectrum is known, it is possible to integrate

the equation over spectral space to evaluate single-point tur-

bulence statistics like the Reynolds stress tensor. Since we

include viscosity in our formulation, we can calculate the

energy dissipation rate and use it to compute the time evo-

lution of the shear parameter and the ratio of turbulence

production over dissipation. For short times (i.e., in the

limit St → 0), we follow the procedure of Rogers (1991),

Townsend (1976), Livescu (2004), and others, to obtain

P

ε
(St) =

2

15
S∗

0St −
1

10
(St)2 + C1 (St)2 + · · · , (19)

S∗ (St)

S∗

0

= 1+
1

S∗

0

St−
11

210
(St)2 +

2
(
S∗

0

)2
(St)2 + · · · , (20)

where C1 is a coefficient that depends on the shape of the

initial energy spectrum. The expansion reveals an explicit

dependence of P/ε and S∗ on S∗

0
. Figures 11 and 12 com-

pare the numerical predictions of VRDT with the DNS. As

expected, the theory is accurate for short times (St < 5).

VRDT eventually fails to predict the dissipation rate accu-

rately. Figure 13 shows the spectra at St = 2 and St = 8,

demonstrating that the linear theory underpredicts the high

wavenumber range of the turbulent kinetic energy spectrum.

Consequently, VRDT cannot offer insight into the role of the

shear parameter at long times. There are two possible ori-

gins of this failure. First, the exponential term in the VRDT

equation will cause the kinetic energy to decay to zero at long

times. Second, the equation neglects turbulence-turbulence

interactions that are responsible for (among other things)

the turbulent energy cascade from low to high wavenum-

bers. It seems plausible that the latter issue is causing the

more significant error at long times because as time pro-

gresses the energy at high wavenumbers is not replenished

by the nonlinear interactions that are neglected by VRDT.
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This suggests that no matter how large the value of S∗

0
, the

nonlinear terms eventually become relevant as St → ∞.

CONCLUSIONS

A new spectral code was used to study the effect of the

shear parameter on the time evolution of large- and small-

scale statistics in an homogeneous turbulent shear flow. The

new code allows us to vary the the initial values of the shear

parameter, S∗

0
, over a relatively wide range, 3–30. Our

findings suggest that the asymptotic behavior of large-scale

statistics such as P/ε, b12 and S∗ are sensitive to S∗

0
over the

limited range of Rλ considered. We showed that the PDF

of components of the vorticity vector and the rate-of-strain

tensor approach a Gaussian distribution with increasing S∗

0
.

In contrast, the tails of the PDFs become more stretched

with increasing Reynolds number at fixed S∗

0
, consistent

with experiments. VRDT predicts the dependence of P/ε

and S∗ on S∗

0
at short times; however, VRDT cannot pre-

dict the high wavenumber part of the energy spectrum at

long times. The result suggests that nonlinear interactions

eventually become important in the dynamics of turbulent

shear flows with arbitrarily large S∗

0
.
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Figure 1: Schematic of the shear periodic boundary condi-

tions in two dimensions. Mean shear of magnitude S lies in

the vertical direction. Solid lines indicate orthogonal frame;

dashed lines indicate deforming frame in which boundary

conditions are periodic. Black dots are periodic points.
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Figure 9: Time evolution of the PDF of ω3 at the indicated

values of St and for S∗
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Figure 10: Effect of the initial shear parameter, S∗
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, on the

PDF of ω1 for fixed Rλ ∼ 55.
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Figure 11: Comparison of the time evolution of P/ε from

VRDT (markers) and DNS (lines) for the two indicated ini-

tial values of S∗
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