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ABSTRACT

Cinematographic stereoscopic PIV measurements were

performed to resolve small- and intermediate-scales in the

far field of an axisymmetric co-owing jet. Measurements

were performed in a plane normal to the axis of the jet

and the time-resolved measurement was converted to quasi-

instantaneous three-dimensional data by using Taylor’s hy-

pothesis. The quasi-instantaneous three-dimensional data

enabled computation of all nine components of the veloc-

ity gradient tensor over a volume. Iso-surfaces of swirling

strength (a vortex identification parameter) in the volume

reveal that, in agreement with direct numerical simulation

results, the intense vortex structures are in the form of elon-

gated ‘worms’ with characteristic diameter of approximately

10η and characteristic length of 60-100η. Iso-surfaces of in-

tense dissipation show that the most dissipative structures

are in the form of sheets and are associated with clusters of

vortex tubes. The largest length scale of dissipation sheets

is of order 60η and the characteristic thickness (in a plane

normal to the axis of the sheet) is about 10η.

INTRODUCTION

The structure of intermediate- and fine-scales in turbu-

lent shear flows is a long-standing research problem and

remains one of the most challenging aspects of turbulent

flows. The dynamics of intermediate- and fine-scales of tur-

bulent shear flows are important to turbulence theory and

to the development and validation of sub-grid scale models

used in large-eddy simulations of shear flows.

Several experimental and computational studies have in-

vestigated the fine scales in a turbulent flow by computing

various statistical estimates like scaling exponents of prob-

ability density distributions, structure functions, skewness

and flatness for various quantities like vorticity, circula-

tion and dissipation and have statistically characterized the

small-scale motions (see Sreenivasan & Antonia 1997).

A complete analysis of the three-dimensional structure

of dissipation, vorticity and other gradient quantities in

turbulent flows requires detailed simultaneous three dimen-

sional velocities and velocity gradient information. Such

information has been derived mainly from Direct Numerical

Simulations (DNS) of turbulence. Although, previous exper-

imental and analytical studies provide a range of geometric

models for the fine-scale structures, DNS studies of isotropic

turbulence appear to agree that intense regions of vorticity

tend to form tubes, also called ‘worms’ (for example, Siggia

1981; Kerr 1985; Ashurst et al. 1987; Vincent & Meneguzzi

1991; Ruetsch & Maxey 1991; Jimenez et al. 1993). Some re-

searchers investigated the relationship between vorticity and

dissipation (Kerr 1985; Brachet 1991; Kida & Ohkitani 1992;

Vincent & Meneguzzi 1994) by visualizing these quantities,

obtained from DNS datasets, simultaneously. These studies

concluded that intense dissipative structures are found in

the vicinity of intense vortex cores (or ‘worms’). However,

the exact structure of intense dissipation is not clearly de-

fined. Brachet (1991) indicated that the regions of intense

enstrophy are spatially more concentrated than the energy

dissipation. Other studies found that the shape of the ki-

netic energy dissipation field is more complicated since it

contains sheet-, line- and blob-like structures (Siggia 1981;

Kerr 1985; Yamamoto & Hosokawa 1988).

Most experimental studies in the literature rely on point

measurements or flow visualization techniques to speculate

on the three-dimensional structure of the flow field. There-

fore those studies cannot provide insight into the instanta-

neous spatial structure of the finest scales. Tsurikov (2003)

performed two component particle image velocimetry mea-

surements to resolve small- and intermediate-scales of the

flow and concluded that intense regions of kinetic energy

dissipation possessed sheet-like structures. However, planar

measurements cannot capture the complete spatial struc-

ture of the flow field. Recently, Mullin & Dahm (2006a)

performed dual-plane stereoscopic experiments to study the

fine- and intermediate scales of a turbulent shear flow. The

technique enables computation of all nine velocity gradients

over a plane; however, the information is available only over

a plane and therefore cannot completely describe the three-

dimensional structure. Zeff et al. (2003) reconstructed a

three-dimensional velocity field based on simultaneous high-

speed PIV measurements in three different planes of a small

cube. The authors found that dissipation and enstrophy

are spatially and temporally separated and are largely in-

termittent. Su & Dahm (1996) performed scalar imaging

velocimetry where the complete velocity gradient tensor of

the flow field was obtained by inversion of the conserved

scalar transport equation. The authors investigated three-

dimensional flow fields of enstrophy and dissipation and

concluded that both quantities are relatively ‘spotty’ with

large values occurring very rarely. The field of view of the
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Figure 1: Experimental setup.

above mentioned study was approximately 15η×15η and as

a result they were unable to resolve the intermediate scales

of the flow field.

In the present study, time-resolved stereoscopic particle

image velocimetry is utilized to measure three components

of velocity in a plane and Taylor’s hypothesis is employed to

reconstruct a quasi-instantaneous volume of data. Exper-

iments were performed in the far field of an axisymmetric

co-flowing jet where the Kolmogorov scale is large enough

so that the dissipation scales can be resolved. The pseudo-

three-dimensional data are used to compute the complete

velocity gradient tensor along with the three components

of vorticity and other derived quantities such as three-

dimensional dissipation rates. The goal of this study is to ex-

perimentally investigate the three-dimensional intermediate-

and fine-scale spatial structure of vorticity and dissipation.

EXPERIMENTAL SETUP

Cinematographic stereoscopic PIV experiments were per-

formed in an “end-view” plane in the far-field of a mildly

co-flowing axisymmetric turbulent air jet. A schematic of

the experimental setup is shown in figure 1. The following

are some relevant length scales at the measurement loca-

tion: Jet half width (δ1/2) = 126 mm, Taylor micro-scale

(λ) = 13.8 mm and Kolmogorov scale (η) = 0.45 mm. The

Reynolds number based on jet exit velocity and diameter

ReD = 5100 and the Reynolds number based on Taylor

micro-scale Reλ ≈ 150.

The cinematographic PIV system (shown in figure 1)

consists of a Nd:YLF laser (Coherent Evolution-90) with

an output wavelength of 527 nm and a pair of high-framing

rate 1024 × 1024 pixel resolution CMOS cameras (Photron

FASTCAM-Ultima APX) that were operated at a rate of 2

kHz. Glycerin droplets were seeded into the co-flow and sub-

sequently entrained by the developing jet. The seed particles

were illuminated by a laser sheet and the scattered light was

captured by the two CMOS cameras in stereoscopic arrange-

ment.

Velocity vectors were computed from the cinemato-

graphic images from each camera and were then combined

with suitable magnification factors to compute all the three

velocity components. The resolution of the resulting stereo-

scopic vector field is about 3η×3η. Taylor’s hypothesis with

a convection velocity equal to the local mean axial velocity

u1(x2, x3) (u1, u2 and u3 are velocity components along x1,

x2 and x3 directions respectively) was utilized to reconstruct

a quasi-instantaneous space-time volume of data. The con-

(a)

(b)

Figure 2: (a) Mean streamwise velocity in x2−x3 plane. (b)

Sample vector field from a quasi-instantaneous space-time

volume computed using Taylor’s hypothesis.

vection velocity (i.e., the mean axial velocity) varies over

the x2 − x3 plane as shown in figure 2(a) and consequently

the axial coordinates are different for different regions of the

jet. Note that the mean velocity contours are not round

indicating that the data have not statistically converged.

The total size of the reconstructed quasi-instantaneous

volume x1×x2×x3 = 1300η×160η×160η (5δ1/2×0.6δ1/2×
0.6δ1/2). Figure 2(b) shows three-dimensional velocity vec-

tors from a sample part of the total volume. The field of

view of the volume in figure 2(b) is 250η × 160η × 160η

(0.8δ1/2 × 0.6δ1/2 × 0.6δ1/2). The figure clearly shows a

distorted grid conforming to the variations in the local con-

vection velocity. The axial coordinates near the jet center

are stretched while the coordinates away from the jet cen-

terline (at larger radial locations) are compressed since the

mean jet axial velocity (u1) is higher near the center and is

lower at the periphery.

The pseudo-volume was used to compute all nine compo-

nents of the velocity gradient tensor. A second order central

difference technique was employed to compute all gradients.

Additional details of the experimental technique and val-

idation for the use of this technique to compute all nine

components of the velocity gradient tensor can be found in

Ganapathisubramani et al. (2007a).
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Figure 3: Instantaneous vortex structure. (a)-(d) Different views of iso-surfaces of λ3D=75s−1. (e) Contours of λ3D on a plane

normal to the vortex tube marked (A). The plane is shown in figure 3(d). (f) Swirling strength profiles across selected vortex

cores. The profiles are along a diametric line in a plane normal to the axis of the core.

RESULTS

The structure of the vorticity and dissipation fields can

be studied by rendering instantaneous iso-surfaces of ω and

ε over a volume. This analysis is similar to those performed

in previous DNS based studies (Siggia 1981; Yamamoto &

Hosokawa 1988; Vincent & Meneguzzi 1991; Jimenez et al.

1993).

The structure of the vorticity field can be studied by ex-

amining the contours/iso-surfaces of a vortex identification

parameter that is based on the local flow topology. Various

studies in the literature have compared and contrasted sev-

eral vortex identification parameters (for example, Jeong &

Hussain 1995; Cucitore, Quadrio & Baron 1999), but there

is no general consensus on an optimal parameter to iso-

late vortex cores. Zhou et al. (1999) used swirling strength

(λ2
ci), which is the square of the imaginary part of the eigen-

value of the three-dimensional velocity gradient tensor, to

visualize vortex cores in a DNS dataset of channel flow.

They found that this quantity, which isolates regions of fluid

swirling about an axis, can be used to visualize vortical

structures. In this study, the swirling strength, defined as

λ3D = |λci|, is used to visualize swirling regions in the flow.

Although swirling strength is used to visualize the structure

of swirling/rotational motion, it must be noted that the use

of other vortex identification parameters like enstrophy (or

alternatively, the second invariant of the velocity gradient

tensor or λ2 as defined in Jeong & Hussain 1995) does not

alter the results or conclusions presented in this section.

Figures 3(a)-3(b) show iso-surfaces of λ3D = 75s−1

(where mean and rms values of λ3D correspond to 15 s−1

and 20 s−1 respectively).Both figures show that the vor-

tex structures are organized in tube-like structures, which is

consistent with observations made in previous DNS studies

(Siggia 1981; Ashurst et al. 1987; Ruetsch & Maxey 1992;

Jimenez et al. 1993). These tube-like structures were named

‘worms’ by Jimenez et al. (1993) where the authors indi-

cated that these ‘worms’ were the most intense realizations

of background vorticity (i.e., the magnitude of vorticity in

these tubes is much larger than root-mean-square of vortic-

ity).

Further investigation of the size of the ‘worms’ was con-

ducted by extracting a cross-sectional plane of data normal

to the axis of one elongated worm (marked A in figure 3b).

Figure 3(c) shows contours of λ3D in the cross sectional

plane normal to the axis of a ‘worm’. The contours indi-

cate a circular profile for the vortex core. Figure 3(c) also

shows other vortex structures that cut across the plane. In

particular, the cross section of an elongated tube (marked in

the figure) indicates the typical length of these worms to be

approximately 60−100η. Figure 3(d) shows a diametric pro-

file of λ3D/λ
m

3D along the line marked in figure 3(c) (where

λm3D is the maximum value of λ3D within the vortex core).

The diameter of the core marked A in figure 3(d) was found

to be 9η. Examination of other diametric profiles indicate

that the core diameters of these structures vary between 6η

and 14η and is consistent with the results of Jimenez et al.
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Figure 4: Instantaneous vortex structure. (a)-(b) Different views of iso-surfaces of ε=0.4m2s−3. (c) Contours of ε/ε on a plane

normal to the dissipation sheet marked (C). The plane is shown in figure 4(b) and (d) Thickness profile of dissipation sheet

along a line normal to the structure in a plane that is normal to the sheet as marked in figure 4(c).

(1993) who found that the diameter of intense vortex worms

was nominally 8η. The observation that the worm core di-

ameter is significantly larger than the Kolmogorov scale is

also consistent with the “strain-limited diffusion scale for

vorticity”, λν , defined by Buch & Dahm (1996). Buch &

Dahm (1998) and Mullin & Dahm (2006b) inferred from

scalar dissipation measurements and dual-plane stereoscopic

measurements respectively, that the smallest scale of vorti-

cal structures is λν , which is about six times larger than the

Kolmogorov scale.

The reconstructed quasi-instantaneous volume also pro-

vides an opportunity to investigate the three-dimensionality

of dissipative structures. The instantaneous three-

dimensional structure of dissipation was investigated by ex-

amining iso-surfaces of ε. Figure 4(a) shows iso-surfaces of

ε = 0.4 m2/s3, which is about six times the value of mean

dissipation. Therefore, these iso-surfaces represent intense

dissipative regions in the flow field. Figure 4(a) seems to

show a wide range of shapes and forms for the dissipation

structure that vary from sheets to blobs. This observation

is consistent with the previous studies by Siggia (1981) and

Yamamoto & Hosokawa (1988) where three-dimensional vi-

sualization of kinetic energy dissipation obtained from DNS

data was found to be complex, containing sheet-, line- and

blob-like structures.

The structure of dissipation can be examined in detail

by isolating individual structures. Consider a characteristic

blob marked C in figure 4(a). From this perspective this

structure appears to be a blob of intense dissipation. How-

ever, when viewed from a different perspective as shown in

figure 4(b), this blob marked C is in fact a sheet-like struc-

ture with finite thickness. Figures 4(a) and 4(b) also reveal

other structures (not marked) that are sheet-like, but appear

to be blobs when viewed from other perspectives. Movie

sequences generated by rotating the pseudo-volume along

different axes reveal that most blobs (seen in figure 4a) are

in fact sheets.

To further investigate the thickness of the sheets of dis-

sipation, a plane normal to the axis of the dissipation sheet

marked C is extracted as shown in figure 4(b). This ex-

tracted plane (xa − x2, xa is the coordinate along the plane

shown in figure 4b) is at an angle ξ = 60◦, where ξ is the an-

gle made by the plane with x1−x2 plane. Figure 4(c) shows

contours of ε in the extracted xa − x2 plane (the coordinate

xa = x3secξ). The contours reveal that the dissipation sheet

has a finite thickness. The contours also indicate that the

largest length scale of these sheets are of order 60-100η. For

example, the length of the sheet marked C is approximately

60η in the x2 direction. The thickness of the dissipation

sheet can be deduced by plotting the profile of ε along the

line marked xn, in figure 4(d). Buch & Dahm (1998) inves-

tigated the thickness of scalar dissipation structures and the

thickness was determined by the width where the dissipa-

tion falls to 20% of the local maximum value. Following the

above mentioned definition for thickness, the profile, ε/εm

versus xn (where εm is the maximum value of dissipation in
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the sheet) in figure 4(d) shows that the thickness of sheet

C is approximately 10η. Other thickness profiles extracted

from planes normal to the structures indicate that the thick-

ness of dissipation sheets varies between 6η and 12η.

The iso-surfaces of ε and λ3D can be visualized simul-

taneously to investigate the instantaneous relationship be-

tween the vortical and dissipation structures. Figure 5(a)

show iso-surfaces of ε = 0.4m2/s3 (in black) and λ3D =

75s−1 (in white). The figure show that intense dissipative re-

gions are not coincident with regions of intense λ3D, rather,

the elongated tubes of intense vorticity are surrounded by

the sheets of intense dissipation (Kerr 1985; Vincent &

Meneguzzi 1994; Pradeep & Hussain 2006). This fact can

be further quantified by computing joint probability density

functions of λ3D and ε (see Ganapathisubramani et al. 2007b

for details).

Three different regions where dissipation is found in the

vicinity of vortex tubes are marked in figures 5(a). Regions

marked A and B possess a nested structure of multiple vor-

tex tubes with crumpled dissipation sheets located between

the tubes, whereas, the region marked C does not have

multiple tubes. Upon increasing the threshold for dissipa-

tion iso-surfaces to 10ε, the dissipation sheet marked C just

disappears, suggesting that extremely intense dissipative re-

gions occur mostly between multiple vortex tubes where the

strain fields induced by these vortex tubes overlap (please

see Ganapathisubramani et al. 2007b for details).

The local structure of dissipation around a vortex tube

can be further investigated by considering a zoomed in view

of the nested structure marked A in figure 5(b). Figure

5(b) reveals a closer look at the iso-surfaces of λ3D and ε in

region A, and indicates that the sheet of dissipation is crum-

pled and nested between two or more cores. Contours of ε

in a cross sectional plane normal to a vortex core is shown

in figure 5(c). The contours show that the dissipation struc-

ture around the vortex core is in the form of an annulus,

however, the annular region is not radially symmetric. Fig-

ure 5(d) shows contours of intermediate strain rate (β) in

the same cross-sectional plane. The figure indicates that the

intermediate strain possesses intense positive values in the

regions of intense dissipation. This observation is consistent

with the results based on joint p.d.fs between ε and β, where

higher values of dissipation was found to be concurrent with

higher values of positive β(see Ganapathisubramani et al.

2007b). This provides further support for the presence of

sheet-like dissipative structures since the sheet structure is

induced by the presence of two extensive strains (i.e. α > 0

and β > 0, where α is the largest principal strain and is

always positive).

CONCLUSIONS

Cinematographic stereoscopic PIV experiments were per-

formed to resolve small- and intermediate-scales (scale: ≈
3η− 160η) in the far field of an axisymmetric co-flowing jet.

Measurements were performed in a plane normal to the axis

of the jet. The time-resolved velocity measurements were

then converted to a quasi-instantaneous three-dimensional

reconstruction of the jet. Taylor’s hypothesis was applied to

the data along the jet axial direction to reconstruct the axial

spatial extent. The availability of quasi-three-dimensional

data enabled computation of all nine components of the

velocity gradient tensor over the volume, which could be

utilized to investigate the structure of dissipation and vor-

ticity.

The availability of quasi-instantaneous space-time vol-

umes of data enable visualization of iso-surfaces of strain

rate, vorticity and dissipation that can shed insight in to

the structure of intermediate- and fine-scale of turbulent

flow. Investigation of iso-surfaces of swirling strength in a

quasi-instantaneous volume reveals that the intense vortex

structures are elongated in one direction and appear to be in

the form of ‘worms’. A cross-sectional view of these ’worms’

indicates that these vortex cores have a diameter of approx-

imately 10η, consistent with results from DNS of isotropic

turbulence (for example, Siggia 1981; Jimenez et al. 1993).

The characteristic length of the worms is about 60-100η.

Iso-surfaces of dissipation show that the regions of in-

tense dissipative regions are in the form of sheets and are

coincident with positive values of intermediate strain. The

dissipation sheets are found to be in the neighborhood of in-

tense vortex tubes and extremely intense dissipation sheets

(ε > 10ε) appear in the vicinity of multiple nested vortex

tubes. Intense dissipation does not occur within a vortex

tube but results from the interaction between the nested

groups of vortex tubes. Analysis of thickness profiles of the

dissipation sheets (in a plane normal to the axis of the sheet)

indicates that the thickness varies between 6η and 12η. The

largest length scale of these sheets (length or width) extend

to 60η.

Visualization of quasi-instantaneous data indicates that

the intense dissipative structures and vortex tubes possess

physical scales that are much larger than the Kolmogorov

scale, which is consistent with the findings based on investi-

gation of energy and dissipation spectra.
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