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ABSTRACT

We propose a tabletop turbulence generator using a bi-

axially rotating (i.e. precessing) sphere. The flow inside the

sphere is governed by two well-controllable parameters re-

lated with the spin and the precession angular velocities.

The time-series analysis of PIV data for the velocity field

reveals that turbulence is sustained even with a weak pre-

cession as far as the spin is sufficiently fast. We show the

three-dimensional spatial flow structures obtained by the di-

rect numerical simulations at the precisely same conditions

as laboratory experiments.

INTRODUCTION

One of our dreams in the turbulence research is to control

turbulence (so as to enhance mixing or suppress drag, for

instance) by a simple means such as tuning external flow

conditions. As a fundamental step towards this dream, we

here propose a compact turbulence generator in which the

external conditions are precisely controlled so that high flow

reproducibility can be ensured. What we have used for this

purpose is a biaxially rotating sphere (Fig. 1). We rotate a

sphere filled with a fluid at a constant angular velocity Ωs

around a horizontal axis (the spin axis) on a turntable which

rotates at a constant angular velocity Ωp around a vertical

axis (the precession axis). Note that the spin axis rotates

around the precession axis in the laboratory frame. One of

the most important characteristics of this flow system is that

no uncertainty in external conditions comes in if and only if

these two angular velocities are precisely controlled.

By the way, it must be emphasised that flows inside a

precessing cavity such as sphere, spherical shell, spheroid,

spheroidal shell, and cylinder have been extensively investi-

gated by many authors (Busse 1968, Hollerbach and Ker-

swell 1995, Kerswell 1995, Kobine 1995, 1996, Lorenzani

and Tilgner 2001, Manasseh 1992, Noir et al. 2001, 2003,

Tilgner and Busse 2001, Vanyo et al. 1995, 2000) mainly

from the geophysical viewpoint since the seminal work by

Malkus (1968). Malkus, actually, carried out a similar labo-

ratory experiment to ours in order to show the possibility of

the dynamo action due to the turbulent flow of the Earth’s

outer core (melted iron) which is confined in the spheroidal

mantle. Recall that the earth is precessing with the period

of about 26000 years. He demonstrated that turbulence can

be sustained even with a weak precession. This claim that

turbulence is easily sustained by such a weak action is not

only interesting from the geophysical viewpoint, but also en-

couraging from the engineering viewpoint.

The spin and the precession axes of the Earth have 23.5

degrees, but here we restrict ourselves to the case that they

are at right angles for simplicity. On the other hand, al-

though the main target in geophysics is the case of a large

Ωs

Ωp

Figure 1: Schematic picture of a biaxially rotating sphere.

The horizontal rotation axis is called the spin axis, whereas

the vertical axis is called the precession axis because the

sphere is precessing; i.e. the spin axis rotates around the

precession axis. We deal with only the case that the two

axes are at right angles.

Reynolds number (see (4) below for the definition) of O(109)

and a weak precession rate (see (5) below) of O(10−7), we

investigate the cases of various combinations of the param-

eters which are available in the laboratory or the numerical

experiments.

CONTROL PARAMETERS

The Navier-Stokes equation nondimensionalised (for the

length-scales by the sphere radius a, and for the time-scales

by Ωs
−1) is written as

∂

∂t
u + u · ∇ u = −∇p+

ν

a2Ωs
∇2u + 2

Ωp

Ωs
u× bep (1)

in the non-inertial frame rotating at the constant angular

velocity Ωp around the vertical axis. Here, u and p are re-

spectively the dimensionless velocity and pressure (including

the centrifugal potential), and bep denotes the unit vector in

the direction of the precession axis. The boundary condition

is expressed as

u = bes × x (2)

on the internal wall of the sphere. In (2), bes is the unit

vector in the direction of the spin axis. Equations (1) and

(2) together with the equation of continuity

∇ · u = 0 (3)
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describe the motion of an incompressible viscous fluid in

the precessing sphere. Therefore, only the two parameters,

i.e. the Reynolds number

Re ≡ a2Ωs

ν
, (4)

ν being the kinematic viscosity of fluid, and the ratio

Γ ≡ Ωp

Ωs
(5)

of two angular velocities characterise this system. Hereafter,

we call Γ the precession rate (or the Poincaré number).

LABORATORY EXPERIMENT

Experimental Apparatus

Figure 2: Experimental apparatus. A spinning acrylic

sphere, a pulse motor, a laser light source, a small digital

video camera and a computer for storing image data are

fixed on the turntable. The turntable is rotated by another

pulse motor fixed in the laboratory.

First, we experimentally investigate how the flow state

inside the sphere changes depending on the two control pa-

rameters (Re, Γ ). For this purpose, we have constructed

(see Goto et al. 2007) an experimental apparatus shown in

Fig. 2. The acrylic sphere of radius 50 mm is filled with

degassed tap water, and the two rotations are driven by a

couple of pulse motors, and therefore the control of the an-

gular velocities is very precise. The angular velocities can be

set in the range Ωs/(2π) = 0.1 ∼ 0.6 Hz (which corresponds

to the range Re ≈ 1500 ∼ 9000) and Ωp/(2π) = 0.002 ∼ 1.2

Hz. Thanks to the precise control of the angular velocities,

we have confirmed good flow reproducibility.

In our apparatus, a laser sheet source and a digital video

camera are fixed on the turntable which rotates with the

sphere around the precession axis. The video images are

stored in a computer which are also set on the turntable.

Electric power for the camera, the pulse motor and the

computer is supplied through a slip ring. Thus, all the mea-

surements described below are made in the precession frame

(i.e. the frame where (1) holds). The laser sheet is fixed

perpendicular to the spin axis, and the perspective of the

camera is approximately parallel to the spin axis. The cen-

tre of the sphere is not located on the light sheet, but about

17 mm behind the sheet. The digital camera records the

motion of tracers (Kanomax ORGASOL; mean mass den-

sity and radius are 1.03 g/cm3 and 50μm, respectively.) in

the thin (about 1 mm) laser sheet. We employ the particle

image velocimetry (PIV) to measure the two-dimensional

velocity field in the region of size 40 mm width by 24 mm

height on the laser sheet. The measurements are carried

out after more than 100Ts, where Ts = 2π/Ωs is the spin

period, from the moment when Ωs and/or Ωp are changed

impulsively.

Phase Diagram

It is observed in the visualisations shown in Fig. 3 that

for a fixed Re ≈ 3500, as Γ increases from 0, the flow changes

as (i) the solid-body rotation around the spin axis (Fig. 3a),

(ii) a steady swirling flow around an axis which is tilted

around the precession axis (Fig. 3b), (iii) a periodic flow

(Fig. 3c), (iv) turbulence (Fig. 3d) and (iv) a steady swirling

flow around the vertical axis (Fig. 3e). Here, recall that the

centre of the sphere is not on the laser sheet but behind the

sheet. Therefore, the tilt of the swirling flow is observed

in Fig. 3(b) as the leftward shift of the circulation centre,

and the circulation around the precession axis is observed in

Fig. 3(d) as the rightward flow.

The transitions in the flow state observed in Fig. 3 are

qualitatively understood as follows. First, it is analytically

shown that the flow inside a sphere rotating at a constant an-

gular velocity (that is, when either Ωs or Ωp vanishes) settles

down to a solid-body rotation sooner or later. Second, when

we add a weak precession (Fig. 3b), the solid-body rotation

around the spin axis is weakly tilted by the Coriolis effect.

The tilt angle is analytically derived by Busse (1968). This

tilted swirling flow is accompanied with a boundary layer

where the Coriolis force balances the viscous force. When

the precession rate is strengthened, the balance might be

unstable, and the flow becomes turbulent (Fig. 3d) through

a periodic flow (Fig. 3c). If we further increases the angular

velocity of the rotation around the precession axis, the flow

relaminarises (Fig. 3d). For Γ � 1, it tends to make the

solid-body rotation around the precession axis.

In order to unambiguously classify the flows inside the

sphere into steady, periodic and turbulent, we estimate the

two-time correlation function

Ci(x, τ) =

D

ˆ

ui(x, t) − μi(x)
˜ˆ

ui(x, t + τ) − μi(x)
˜

E

σ2
i (x)

(6)

of a component ui (i = 1 denotes the horizontal component,

and i = 2 the vertical component) of the fluid velocity at

the position x measured by PIV. In (6), brackets 〈·〉 denote

the temporal average, and μi(x) and σi(x) are respectively

the mean and the standard deviation of ui(x, t). The spa-

tial (over the measurement plane) and ensemble averaged

two-time correlation function C1 is plotted in Fig. 4 for

three different precession rates Γ at a fixed Reynolds num-

ber Re ≈ 4700. We can observe different behaviours of the

correlation function depending on Γ . Here, we assume that

the measured velocity is the superposition of the signal and

noise which is statistically independent of the signal. Then,
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Figure 3: Flow visualisation in the precession frame. Re ≈
3500. (a) Γ = 0, rigid-body rotation. (b) 0.025, steady flow.

(c) 0.05, periodic flow. (d) 0.2, turbulence. (e) 0.4, steady

flow.
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Figure 4: Two-time correlation function of the horizontal

velocity component. Averaged value over the space and re-

alisations is plotted. Re ≈ 4700. (a) Γ = 0, (b) 0.04, and

(c) 0.1.

the estimated correlation function is expressed as

Ci(τ) =
eσi

2

eσi
2 + σ′i

2
eCi(τ) +

σ′i
2

eσi
2 + σ′2i

C′
i(τ) , (7)

where eCi (or C′
i) and eσi (or σ′i) are the two-time correlation

function and standard deviation of signal (or noise), respec-

tively. Therefore, from the correlation function observed in

Fig. 4(a), we may conclude that the flow is steady because

observed correlation function is only C′
1 (note that eσ1 = 0

in the steady case). The correlation function of the noise

has peaks at nTs (n = 0, 1, 2, · · · ). This correlation is due

to the fact that since the sphericity of the cavity is not ex-

act, the refraction of the laser sheet and the perspective of

the camera changes periodically with the period Ts of the

spin. Next, from Fig. 4(b), the flow is classified as periodic,

because the observed correlation function is the superposi-

tion of the periodic function and the correlation of the noise

which is observed in (a). Finally, the correlation function

observed in Fig. 4(c) is obviously different from those in (a)

and (b). Therefore, the flow is neither steady nor periodic.

Here, such an aperiodic flow is classified as turbulence.
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Figure 5: Phase diagram. Parameter sets to sustain turbu-

lence are indicated by �. Open circles denote the parameters

for steady or periodic flows.
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Figure 6: Spatial and ensemble averaged degree of turbu-

lence.

Based on the above criterion, we have classified the flow

sustained in the sphere for various combinations of Re and

Γ . The result is shown in Fig. 5. It is worth emphasis-

ing that turbulence is generated and sustained in the range

that O(0.1) � Γ � O(1) for Re � 3000, and that if the

Reynolds number is sufficiently large, turbulence is realised

in the sphere with very small Γ . This is in contrast to the

fact that turbulence is never generated by a steady rotation

around a single axis.

Degree of Turbulence

In the preceding subsection, it has been shown that tur-

bulence can be easily sustained in the sphere. Through the

extensive parameter survey, we have realised that the degree

of the sustained turbulence drastically changes depending on

the control parameters. In order to demonstrate this char-

acter of the system quantitatively, we estimate the degree of

turbulence at position x by

I(x) =
q

˙|u(x, t) − 〈u(x)〉 |2¸
.
q

〈|u(x)|2〉 (8)

for each parameter set for which turbulence is sustained (the

parameters plotted by black squares in Fig. 5). Then, the

contours of their spatial and ensemble averaged values I are

plotted in Fig. 6. It is observed that the degree of turbu-

lence for a fixed Reynolds number is maximised when the

precession rate Γ is around 0.1. This is because when Γ

is much larger (or smaller) than this value, the turbulent

flow is accompanied with the mean flow around the preces-

sion (or spin) axis. When Γ ≈ 0.1, on the contrary, the

sustained turbulence looks statistically homogeneous and

isotropic without mean flow in the frame of reference (the

precession frame).

Since the tune of the control parameters of the present

system is precise, the above result that the degree I of

sustained turbulence drastically depends on the parameters

implies the possibility of the precise control of I. This fea-

ture of the present system might well be an advantage when

applying it to a mixer, for example.

DIRECT NUMERICAL SIMULATION

Numerical Scheme

Since it is difficult to experimentally investigate the de-

tailed three-dimensional flow structure inside a sphere, we

conduct a highly precise DNS employing a spectral method.

Here, we adopt spherical harmonic functions in the direc-

tion of (θ, φ) in the spherical coordinate (r, θ, φ) and a kind

of Jacobi polynomials (Matsushima and Marcus 1995) in the

r direction. As emphasised above, since there are only two

control parameters Re and Γ in this system, and since the

boundary condition is extremely simple, we can carry out

the DNS which precisely corresponds to the laboratory ex-

periment for the same set of parameters (Re, Γ ).

In the DNS, the velocity field u is expressed in terms of

two scalar functions Ψ and Φ as

u = ∇× (Ψx) + ∇× ∇× (Φx) , (9)

which ensures the incompressibility (3) of the fluid. Then,

the governing equations for these scalar functions are nu-

merically integrated by the combination of the second-order

Adams-Bashforth and the Crank-Nicolson schemes. The

numbers of the collocation points in the spectral method

are set as 64, 128 and 256 in the r, θ and φ directions, re-

spectively. The details of the numerical scheme are given in

Kida and Nakayama (2007).

Comparison with Experiment

In order to verify that the present DNS reproduces flows

consistent with the laboratory experiment, we show here a

result of the DNS for the same parameter set as shown in

Fig. 4(b), i.e. Re = 4720 and Γ = 0.04. The temporal

evolution of a velocity component at a position is shown in

Fig. 7 for the duration 0 ≤ t ≤ 130Ts. After a long transient

period of O(100Ts), the system finally approaches a periodic

flow with a period 0.49Ts. This coincides with the period

observed in the experiment (Fig. 4b). The period estimated

250



0 50 100

-0.1

0

0.1

45 50

-0.027

-0.026

125 130
-0.06

-0.04

-0.02

0

0.02

t/Ts

u
(t

)

Figure 7: Temporal evolution of a velocity component at a

position. Re = 4720, Γ = 0.04. DNS result.

by the Fourier transform of the correlation function shown in

Fig. 4(b) is about 0.48Ts. It is further interesting to observe

that the system experiences a transient plateau (30Ts �

t � 70Ts) before reaching the final periodic state. In this

plateau, the flow is also periodic but the period is about

0.72Ts (about 1.5 times longer than the final period). This

behaviour is not unique for this parameter, but observed also

for other parameters. We suppose that the secondary flow

developing for t � 40Ts modifies the primary flow, and then

the modified primary flow triggers another instability which

leads to the final state.

We have also estimated numerically the critical Reynolds

numbers Rec, at which the steady flow becomes unstable

and a periodic flow appears (the present laboratory experi-

ments show that the laminar-turbulent transition in the low

Γ range always experiences a Hopf bifurcation), for each

value of Γ in the range 0.04 ≤ Γ ≤ 1.6. The result is

consistent with the phase diagram (Fig. 5) obtained by the

laboratory experiment. However, it is revealed by the DNS

that Rec(Γ ) is not a monotonic function of Γ , but compli-

cated. This may imply that the most unstable mode changes

as a non-trivial function of Γ .

Three-dimensional Flow Structure

An advantage of DNS is that we can capture easily details

of flow structure. We visualise in Fig. 8 the velocity field of

the flow for the parameter sets (Re = 4720, Γ = 0.04) shown

in the preceding subsection. Figure 8(a) shows the velocity

field on the Z = 0 plane, where Z is in the direction of the

precession axis and the origin is at the centre of the sphere,

at a time (t = 40Ts) during the plateau shown in Fig. 7,

whereas (b) shows the velocity field on the same plane at a

time (t = 136) in the final periodic state. It is seen that the

overall flow structure is almost the same at these two times;

that is, we can observe a clockwise swirl at the centre of the

sphere, and four pairs of peripheral eddies. The positions

of these eddies are almost stationary in both cases, but the

shape periodically changes for t � 100Ts. Therefore, the

observed oscillation for t � 100Ts may be understood in

(a)

(b)

Figure 8: Velocity field on the Z = 0 plane. Z is in the

direction of the precession axis. The horizontal direction is

parallel to the spin axis. Re = 4720, Γ = 0.04. DNS result.

(a) t = 40Ts. (b) t = 136Ts .

terms of the secondary instability of the mean flow, which is

created by the nonlinear saturation of the initial instability

for the duration t � 40Ts.

It is an important near-future problem to investigate

numerically the details of statistics and three-dimensional

structures of developed turbulence sustained inside the

sphere when Re � 3000 and Γ = O(0.1). However, we

have found that even in small Reynolds numbers the steady

flows inside the sphere have non-trivial flow structures. Two

streamlines in the steady flow at Re = 10 and Γ = 0.1 are

shown in Fig. 9. Each of these streamlines is very dense in

the space and constitutes a torus. By a detailed Poincaré-

section analysis of streamlines, it is seen that this steady

flow consists of four separate regions, and that the stream-

line topology is sensitive to Re and Γ . These flow structures

at low Reynolds numbers may be important when applying

this flow system to a kind of gentle mixer relying on the

Lagrangian chaos.
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Figure 9: Two streamlines of a steady flow (Re = 10, Γ =

0.1). Each of streamlines constitutes a torus. X and Z

denote the directions of the spin and the precession axes,

respectively.

CONCLUSION

Using a biaxially rotating sphere, we have proposed a

turbulence generator. This generator may possess some

desirable features. First, in contrast to experiments in a

wind tunnel, the system is closed and without free boundary

affecting the flow. Secondly, in contrast to turbulence exper-

iments using stirrers, the boundary condition is extremely

simple. Not only flow state (steady, periodic or turbulent)

but also the degree of turbulence inside the sphere are per-

fectly controlled only by the two parameters Re and Γ . The

simpleness of the boundary conditions also permits us to

conduct the DNS under the precisely same condition as the

laboratory experiment. Furthermore, since large-scale ed-

dies induced by the spin easily break up to smaller eddies by

the relatively weak action of the precession, we can sustain

fully developed turbulence inside the sphere easily. These

facts (the smallness of the number of control parameters and

the easiness in sustaining turbulence) imply the possibility

that this system serves as a standard tabletop turbulence

generator which may be useful for discussions (on the valid-

ity of turbulence models, e.g.) among researchers in different

laboratories.
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