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ABSTRACT

This paper focuses on the acoustic emission of unsteady and
anisotropic homogeneous turbulence. A computationally efficient
method is introduced in order to model turbulence submitted to ro-
tation. The model for the fluctuations mixes random Fourier modes
and inertial waves with variable respective intensities. The acoustic
analogy introduced by Lighthill is applied to these sources to esti-
mate the acoustic properties of the incompressible anisotropic field.
The modifications induced by rotation on the spectrum of acoustic in-
tensity are discussed. We present results for the acoustic spectrum,
sound directivity, and we compare with some theoretical laws.

INTRODUCTION

This paper deals with two strongly linked issues of fluid me-
chanics. We attempt to estimate the far-field acoustic emission of
anisotropic turbulence. The omnipresent acoustic issue in industrial
situations is far from the academic case of isotropic turbulence. Un-
derstanding the phenomena responsible for the non-isotropy of the
turbulence, and their consequences in terms of acoustic emission, is
an important question in modern aeroacoustics.
The resolution of the complete set of compressible Navier-Stokes
equations is still nowadays a very hard numerical task. The acoustic
analogy is, in this framework, very helpful. We consider an infinite
fluid domain which is locally turbulent and considered as an acous-
tic source radiating in the medium otherwise at rest. The source field
is a turbulent flow of an incompressible fluid without internal acous-
tic propagation. Using the acoustic analogy applied to these sources,
the far field acoustic propagation is then computed. The model used
is based on Lighthill’s theory, which is, in its first formulation, rig-
orously exact. However, an accurate estimation of the two-points
two-times correlations is required. In our case, a Kinematic Sim-
ulation (KS) provides very good correlations compared to the ones
coming from Direct Numerical Simulation (DNS). The only hypothe-
ses used here are the far-field approximation and the fact that the
acoustic sources are supposed to be compact.
We aim at understanding the consequences on the acoustic field of
the restructuration of turbulence submitted to rotation. The model
has a low numerical cost, using random Fourier modes and in which
no equations is solved. The fixed energy spectrum provides one-time
two-points correlations frozen and unchanged by rotation in the lin-
ear approximation. However, the unsteady two-times statistics are
altered. KS was already used for Lagrangian diffusion (Liechtenstein,
2005) or for acoustic interaction with a mean flow (Béchara, 1994).
The first two parts in the following are devoted to the modelisation
of a turbulent field submitted to rotation. Lighthill’s acoustic analogy
will be presented, and followed by the different results obtained thus
far.

Figure 1: The local Craya-Herring frame

INERTIAL WAVES IN ROTATING FLUIDS

We study the effect of the rotation on an isotropic and homo-
geneous turbulence. In a first level of approximation, we will not
consider the non-linear restructuration of the flow nor the evolution
of the energy spectrum. Coherent eddy structures in rotating flows
are not account for, since linear dynamics give access to waves only.
By means of an acoustic investigation, we attempt to understand the
effects of rotation on the model.
In this part, the anisotropic dispersion relation of the inertial waves
existing in a rotating flow is presented. The starting point is the
Navier-Stokes equations for an incompressible fluid written in a frame
rotating at a rateΩ around an axis assumed to ben:

∂u

∂t
+ (u · ∇)u + 2Ωn × u = −

1

ρ
∇p + ν∆u (1)

∇ · u = 0 (2)

One can write the velocity Fourier componentŝu(k) =
`

û(1), û(2), û(3)
´

(for more details, see Cambon, 2001) in a local or-
thonormal reference frame in Fourier space (the Craya-Herring frame,
see figure 1):

e1 =
k × n

|k × n|
, e2 =

k

k
× e1, e3 =

k

k
(3)

The divergence-free condition (2) imposesû(k) · k = 0, so that the
third component of the velocity is useless. An initial velocity field
u (x, t = 0) is sufficient to determine the general non viscous linear
solution:

u(x, t) =

Z

X

ǫ=±1

N
ǫe−iǫσt

`

N
−ǫ

· û(k, t = 0)
´

eik·xd3
k

(4)
whereNǫ are the eigenmodes of the linear operator coming from the
linearized form of equation (1). One can emphasize the oscillating
solutions (ǫ = ±1) representing the inertio-gravity waves, whose
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dispersion relation is:

σ = 2Ω
k · n

k
= 2Ω cos θn (5)

whereθn is the propagation angle with respect to the rotation axis
n, assumed to be vertical. This linearized approach provides a direct
relation between a wave number and its time dependence.

KINEMATIC SIMULATION

The scale disparity existing in an incompressible turbulent flow,
from acoustic waves to hydrodynamic fluctuations, makes its numer-
ical simulation a hard task. Within the framework of acoustic emis-
sion, the calculation of turbulent fluctuations depends on an efficient
evaluation of their time and space scales. KS provides an Eulerian ve-
locity field, with good two-points and two-times correlations, without
the numerical cost of DNS. The spatial velocity field is synthesized
with a method devised by Kraichnan (1970). KS was then used by
Karweit (1988) for the propagation of acoustic waves and by Fung
(1992) in the case of homogeneous and isotropic turbulence. The
noise modelling of free turbulent flows has also been investigated us-
ing a stochastic approach, e.g. Béchara (1994).
At any timet and at any pointx of the domain,

ui (x, t) = ℜ

N
X

n=1

ei(kn.x+ωnt)
×

“

u(1)(kn, t)ei(kn) + u(2)(kn, t)ei(kn)
”

(6)

The disparity of length scales existing in turbulence must be taken
into account using many degrees of freedom, such asN = 103.
The different wave numberskn are chosen according to a random
process. The unsteadiness, conveyed by the termsu(1) (kn, t) and
u(2) (kn, t), is given by a discretization of the linear solution (4):

v̂(kn, t) ≡ (u(1) (kn, t) , u(2) (kn, t)) (7)

=
X

ǫ=±1

N
ǫ
ne−iǫσnt

`

N
−ǫ
n · v̂(kn, 0)

´

(8)

Two terms are responsible for the unsteadiness of the flow. The an-
gular frequencyωn is equivalent to a random phase of translation: all
the Fourier modes components are influenced (see equation (6)).σn

can be considered as rotational random phases.
This model of the velocity field was used in the study of lagrangian
diffusion with very good results. Liechtenstein (2005) has shown that
the non-linear behaviour of one-particle vertical dispersion in a rotat-
ing turbulent flow can be partly predicted by a linear approximation
provided that the dispersion relation of the inertio-gravity waves is
explicitly used. In the classical method, the unsteadiness was intro-
duced by a dimensional argument. One can linkωn to the amount of
turbulent energy as:

ωn =
q

k3
nE(kn) (9)

The angular frequencyωn is then proportionnal to the eddy turnover
time of thenth wave mode . Since we are interested in acoustics,
the unsteadiness controlling the turbulent domain is essential, and a
merely random process cannot take into account the modifications
induced by rotation. The inertial waves, and in particular their disper-
sion relations, are clearly a relevant phenomenon to describe our flow.
To the random components coming from (9), we add the determinis-

tic dispersion relation, so thatσn =2Ω cos θn (see equations (5) and
(8)) and we useωn =λ

p

k3
nE(kn), whereλ controls the amount of

random angular pulsations in the global unsteasiness. Thus, we relate
the time evolution of one Fourier mode to the rate of rotation, and to
its orientation. However, in the present model, KS does not take into
account the fact that the motion of the finest scales of the flow is mod-
ified by the larger ones, the so-called sweeping effect, rediscussed at
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Figure 2: Comparison between the analytic turbulent energy spectrum
and the calculated one with 1000 Fourier modes.

the end.
Finally, the amplitudes of theN different modes are determined by a
turbulent energy spectrum, which is, in first approach, supposed to be
isotropic (figure 2). We however introduce a new feature: the original
method generates one random direction for each wave number in the
discrete range[kmin, kmax], which is consistent in isotropic cases. In
our model, even the modulus of the wave number is a random vari-
able, which is more relevant to the anisotropic case.

LIGHTHILL’S ANALOGY

In 1952, Lighthill published his famous paper about the acous-
tic analogy, which was one of the first attempts to predict the noise
generated by turbulence. He has shown that the instantaneous acous-
tic pressure is strongly linked to the instantaneous velocity field. By
rearranging the Navier-Stokes equation, Lighthill established the fol-
lowing equation:

∂2ρ

∂t2
− c20

∂2ρ

∂yj
2

=
∂2Tij

∂yi∂yj

(10)

in whichρ is the fluctuating fluid density andc0 the velocity of sound.
Lighthill’s tensor is defined by

Tij = ρ0uiuj + (p′ − ρ0c0
2)δij − τij (11)

This tensor is the result of three contributions: a convective nonlinear
unsteadinessρ0uiuj , the noise known as “entropy noise” (negligible
in our case) and the viscous stress fluctuationsτij , neglected most of
the time.
Implicitly, Lighthill’s analogy assimilates the acoustic emission of
turbulence to a volumic unsteady source, resulting from the action

of external forces
∂
2
Tij

∂yi∂yj

. Under classical hypotheses of far-field

and statistical stationnarity, a solution of Lighthill’s formalism can
be obtained by means of Green’s functions. For an external observer
located at the pointx, the fluctuating pressure is given by:

p(x, t) =
1

4πc02

xixj

x3

Z

V

∂2

∂t2
Tij

„

y, t −
|x − y|

c0

«

d3
y (12)

whereV is the volume of the turbulent domain. One can take the time
Fourier transform of equation (12):

p̃(x, ω) =
ω2

4πc02

xixj

x3

Z

V

T̃ij (y, ω) e
jω

|x−y|

c0 d3
y (13)

wherep̃(x, ω) andT̃ij(y, ω) are respectively the time Fourier trans-
forms of p(x, t) andTij(y, t). The acoustic intensity, proportional
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Figure 3: Spectral density of acoustic energyI(f). Therotation rate
is fixed at32π rad.s−1. The random unsteadiness, via the parame-
ter λ, is progressively introduced. In order to make the visualisation
easier, the spectra are smoothed.

to the autocorrelation function ofp(x, t), is, in our case, obtained in
Fourier space:

I(ω) =
p̃(x, ω)p̃∗(x, ω)

ρ0c0
(14)

wherep̃∗(x, ω) is the complex conjugate of̃p(x, ω). As emphasized
by Witkowska (1994), Lighthill’s problem is slightly different from
ours. Indeed, the original point of view was to observe an infinite
fluid domain in which only a small part is turbulent. The numerical
simulations performed in this paper concern only a fraction of the
turbulent domain observed by Lighthill. The surfaces delimiting the
field can take part in the global acoustic emission. The formulation
used here avoids such artifical contributions, although it is not the case
of all acoustic analogies.

RESULTS

Kinematic Simulation, in which the unsteadiness comes from
the dispersion relation of inertial waves, provides the turbulent field
required to compute the Lighthill’s analogy. In the following, we dis-
cuss different results coming from this approach.
The different parameters likely to modify the acoustic spectrum are:

• the parameterλ representing the contribution of the random
pulsations to the global instationarity.λ cannot be larger than
O(1) whereasλ = 0 corresponds to a frozen field without ro-
tation (Fung, 1998). In our calculations,λ is chosen equal to
0.4.

• the rotation rateΩ, which is directly linked with theglobal
Mach numberdefined byM0 = ΩL

c0
, where L is a charac-

teristic length of the physical domain.

• the root mean square velocityq, which defines thelocal Mach
numberdefined bym0 = q

c0

The ratio m0/M0 is the Rossby number of the flow.

Acoustic spectra
We present here the spectral density of acoustic energyI(f). In

order to access the high-frequency noise, the time step is equal to
10−4 s. This ensures a maximum frequency about5000 Hz. On
the other hand, the number of time steps must be adequate to have a
sufficient observation time. Indeed, our version of Lighthill’s theory
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Figure 4: Spectral density of acoustic energy with different rates of
rotation.

takes into account the retarded time between two different points of
the source. The acoustic emission starts att = 0, the first pertur-
bation felt by the observer will be attr = r/c0. We must observe
the acoustic source during a time much longer thantr . In our case,
tr ≈ 0.03 s, and 4096 steps in time are sufficient. The field is syn-
thesized in a cube of side0.5 m with a resolution from123 to 323

depending on the calculation.
First, figure 3 presents the spectrum of the rotating turbulence, with-
out random angular frequency (i.e.λ = 0). There appears a cut-
off frequency coming from the maximum pulsation of the inertial
waves. Given that the acoustic intensity is proportional to the veloc-
ity squared, whose maximum angular frequencyσmax is 2Ω rad.s−1,
we expect to observe a cut-off atσmax = 4Ω rad.s−1. In our case,
the spectra are computed for a rotation rate of36π rad.s−1, so that
fmax = σmax/2π ≈ 72 Hz. The two other curves in figure 3 present
the same calculation withλ 6= 0. The unsteadiness of the synthesized
field is then enhanced and some high-frequency components appear.
Figure 4 shows how the rotation rate influences the spectrum. Back-

ground rotation impacts mainly for a frequency domain influenced by
inertial waves, from0 to 2Ω/π Hz. Again, we observe the cut-off
depending on the rotation rate, but this contribution is superposed
to the one due to the random unsteadiness. The integral obtained
thanks to Lighthill’s theory shows that the intensity varies like the
pulsation at the power of four. A comparison of our results is pos-
sible with a DNS approach. Indeed, a similar domain of turbulent
flow can be solved using a pseudo-spectral code of DNS. Applying
the same acoustic analogy to this solution, it is possible to obtain the
same acoustic spectra. As already observed (see for example Sarkar
(1993) or Witkowska (1994)), the time scale of the structures that have
the maximum acoustic emission is greater than the time scale of the
energetic structures of the turbulence. One can define a time scale for
those structures asl0/u0 wherel0 is the integral scale andu0 a char-
acteristic velocity. In our case,l = 0.03 m whereasu = 10 m.s−1.
Thus, the Strouhal numberSt = fl0/u0 of the structures which have
the maximum acoustic emission isSt ≈ 4 − 6.

Dependence on local Mach number
One of the most impressive results from Lighthill’s theory is the

dependence of the acoustic power with the local Mach number. Under
the far-field hypothesis, the acoustic intensity can be dimensionally
estimated by:

I ≈ ρ0

„

D

4π|x|

«2

u′

0

3
M0

5 (15)

In other terms, the acoustic intensity is proportional to the Mach num-
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Figure 5: Evolution of the acoustic intensity depending on the local
Mach number. The random pulsation increases progressively
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Figure 6: Evolution of the acoustic intensity depending on the local
Mach number. The rate of rotation increases progressively

ber of the flow at the power of eight. An interesting question is to chek
wether our model follows this dependence, and the impact of rotation.
We compute the intensity at a given point for different values of the
root mean squared velocity, that is for different local Mach numbers
m0 = q/c0, and for different values ofλ andΩ. We study the in-
fluence of these parameters, characterizing the unsteadiness, on the
acoustic emission. Figure 5 shows the progressive increase ofλ,
whereasΩ is maintained constant. Whenλ = 0, the acoustic in-
tensity varies like the Mach number at the power four. The turbulence
seems to follow a monopolar behaviour, whereas Lighthill’s theory
predicts a quadrupolar one. However, this result can be understood
by writing Lighthill’s tensor, in an absolute reference frame (equa-
tions (1)-(2) were obtained in a rotating frame):

Tij = ρ0[(ui + (Ω × x)i)(uj + (Ω × x)j)]

= ρ0[(ui − xjΩ)(uj + xiΩ)]

= ρ0[(uiuj + xiuiΩ − xjujΩ − xixjΩ
2] (16)

in whichx is the current point of calculation of the Lighthill’s tensor
andΩ the amplitude of rotation (i.e. the vertical component). When
λ = 0, the flow is dominated by rotation, which implies that the
Rossby number is low,ui ≪ Ωx. Only the last term of equation (16)
is not negligible. We finally haveTij ≈ ρ0xixjΩ2. The volumic
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Figure 7: Directivity of the acoustic emission depending on the fre-
quency for the case without rotation. Two frequency bands having a
similar behaviour are gathered. Only the frequency bands of interest
are presented. The acoustic intensity is shown in decibels.

unsteady source of acoustic emission is then:

∂2Tij

∂xi∂xj

≈ ρΩ2 (17)

This term does not display any explicit space dependence, a charac-
teristic of an acoustic monopole.
However, when adding some random pulsation by increasingλ (and
so by increasing the Rossby number), the behaviour of the synthe-
sized turbulence should be a quadrupolar one. Our results show that
the random pulsations disturb the monopolar law in power four and,
on some range of Mach number, Lighthill’s law appears.
These conclusions are confirmed by the results presented in figure
6: a pure random unsteadiness altered by rotation. As predicted, the
isotropic caseΩ = 0 rad.s−1 follows the dependence in the power
eight. Depending on the Rossby number, the acoustic emission of the
turbulent domain will result in the transition from monopolar (strong
rotation) to quadrupolar behaviour (isotropic turbulence).
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Figure 8: Directivity of the acoustic emission depending on the fre-
quency for a rotation rateΩ = 60π rad.s−1.

An other characterization of this behaviour would be to compute the
two contributions of the acoustic pressure independently. The sym-
metrical tensor̈Tij of equation (11), can be recast as:

T̈ij =

„

T̈ij −
1

3
T̈llδij

«

+
1

3
T̈llδij = Qij + Qδij (18)

whereQij is a zero-trace tensor andQ a scalar. Then, the acous-
tic pressure at the retarded timeτ can be split as a sum of two
terms, which respectively represent the contribution from monopole
and quadrupole sources:

p(x, t) =
1

4πc02

„Z

V

Q (y, τ) dy + ninj

Z

V

Qij (y, τ) dy

«

Directivity
Regarding the spectral distribution, the isotropy of homogeneous

turbulence can be broken when the flow is submitted to background
rotation. In a first approximation, KS model used here is based on

Ω αn αp

0 3.56 13
30π 2.17 13
60π 1.55 13

Table 1: Comparison with the Proudman’s theory

an isotropic energy spectrum. Further developments will introduce
an anisotropic spectrum. However, an anisotropic directivity of the
sound emitted by rotating turbulence may come from the inertial
waves anisotropic dispersion relation. In this part, we present some of
the acoustic properties of the source field depending on the position of
the observer. Given the symmetry of the flow, we have computed only
a quadrant fromθ = 0 to θ = π/2. All the preceding results were
computed withθ = π/4. Two configurations are observed: with and
without background rotation, in order to constrast with the isotropic
case.
To investigate the behaviour of KS in terms of directivity, the acoustic
intensityIn(x) for different positionsx of the observer is calculated
by partial integrations of the spectral density of acoustic intensity:

In(x) =

Z

fn+1

fn

I(f)df (19)

with fn+1 − fn ≈ 100 Hz. Different bands[fn, fn+1] of similar
behaviour are then gathered in the same curve.
Various behaviours can be highlighted looking at figure 7. First, the
very low frequencies, from0 to 100 Hz, are quite anisotropic. Then,
a large spectral band, from100 to 1000 − 1200 Hz, is isotropic. As
the frequency increases, the isotropy is gradually lost. For clarity, we
have chosen to present only some spectral bands.
Figure 8 presents the same results with a strong rotation rateΩ =

60π rad.s−1. In this case, almost all the frequencies approach an
isotropic behaviour. In particular, the very low frequencies, in which
the inertial waves are dominant, are influenced by the effect of ro-
tation. This suggests that the synthesized field is dominating by its
monopolar properties, as emphasized in the preceding paragraph.

Proudman’s theory
Until now, we have observed the qualitative anisotropic features

of our model in terms of spectral density and directivity. We now at-
tempt to present quantitative results in terms of acoustic power. KS
is a statistically steady model of turbulence, producing a constant
average acoustic power during the time evolution of the source. How-
ever, after Lighthill’s paper, Proudman (1952) calculated the acoustic
power of turbulence as a function of the turbulent energy spectrum.
This theory is based on the hypothesis of isotropic homogeneous tur-
bulence, and we expect to observe differences at increasing rotation
rate. The acoustic power is given by:

PProudman= αp

q3

L
m5 (20)

whereαp depends on the energy spectrum. Following Proudman’s
reasoning, theαp coefficient of our spectra is about13. This is close
to the value found by Witkowska (1994) with a DNS approach. This
value is compared to the one obtained by the direct computation of
the acoustic powerPnum:

αn =
Pnum

q3

L
m5

0

(21)

In order to estimate the acoustic power, we have computed the acous-
tic intensity averaged over ten different observation points. The re-
sults depending on the rate of rotation are gathered in the table 1. It
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seems that the acoustic efficiency of the turbulence decreases with
the rate of rotationΩ. Moreover, our results are consistent with the
DNS and Large Eddy Simulation (LES) approaches by Witkowska
(1994), which seems to imply that Proudman’s theory overestimates
the acoustic emission.
The quantitative behaviour of the KS in terms of acoustic emission
seems to be acceptable, especially looking at numerical costs.

CONCLUSION AND PERSPECTIVES

Lighthill’s acoustic analogy and a stochastic modelisation of a
bounded turbulent domain allow us to estimate the acoustic proper-
ties of rotating homogeneous turbulence. The isotropy of the flow is
broken by the inertial waves whose dispersion relation is explicitly
used. Their influence on the acoustic emission is dominant for low
frequencies below2Ω/π Hz. The maximum of the acoustic emis-
sion concerns pulsations greater than the pulsation characteristic of
the most energetic structure. However, this result, already observed
by DNS or LES approaches, shows a strong dependence with the pa-
rameterλ. Looking at the dependence of acoustic emission with the
local Mach number and its directivity, we have separated the monopo-
lar behaviour of the stochastic field from the quadrupolar one. Finally,
our calculations are consistent with previous comparisons of Proud-
man’s theory with DNS ans LES calculations.
Beyond those results, many elements of the KS could be improved.
The energy spectrum used in KS could be refined to include a depen-
dence on the direction of the wave number. Moreover, the different
behaviours observed, in terms of directivity for example, must be
compared with the ones coming from a DNS calculation. This as-
pect of the study is still in progress. As emphasized by Fung (1992),
the sweeping effect, whereby the fine scales of the turbulence are
convected by the larger ones, is not included in this version of the
Kinematic Simulation model. An updated version is currently studied
with an approach close to Fung’s one, in which the larger scales de-
termine the unsteadiness of the smaller ones withωn of orderkn ·u.
Our results have shown the strong dependence withλ of the acous-
tic spectrum, and the modelisation of the sweeping effect might be a
solution to overcome this issue. Recent works, e.g. Poulain (2006),
about dynamics of spatial Fourier modes and temporal intermittency
in turbulence could also be of interest to improve the relevancy of our
model to the aeroacoustics field.
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