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ABSTRACT 
This study describes the amendment of an algebraic 

anisotropic dissipation rate model (ADRM) and its 
application to various turbulent flows to test the model’s 
performance. Modeling anisotropies for the turbulence 
dissipation rate is considered by an analysis of the exact 
transport equation for the dissipation rate tensor. The 
second-moment closure, which is based on the explicit 
amended ADRM, is proposed and it is closely linked to 
the elliptic-blending model that is used for the prediction 
of Reynolds stresses. 

The prediction results are directly compared to the 
DNS and the LES to assess the performance of the new 
model predictions and to show their reasonable agreement 
with the DNS and LES data for all the flow fields that 
were analyzed for the present study.

1. INTRODUCTION 
Speziale and Gatski[1] (hereinafter, SG) suggested a new 

algebraic anisotropic dissipation rate model (ADRM), 
which was invoked by a local equilibrium hypothesis. 
This ADRM led to a scalar dissipation rate equation and 
an algebraic expression for the anisotropy of the dissipation 
rate tensor. Both the anisotropy of the dissipation rate 
tensor and the coefficient in the dissipation rate equation 
were found to be nonlinear functions of the mean 
velocity gradient. This distinguished it from many 
previously proposed scalar dissipation rate equations.

Although the SG-ADRM was reasonably successful for 
homogeneous turbulent flows, we think that a margin for 
improvement has remained in that model for near-wall 
turbulence. That is, we aim to extend the ADRM to a 
full second-moment treatment considering a near-wall 
turbulence prediction. Therefore, the ADRM that is only 
constructed in the anisotropy of dissipation,  , is amended 

with the anisotropic tensor of the Reynolds stress,  , 
in order for it to apply to the inhomogeneous turbulent 
flow in this study. An implicit system of algebraic 
equations for the amended ADRM will then be obtained 
after the same type of local equilibrium hypothesis is 
invoked as that which gives rise to the algebraic stress 
description of the gas-solid turbulent flows that were 
suggested by Mashayek and Taulbee[2]. Since the implicit 
form of this equation makes it inconvenient to perform 
actual computations, we converted the present, amended 
ADRM into an explicit equation, which was generated 
with using the Cayley-Hamilton theorem.

Modeling the Reynolds stress transport equations was 
closely coupled with the amended ADRM and it was 
accomplished with using the elliptic-blending equation, 
which was suggested by Thielen et al.[3]. It was based 
on the blending of near-wall and far-from-wall forms of 
the pressure scrambling correlation. A notable feature of 
this approach is that the non-local character is preserved 
by the elliptic operators such as the elliptic-blending 
equation, and the formulations can be integrated down to 
the wall.

The present second-moment model that uses the 
amended ADRM has been integrated numerically for 
several different inhomogeneous test cases and the results 
were compared with DNS and LES to assess the 
performance of the proposed model.

2. MATHEMATICAL MODELS
2.1 The amended algebraic anisotropic dissipation rate 

tensor model
According to the SG[1], the exact transport equation 

for the dissipation rate tensor, , for homogeneous turbulence 
takes the forms:
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 

 

      (1)

where


  

  (2)


   




   

  (3)


  

 

 

  (4)

The coefficients of the mean velocity gradient of 
 

and the rapid term of 
  are written in terms of a 

4th-order tensor    . In order to 

model the 
 and the rapid term of 

 , we use a 

new 4th-order tensor that is composed from both the 
correlation of the dissipation rate anisotropy tensor, , 

and the Reynolds stress anisotropy tensor, . That is ,

 is considered for the redistribution effect and  is 

used for the production rate effect. The most general 
linear model for both  and  is obtained from 




   

  
    
  
    

 (5)

In equation (5),  and  are respectively defined as:

  


 


 ,  


 


 (6)

From the consideration of a homogeneous turbulent 
flow in the equilibrium state, a linear algebraic equation 
is obtained as follows:



 

   


 


 






 


  

 







 

 


 


 

 




 (7)

After applying the 4th-order tensor equation (5) 
through (7), and with using the symmetry, continuity, 
normalization and complementary constraints for the 
4th-order tensor, the amended algebraic anisotropic 
dissipation rate tensor model(amended ADRM),  ,  

takes the form:



 

   


 


 







  








    







  



   







 

 (8)

where,

      
 



  ,   
 



   (9)

 and  are the mean strain rate and the mean 

vorticity tensor, respectively. The last two terms of the 
RHS in equation (8), which are only related to the 
anisotropy of the Reynolds stress,  , are added to the 

model of SG when the equation is compared to the 
original ADRM of SG. 

Detailed expressions for the ADRM and their model 
coefficients can be found in SG[1].

Equation (8) contains three arbitrary coefficients,  ,  
and . The coefficient,  , was determined to be 0.6 in 

SG, which was accomplished by using the DNS data for 
homogeneous shear flow from Rogers et al.[4]. However, 
in this study, we reconsider the coefficient,  , through 
the fully developed channel flow calculation and through 
the comparison with the DNS data of Moser et al.[5], 
which is maintained at 0.6 in homogeneous turbulence as 
in SG, and it can simultaneously reflect the 
inhomogeneous effect in the turbulent shear layer. Also, 
the coefficient  is adjusted to be 0.15 from the 
computational procedures and  is assigned to be 5.8 

according to SG. 
For non-inertial references frames, the Coriolis term 

must be included in the RHS of equations (1) and (8). 
Furthermore, the mean vorticity tensor must be replaced 
with the absolute mean vorticity tensor as


  . (10)

2.2 Explicit algebraic anisotropic dissipation rate tensor model
The amended algebraic dissipation rate tensor equation 

can be iteratively used for computation in the form 
presented above; however, the implicit form of this 
equation makes it inconvenient for actual computation. 
Thus, we will attempt to obtain an explicit form of the 
equation according to Mashayek and Taulbee[2]. To 
generate the explicit algebraic model, equation (8) is 
presented in tensor form as:
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
  


  




 



  










 



 





 (11)

where, a double underline indicates a second-order 
tensor, 


  is the three-dimensional identity tensor and 


 . In equation (11), 


  is a second-order tensor that 

represents the effect of the cross-correlation between  
and . The relations for the newly introduced coefficients 
and tensors are as follows:

 ∆


 (12)

 ∆


 (13)

 ∆


 (14)

  


 


   







 

 (15)

where,

∆  
 

     (16)

The solution for 

  is obtained by the Cayley-Hamilton 

theorem. The procedure is analogous to that for SG-ADRM. 
The difference is due to the fact that the tensor, 


 , is a 

function of three tensors (

 , 

  and 


 ) here, in contrast 

to the case of SG, where 

  is only a function of two 

tensors (

  and 

 ). As a result, a new integrity basis 

and an irreducible matrix polynomial must be specified. 
In this study, we thoroughly used the Mashayek and 
Taulbee[2] method, which was introduced for deriving the 
explicit algebraic models for the gas-solid turbulent 
flows.

From the Mashayek and Taulbee expression, the 
tensor, 


 , can be expressed as a finite set of polynomials:


  






   (17)

where only the finite values,   , need to 
be considered, and where the 


 s are the matrix 

polynomial functions of 

 , 

 , 

 , 

  and 


  :


   




 



 , 

  

 , 

  







 , 


  


 ,

  




 



 ,  (18)

The   coefficients of the matrix polynomials are 
functions of the following invariants:

  

 ,   


,   




, 

  











  (19)

The final step is to determine the   coefficients in 
terms of the invariants, , for   . According to 

the Mashayek & Taulbee procedure, these   
coefficients are obtained as:




 
 

   (20a)

   


 
   (20b) 

   



 

   (20c)






  (20d)






  (20e) 

Therefore, we can see that the explicit solution for the 
dissipation rate anisotropy tensor, , is given by 

equation (17), and then  for homogenous turbulence 

can be obtained from equation (6), which is used in the 
Reynolds stress transport equation closure. 

 
2.3 Elliptic-blending model for the turbulence stress tensor

We will employ the elliptic-blending second-moment 
closure that is suggested by Thielen et al.[3] in order to 
extend the dissipation rate anisotropy tensor, , 

which is obtained by considering homogeneous 
turbulence, to inhomogeneous turbulent flows. The model 
transport equations for the turbulent stress tensor are 
given as follows:




 

  
 

   
  

 (21)

To impose a limiting wall behavior of the fluctuating 
quantities of the Reynolds stresses, Thielen et al. 
proposed the elliptic-blending method, which blends the 
"homogeneous" (away-from the wall) and near-wall 

models of 
  and  as follows:


  

  
   (22)

  



  

  (23)
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   
   

 
0.21 0.18 3.4 1.8 4.2 0.8 1.3 1.25

      

0.4 0.6 0.157 80.0 1.0 1.83  

Table 1 The model coefficients for the present 
elliptic-blending second-moment closure.
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Figure 1 Distributions of Reynolds Stress in non-rotating
channel at    .

In equation (23), the homogeneous part, 
 , is 

originally allocated to the isotropic model   by 

Thielen et al.[3]. However, we used the amended ADRM, 
which is ultimately obtained from equation (17), in order 
to consider the non-isotropic effect in the following 
form.


    


  (24)

Detailed expressions for the elliptic-blending model 
(EBM) and their model coefficients can be found in 
Thielen et al.[3].

The model transport equation for the energy 
dissipation rate is given in the expression of SG[1] for 
homogeneous turbulence and it can be extended to 
inhomogeneous turbulent flows with the addition of 
viscous and turbulent diffusion terms as follows:






  
 







   

 

 (25)

In equation (25), the last two terms of the RHS are 
induced from the contraction of the dissipation rate 
tensor transport equation (1) for homogeneous turbulence. 
It is noted that the dissipation rate equation (25) differs 
from that suggested by Thielen et al.[3].

In the above equations, the turbulent time scale,  , 
and length scale,  , are bounded by Kolmogorov scales 
as follows (Durbin[6]):

  



 


 ,  




 

    (26)

The present elliptic-blending second-moment closure 
based on the amended ADRM adopts the coefficients of 
Table 1 from the calibration procedure for the model 
coefficients. 

3. NUMERICAL TREATMENT
For the assessment of the amended dissipation rate 

anisotropy tensor model, the Reynolds-averaged Navier 
Stokes equation (RANS) simulation, which uses the 
elliptic-blending second-moment closure, is performed for 
the fully developed rotating and non-rotating channel and 
square duct flows. The computations for channel and 
square duct flows are performed with a simple 
finite-volume solver, and the majority of the grids are in 

the low Reynolds number region ( ≤ ), while the 

first grid is located at ≈. The Reynolds stresses, 
heat flux and mean velocities are all set to 0 at the 

wall, and the wall dissipation rate is    .
 

4. RESULT AND DISCUSSION
Reynolds stress profiles for fully developed non-rotating 

channel flows at     are plotted in figure 1 and 

they are compared to the DNS of Moser et al.[5]. Figure 
1 shows that the anisotropy is predicted well by the 
models, when it is compared to the DNS. The Reynolds 
stress profiles due to the present model are similar and 

reasonably close to the DNS. The profile of   due to 

the present model is comparatively captured better than that 
of the Thielen-EBM, but the prediction due to the 

Thielen-EBM is slightly over-estimated in  ≤ .
Figure 2(a), which is related to the lower Rotation 

number    , represents that the Thielen-EBM 

shows the over-estimated wall-normal stress profiles in 
the suction side of channel. The present model 
predictions for the rms velocities compare favorably with 
the DNS on both the pressure and suction sides, but 
some discrepancies are observed on the suction side. 
Although the prediction is limited to a relatively lower 
rotation rate, the accuracy of the prediction is still more 
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Figure 2 Root mean square velocity fluctuations across 

the spanwise rotating channel for    .

(a) Present

(b) Thielen-EBM
Figure 3 Contours of streamwise mean velocity in a 

non-rotating square duct at    .
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(b)
Figure 4 Secondary mean velocity distributions in a non- 

rotating square duct at    . (symbols: DNS of 
Gavrilakis[8]; ─ : Present;  ―·― :Thielen-EBM).

improved than when it is compared to the Thielen-EBM. 
However, figure 2(b), which is related to the rotation 
number    , shows that the predictions due to the 

present model are under-estimated for the suction side 
when they are compared to the Thielen-EBM. When the 
rotation number is increased, the relaminarization on the 
suction side may occur more rapidly for the present 
model than for the Thielen-EBM. We think that the cause 
of the rapid relaminarization due to the present model is 
induced by the term involving the mean strain rate in 
the  equation (25), which is introduced from the 
contraction of the anisotropic dissipation rate tensor 
transport equation. 

Figure 3 shows the prediction patterns of both the 
streamwise velocity contour and the secondary flow in 
the x-y cross-section of the non-rotating square duct for 
the present model, Thielen-EBM and LES of Pallares and 
Davidson[7]. The secondary flow pattern and streamwise 
velocity component contour are reproduced well by the 
present model rather than the Thielen-EBM when they 
are compared to the LES. It is noted that the streamwise 
mean velocity, , is rescaled with dividing it by  . 

The position of the vortex core is in reasonable 
agreement with the LES. The predominant effect of the 
secondary motion is the induced transport of streamwise 
momentum towards the corner region.

Figure 4 shows that the distributions of the secondary 
mean velocity by both models are compared to the DNS 
data of Gavrilakis[8], and the profiles due to the present 
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(a) Present

(b) Thielen-EBM

Figure 5 Contours of streamwise mean velocity in a 
rotating square duct for     and    . 

model are predicted better than those of the Thielen-EBM. 
From this calculation, we can see that the prediction of 
secondary flow in a square duct is improved and affected 
by the present amended ADRM.

Figure 5 shows that the contours of the streamwise 
mean velocity for     and     are 

compared to the DNS data of Gavrilakis[8]. Although 
some discrepancies exist in the pattern of the model 
predictions, the distortion shape caused by the rotation is 
similar to that of the DNS. This figure also shows the 
general effects of the mean streamwise velocity component 
distribution on the rotation effect. That is, as shown in 
this figure, the Coriolis effect causes the contour of the 
main velocity to bulge toward the corners and to shift 
the position of the maximum wall shear stress away 
from the center planes.
 
5. CONCLUSIONS

Concerning the predictions for the non-rotating channel, 
which is used for the decision of model coefficients 
appearing in the amended ADRM, the distributions of 
the mean velocity and the Reynolds stress due to the 
present model are more appropriately reproduced than 
those of the Thielen-EBM. Also, the decided coefficients 

show the validity on the test for inhomogeneous shear 
flow in a rotating frame.

One the other hand, the under-estimated Reynolds 
stress distributions are reproduced on the suction side for 
higher rotation rates; however, the prediction results for 
the rotating channel flow due to the present model are 
captured reasonably well at relatively lower rotation 
rates. Therefore, prior to the application of the present 
model for rotation devices, we think that the problem of 
rapid relaminarization induced from increasing rotation 
rates must be resolved from the complement of the 
present model.

Although some discrepancies exist in the non-rotating 
square duct flow prediction, the secondary flow 
distributions are predicted reasonably well by the present 
model. Also, it can be seen that the streamwise mean 
velocity contour predictions due to the present model are 
closer to the DNS for rotating square duct flows than 
those of the Thielen-EBM.

Finally, the overall results that we presented are in 
reasonable agreement with the DNS and LES data, which 
provides confidence that the present elliptic-blending 
second-moment closure, which is based on the amended 
ADRM, can be applied to various industrial flows.
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