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ABSTRACT 
The present paper describes the numerical modelling of 

turbulent flow and convective heat transfer for two types of 
two-dimensional forced unsteady flows: periodically 
oscillating flow through an abrupt pipe expansion, and flow 
over a backward facing step with periodic injection and 
ingestion through a slot at the separation corner. In both 
cases the flow Reynolds numbers are reasonably high and 
emphasis is placed on the resulting heat transfer rates in the 
separated and recovery regions of the flow. 

 The present work tests the two-equation linear ε−k   
(Launder and Sharma, 1974) and a modified two-equation 
non-linear ε−k  (Craft et al., 2005) turbulence model in 
conjunction with the Reynolds-averaged momentum 
(URANS) and temperature equations. The imposed 
unsteadiness enhances the coherence of the separated shear 
layers and reduces the reattachment lengths. Both models 
are shown to broadly capture this effect, with the non-linear 
scheme giving better quantitative agreement with available 
experimental data. 

Key words: Eddy-viscosity model, Convective heat 
transfer, Imposed unsteadiness, URANS.  

 
INTRODUCTION 

Flows involving separation and reattachment are found 
in a very wide range of engineering systems. In heating or 
cooling applications, heat transfer rates between the fluid 
and surrounding walls typically show maximum levels 
around reattachment points, and a popular method of 
increasing heat transfer rates is thus to mount roughness 
elements onto walls, resulting in separation and the 
associated turbulent mixing. 

Many flows involving large separated regions, 
particularly those associated with flow around bluff bodies, 
tend to exhibit large-scale unsteadiness. However, another 
important form of time-dependence, which is the subject of 
this investigation, is the response of the flow to imposed 
unsteadiness, which can have a significant influence on the 
performance of many thermal engineering applications such 
as refrigerating systems, reciprocating compressors, internal 
combustion engines, and pulsing combustion systems. In 
particular, we focus here on the effect of such forcing on the 
flow patterns and heat transfer rates in separated flows. 

There are considerable modelling challenges in 
computing flows exhibiting even steady separation and 

reattachment. Furthermore, to minimize computing times – 
particularly important in unsteady flows, given the 
requirement to perform a large number of time steps – there 
is a desire to employ relatively simple RANS models of 
turbulence. However, simple linear eddy-viscosity models 
are known to perform badly in steady separated flows, and 
even non-linear eddy-viscosity models do not all produce 
accurate and reliable results. 

In a recent study, Craft et al (2005) introduced 
refinements to a non-linear eddy-viscosity model and 
showed that this performed quite successfully in predicting 
the steady flow and heat transfer through a sudden pipe 
expansion over a range of Reynolds numbers. The present 
study aims to test the performance of this scheme in 
computing unsteady separated flows. 

In the present study two flow geometries are considered: 
flow over a backward facing step with periodic injection 
and ingestion through a slot at the separation corner, and 
periodically oscillating flow through an abrupt pipe 
expansion. One effect of the imposed unsteadiness is to 
reduce the averaged reattachment length, which 
subsequently affects the heat transfer performance, although 
the magnitude of these effects is strongly dependant on the 
frequency of the perturbations. 

The following sections outline the modelling 
approaches tested, describe the flow cases considered, and 
present comparisons between the model predictions and 
available experimental data. 

 
 

MODELLING APPROACH 
Two-Equation Linear ε−k  Model: 

The simplest model employed in this study is the linear 
ε−k  scheme of Launder & Sharma (1974), which 

approximates the turbulent stresses and heat fluxes by 
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where the turbulent viscosity εµµ
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and ε~  are obtained from the transport equations 
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The production rate of turbulent kinetic energy, Pk, is 
given by  
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The term dcY  is the lengthscale correction originally 

proposed by Raisee (1999), and subsequently re-tuned by 
Craft et al. (2005), which is based on lengthscale gradients, 
and can be written as 
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where F essentially measures the difference between the 
predicted lengthscale gradient and the value it would take in 
an equilibrium boundary layer: 
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with )/( 5.1 εkl =  and the term dydle /  standing for the 

equilibrium lengthscale gradient, given by: 
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The various model coefficients and near-wall damping 

terms are given in Table 1, whilst tR
~

 is the turbulent 

Reynolds number, )~/(
~ 2 vkRt ε= . 

 
Table 1: Coefficients and damping functions in the 

linear ε−k  model 

kσ   , εσ ~  , tσ  

1f    ,  2f  

1      ,   3.1    ,    0.9 

1       ,       ( )2~
exp3.01 tR−−  
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lC , εB , wC  2.55    ,   0.1069   ,   083 

1εC , 2εC  44.1     ,   92.1  

 
 

Two-Equation Non-Linear ε−k  Model: 
The above linear EVM is known to have many 

weaknesses, so much of the present model testing has been 
carried out within the framework of non-linear eddy-
viscosity models. The first form tested is that proposed by 
Craft et al. (1996), which was itself a development of the 
cubic non-linear EVM of Suga (1996). In this scheme, the 
Reynolds stresses are approximated by 

( )

( )

( )

( )

( ) ( )klklij
t

klklij
t

kllikjljki
t

ijklkljkik
t

ikjkjkik
t

ijklkljkik
t

ijtijji

S
kv

CSSS
kv

C

SSS
kv

C

k
v

C

SSk
v

C

SSSSk
v

C

Svkuu

ΩΩ++

Ω+Ω+

ΩΩ−ΩΩ+

Ω+Ω+

−+

−=

2

2

72

2

6

2

2

4

3

2

1

~~

~

)3/1(~

~

)3/1(~

)3/2(

εε

ε

δ
ε

ε

δ
ε

δ

 (10) 

where ijijS Ω and  are the strain and vorticity tensors, 

defined as 
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In modelling the turbulent eddy viscosity, the quantities  

µf  and µc  are taken as 
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The remaining model coefficients are given in Table 2. 
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Table 2 : Coefficients in the two-equation cubic stress-
strain relation 

C1 C2 C3 C4 C6 C7 

-0.1 0.1 0.26 210 µc−  25 µc−  25 µc  

 
The ε~  equation is similar to that employed in the 

Launder-Sharma model, but the near-wall source term E is 
replaced by 
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and the coefficient employed in the lengthscale correction 
Ydc in equation (7) is modified as 
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CASES STUDIED 

The first case to be examined is that studied 
experimentally by Chun & Sung (1996), as shown in  
Figure 1, consisting of flow over a backward facing step, 
which is subjected to a periodic forcing via a small slot at 
the step corner. 

The inlet conditions are a partially developed channel 
flow which is calculated in a separate simulation to match 
the experimental data just before the step. For the thermal 
field, a constant heat flux is imposed on the bottom wall, 
and the top wall is treated as adiabatic. The local forcing 
arises from a slot jet at the step corner, where the width of 
the slot is 0.02H (H being the step height). The jet velocity 
here is assumed to have a uniform spatial profile, but varies 
sinusoidally in time as  

)2(sin)( 0 tfUAtU j π=   (23) 
where A is defined as the forcing amplitude. The  
predictions were carried out for a bulk inlet  
Reynolds number of 33000, over a range of frequencies, 
 0 < StH <1 (where the Strouhal number StH = fH/Uo), and 
at two forcing amplitudes of A= 0.03 and 0.07. 

 
Figure 1 : Geometry of the flow studied experimentally 

by Chun & Sung (1996). 
 
The second case considered is flow through a pipe 

expansion with geometry as shown in Figure 2, where H 
represents the height of the expansion, and the downstream 
to upstream radius ratio is 2.5. 

The oscillating flow through this expansion is driven by 
imposing a time-dependent inlet velocity upstream of the 
expansion. These inlet conditions were obtained by running 
separate simulations of flow through a long pipe section, 
imposing a time-varying mass flow rate of the form  

  ))2(sin1(average tfAmmin π+= ��  (24) 

with averagem� corresponding to the average bulk Reynolds 

number. The fully developed time-dependent flow profiles 
from these calculations were then imposed as inlet 
conditions for the pipe expansion case. Zero gradients in the 
axial direction were imposed at the exit, and a constant heat 
flux applied along the wall in the expanded section of the 
pipe. 

The average Reynolds number (based on downstream 
averaged bulk velocity and downstream pipe diameter) was 
40000, and a range of oscillation amplitudes, A 
(0.05<A<0.5), and Strouhal numbers (0.03 < StH < 3) have 
been examined. 

 
 

Symmetry line Symmetry line Symmetry line 

H 

Outlet
3

2
H
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Figure 2 : Geometry of the pipe-expansion case studied 

by Yap (1987). 
 

NUMERICAL IMPLEMENTATION 
The computations have been performed using an in-

house FORTRAN code, based on the finite-volume scheme 
with a semi-staggered grid arrangement. The pressure-
velocity coupling is handled by the SIMPLE scheme, and 
the bounded QUICK scheme of Iacovides (1999) is used for 
approximation of convection. In order to prevent stability 
problems associated with pressure-velocity decoupling, a 
form of the Rhie & Chow (1983) interpolation scheme, 
suitable for a semi-staggered mesh, is also adopted. 

Since low-Reynolds-number models are used in the 
present study, the grid must be fine enough to capture the 
steep gradients that occur near the wall. A strong separated 

X 

Y 
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shear layer is also expected away from the wall, so a 
reasonably fine grid is needed there also.  

The Crank-Nicolson scheme has been used in all the 
unsteady computations. Grid and time sensitivity tests were 
performed using different grid densities and time steps, and 
these showed that the results presented for both cases can be 
considered essentially grid and time-step independent. 

 
 

RESULTS 
Case 1: Backward Facing Step 

As noted above, one of the effects of the imposed 
forcing is to reduce the length of the time-averaged 
separation zone. Chun and Sung (1996) performed 
measurements over a range of Strouhal numbers, and 
reported that the maximum effect was achieved at a 
Strouhal number of 0.275, close to the natural shedding 
frequency of the separated shear layer. The first set of 
calculations has therefore been conducted with a forcing 
amplitude (A) of 0.07 and a Strouhal number of 0.275. 

Figure 3 shows the computed time-averaged 
streamlines, using the non-linear ε−k  model, together 
with those predicted by the same model for the equivalent 
case without local forcing. The predicted reduction in 
reattachment length can clearly be seen, with reattachment 
occurring at around X/H=5.5 for the forced case compared 
with X/H=7.5 in the unforced flow. This reduction in the 
recirculation length is further underlined by Figure 4 which 
shows the measured and predicted time-averaged Cp values 

along the bottom wall (where )/()(5.0 2
00 UPPC p ρ−=  

and P0 is the reference value of the static pressure at X/H=-
2). The rapid increase in Cp, associated with reattachment, 
can be seen to be more abrupt, and to occur further 
upstream, in the forced case compared to the steady state 
flow, corresponding to a smaller separation zone. Whilst 
both models predict a decrease in the reattachment length, 
the non-linear model is seen to give a better quantitative 
description of the Cp distribution in both the steady and 
forced cases. 

 

 

Figure 3 : Steady and forced flow time-averaged streamlines 
with non-linear ε−k  model. 

 

 

Figure 4 : Pressure coefficient along the upper channel wall 
with linear and non-linear ε−k  models. 

Upper graph: Time averaged values in forced flow; 
 Lower graph steady state flow.   

 
Streamwise velocity profiles, at a selection of positions, 

for the steady case, and corresponding time-averaged 
profiles for the forced case are shown in Figure 5. Again, 
the reduced reattachment length can clearly be seen in the 
unsteady forced case. Both models return stronger back-
flow velocities within the separated region in the forced 
case (see profiles at X/H=1), implying a smaller, but more 
intense, recirculation zone. In general both models show 
reasonable agreement with the data in the separated shear 
region, although the recovery after reattachment is predicted 
to occur a little too slowly. 

 
Corresponding profiles of the streamwise normal 

stress, 2
0

2 /Uu , are shown in Figure 6. Here it can be seen 

that both models do capture the higher levels of turbulence 
measured in the unsteady case than the steady case for 
 X/H <5, and are in broad agreement with the experimental 
data elsewhere, although the non-linear model tends to 
return slightly too high levels of normal stress, and shows 
some unphysical ‘spikes’ in the highly unsteady region of 
the separated shear layer. Further downstream the changes 
in the turbulent energy levels formed by the local forcing 
are observed to diminish. 

As noted earlier, the magnitude of the reduction  
in the recirculation length is dependent on the forcing  
frequency. Figure 7 shows predicted and  
measured reattachment lengths (normalised with that of the  
steady case) for an amplitude of A=0.03 over a  
range of Strouhal numbers. Both models broadly  
reproduce the measured features, with the forcing having a 
maximum effect at a Strouhal number of  
around 0.275, although the non-linear scheme clearly  
gives a much better quantitative reduction of the 
reattachment length. At higher frequencies (StH > 0.6), both 
models tend to overpredict the effect the forcing has on the 
time-averaged reattachment length. 

 
 

Forced flow 

Steady state 
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a) Steady state 

 
b) Forced flow 

Figure 5 : Time-averaged non-dimensional velocity 
( 0/UU ) profiles with linear and non-linear ε−k models. 

 

 
a) Steady state 

 
b) Forced flow 

Figure 6 : Time-averaged non-dimensional 

 normal-stress ( 2
0

2 U/u ) profiles with linear and 

 non-linear ε−k models. 

 

 

Figure 7 : Normalised reattachment length versus Strouhal 
number with linear and non-linear ε−k models. 

Case 2: Pipe Expansion 
In the second case studied, a range of oscillation 

amplitudes, A, and Strouhal numbers ( fH /Uo ) have  
been examined. (A  = 0.1 , 0.2 , 0.5 ) , (StH = 0.03 , 0.075 , 
0.15 , 0.3 , 0.75 , 1.5 , 3 ). Predicted results of the  
time-averaged reattachment length, Xr, (normalised with its 
steady state value Xr0) are presented in Figure 8  
as a function of the non-dimensional forcing  
frequency. The forcing is seen to produce a qualitatively 
similar decrease in reattachment length to that noted  
in the step case, with a maximum reduction occurring  
at a Strouhal number of around 0.3. However, the 
magnitude of the maximum reduction is somewhat less in 
this case. 

 
 

 

Figure 8 : Normalised reattachment length versus 
 Strouhal number with non-linear ε−k model. 

 
Further understanding of the unsteady case can be 

gained from examining the phase-averaged flow field  
at different times through the cycle. Predicted  
phase averaged streamlines at StH = 0.3 and A = 0.2 are 
shown in Figure 9, demonstrating the highly unsteady 
response of the separation pattern to the imposed forcing.  
The interaction of the vortices as they roll up,  
coalescence and separate produces the higher levels  
of turbulence referred to earlier, and the shorter  
time-averaged separation zone. 

Figure 10 shows the time averaged Nusselt number 
distribution for the case with A = 0.2 and  
Strouhal number of 0.4. Also shown are the predicted  
values for the steady flow at the same average  
Reynolds number, which can be seen to be in  
good agreement with the measured data of  
Yap (1987). In the forced case the predicted  
maximum Nusselt number value is slightly lower, and 
occurs slightly further upstream, than that in the steady case. 
However, in the near-corner region (X/H < 4) the  
unsteady flow case returns significantly higher average 
values of heat transfer. The reasons for these differences  
are again related to the effects of forcing on the 
reattachment length. The forcing results in a shorter, but 
more intense, separated flow region, leading to the 
illustrated changes in heat transfer levels. 
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Figure 9 : Predicted phase averaged streamlines 

 of flow through the pipe expansion at selected times 
 through the cycle. 

 
 
 

 
a) Nonlinear ε−k  model 

 
b) Linear ε−k  model 

Figure 10 :  Nusselt number distribution in the 
 pipe expansion geometry.  

 

CONCLUSIONS 
The effects of imposed forcing on flow structures in two 

kinds of flows with separation and reattachment have been 
studied numerically. Over a range of forcing frequencies the 
effect on the time-averaged flow and turbulence levels can 
be seen in an increase in the turbulence levels in the 
separated shear layer and a reduction in the size of the 
separation zone, together with a more intense back flow. As 
a result the time-averaged heat transfer profiles show higher 
levels in the separated region, but a peak that is lower and 
further upstream than in the steady flow case. 

Both linear and non-linear ε−k models have been 
shown to capture qualitatively the reduction in reattachment 
length, together with the changes in turbulent and mean 
velocity profile shapes. The non-linear model generally 
returns the better quantitative results, including capturing 
quite accurately the variation of the reattachment length as 
the forcing frequency is changed. 
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