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ABSTRACT 

The present paper deals with the prediction of three-
dimensional fluid flow and heat transfer in rib-roughened 
ducts of square cross-section. Such flows are of direct 
relevance to the internal cooling system of modern gas 
turbine blades. In this paper flow and thermal prediction of 
linear and non-linear ε−k  models have been included. 
Both turbulence models have been used with the form of 
length-scale correction term to the dissipation rate originally 
proposed by Yap (1987) and also a differential version of 
this term, ‘NYP’. The mean flow predictions show that both 
linear and non-linear ε−k  models can successfully 
reproduce most of the measured data for stream-wise and 
cross-stream velocity components. Moreover, the non-linear 
model, which is sensitive to turbulence anisotropy, is able to 
produce better results for the turbulent stresses. Heat 
transfer comparisons show that the Nusselt number 
predictions obtained with the modified version of the non-
linear eddy-viscosity model proposed by Craft et al. (1999) 
(NLEVM2) and the ‘NYP’ length-sclae correction term are 
in close agreements with the measured data. 
 
 
INTRODUCTION 

Advanced gas turbine engines operate at high 
temperatures (2000 K) to improve thermal efficiency and 
power output. As the turbine inlet temperature increases, the 
heat transferred to the turbine blades also increases. 
Therefore, there is a need to cool the blades for safe 
operation. The blades are cooled by extracted air from the 
compressor of the engine. Three major cooling techniques 
are used for cooling turbine blades. The leading edge is 
cooled by jet impingement, the trailing edge is cooled by 
pin-fins, and the middle portion is cooled by rib-roughened 
coolant passages. The present study attempts to predict flow 
and heat transfer in internal rib-roughened passages of a gas 
turbine blade using a modified non-linear eddy-viscosity 

ε−k  model.  
Due to the practical relevance of flow and convective 

heat transfer in rib-roughened passages to the internal 
cooling of gas turbine blades, such flows have been the 
topic of extensive experimental and theoretical research. A 
number of experimental studies have concentrated on 

detailed measurements of the local heat transfer coefficient, 
using liquid crystal techniques. A study which examined 
local heat transfer in ribbed ducts was conducted by Baughn 
and Yan (1992). Details of wall heat transfer on the ribbed 
and smooth walls in the developing and fully-developed 
regions were presented in the terms of two-dimensional 
plots and contours of local Nusselt number. In a similar 
study, Rau et al. (1998) employed a LDV system and a 
liquid crystal technique to provide flow field and local heat 
transfer data in the repeating flow region of a square-
sectioned ducts roughened by normal ribs. The distribution 
of the local heat transfer on the ribbed and smooth walls 
showed features similar to those measured by Baughn and 
Yan (1992). Another experimental study which provided 
flow field and local heat transfer measurements in ribbed 
ducts was reported by Iacovides et al. (1998). For a square-
sectioned ribbed U-bend, they preformed flow and heat 
transfer measurements. Only the two ribbed walls were 
heated. In the straight upstream section of the ribbed duct, 
the Nusselt number was found to be high in the middle of 
each rib interval, where according to the LDA measurement 
the flow had reattached.   

Most of the earlier numerical studies cited in the 
literature used two-dimensional solvers and employed high-
Reynolds number turbulence models with wall-functions for 
their predictions. One example of such works is Liou et al. 
(1993). Two-dimensional numerical representations of flow 
and heat transfer through these ribbed passages are not 
entirely representative since these types of simulation ignore 
the three-dimensional effects on the flow and thermal 
behaviour. To arrive at numerical prediction methods 
reliable enough for thermal simulations in blade cooling 
passages, it is necessary to apply existing and emerging 
simulation strategies to three-dimensional flows through 
ribbed cooling passages. One of the first studies that 
examined three-dimensional flow and heat transfer in ribbed 
passages was performed by Iacovides (1998). Three-
dimensional numerical predictions for turbulent flow and 
heat transfer through fully-developed stationary and rotating 
ribbed ducts with normal ribs in “in-line” and “staggered” 
arrangements were produced, using 2-layer ε−k  and 2nd- 
moment (DSM) turbulence models. Both turbulence models 
produced satisfactory  mean flow predictions. The predicted 
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Table 1: Details of the flow parameters of the 3D 
ribbed ducts examined. 

Pr Re h/H P/h Duct geometry 
0.71 45.0 10×  0.0625 10 in-line 
0.71 51.0 10×  0.1 10 staggered 

 
 

local heat transfer coefficients of both turbulence models 
were lower than the measured values, but the zonal DSM 
returned a more realistic profile for the local Nusselt 
number. In a subsequent study, Iacovides and Raisee (1999) 
showed that the most reliable flow and thermal predictions 
are produced through the use of low-Reynolds number 2nd-
moment closures. More recently, large eddy simulation 
(LES) and also detached eddy simulation (DES) studies of 
cooling flows through ribbed passages have started to 
appear such as those of Sewall and Tafti (2004) and Ahn et 
al. (2005). The LES approach provides another, though 
computationally more demanding, alternative for the 
reliable computation of cooling flows in ribbed passages. A 
more detailed review of recent numerical studies can be 
found in Iacovides and Launder (2007). 

Here a more economical way to capture turbulence 
anisotropy is explored, through the use of non-linear two-
equation turbulence models. The stress-strain relation of the 
linear eddy-viscosity model is extended, by including non-
linear products of strain and vorticity terms. These non-
linear stress-strain relations produce differences in the 
normal stresses and thus extend the model’s applicability to 
flows in which the anisotropy of turbulence is important. 
Craft et al. (1996) developed a non-linear eddy-viscosity 
model (NLEVM1), including low-Reynolds-number effects. 
Moreover, they demonstrated that, in order to exhibit the 
correct sensitivity to streamline curvature, cubic terms must 
be retained in the stress-strain relationship. The majority of 
alternative proposals only include quadratic terms. This 
model, in a range of applications including flow in curved 
channels, a rotating channel, transitional flow over a flat 
plate and impinging jet flow and flow around a turbine 
blades resulted in significant predictive  improvements in 
comparison to the linear ε−k  model. However, parallel 
application of this model to computations of heat and fluid 
flow in ribbed passages by Raisee (1999) and an abrupt pipe 
expansion, by Cooper (1997), showed that it exhibited 
severe problems of numerical stability and also of predictive 
accuracy of the thermal behaviour.  

In a subsequent study, Craft et al. (1999) considered the 
application of the non-linear model to separated and 
impinging flows. They modified the formulation for the 
variation of the turbulent viscosity parameter, cµ , with the 
strain rate. The ‘Yap’, length-scale correction term, was 
replaced with a differential version of Iacovides and Raisee 
(1999). The modified model (NLEVM2) improved the 
thermal predictions in both an abrupt pipe expansion and 
also the axi-symmetric impinging jet, and also removed the 
numerical instability and the need to prescribe the wall-
distance. Raisee et al. (2004) subsequently applied 
NLEVM2 to the prediction of heat and fluid flow in two-
dimensional and axi-symmetric rib-roughened passages and 
found that marked improvements in thermal predictions can 

be achieved in comparison to the original version of the 
non-linear EVM (NLEVM1).   

The objective here is to further assess the non-linear 
model, (NLEVM2), in thermal predictions in three-
dimensional rib-roughened ducts with normal ribs. 
 
 
CASES EXAMINED 

Here two different configurations are considered, 
namely: (I) a square duct with ribs normal to the flow 
direction in an “in-line” fashion (Figure 1(a)), and (II) a 
square duct with normal ribs in a “staggered” arrangement 
(Figure 1(b)). The symbol h denotes the rib height, w the rib 
width, P the rib spacing, W the channel width and H the 
channel height. A constant heat flux boundary condition is 
imposed for the top, bottom and side walls of the first duct 
as well as for the ribs' surfaces. For the second 
configuration constant heat flux was imposed on the ribbed 
walls, while the smooth walls and rib surfaces were 
thermally insulated. All relevant geometrical and flow 
parameters are listed in Table 1. 
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Figure 1: Three-dimensional ribbed ducts with normal ribs. 

 
 
TURBULENCE MODELS 

For a steady incompressible flow the conservation laws 
of mass, momentum and energy may be written as: 

 j
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 x  x Pr  x

 ∂ Θ ∂ ν ∂ Θ = − θ
 ∂ ∂ ∂ 

 (3)  

where ρ , ν  and Pr are respectively, the density, the 
kinematic viscosity, and the Prandtl number of the fluid. 

The turbulence model employed is the Craft et al. 
(1999) non-linear low-Reynolds-number ε−k  model 
(NLEVM2). The linear ε−k  model (EVM) of Launder and 
Sharma (1974) is also used as a reference. Furthermore, 
variants of the Yap term are tested. 

(a) 

(b) 
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Table 2: Empirical constants for the k − ε  model. 
cµ  1cε  2cε  kσ  εσ  θσ  

0.09 1.44 1.92 1 1.3 0.9 
 

Table 3: Coefficients in the non-linear k − ε  model. 
c1 c2 c3 c4 c5 c6 c7 

0.1−  0.1  0.26  210cµ−  0 25cµ−  25cµ  

 
 
Linear low-Reynolds-number k − ε  model (EVM) 

The Reynolds stresses and turbulent heat fluxes are 
obtained from: 

 ji
i j t ij

j i

 U U 2u u k
 x  x 3

 ∂∂ − = ν + − δ
 ∂ ∂ 

 (4) 

 t
i

i

 u
 xθ

ν ∂ Θ
− θ =

σ ∂
 (5)  

where the turbulent viscosity, tν , is obtained from: 

 
2

t
kc fµ µν =
ε%

 (6)  

and the values of constants cµ  and θσ  are given in Table 2. 
The transport equations for turbulent kinetic energy and 

dissipation rate ε% , needed for tν , are: 
2

t
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kP  is the generation rate of k obtained from: 

 i
k i j

j

 UP u u
 x

∂
= −

∂
 (9) 

The damping functions 1f ,  fµ and 2f  are given by: 

 
2

t
2

1 2 t

f exp[ 3.4 /(1 0.02R ) ]

f 1,        f 1 0.3exp( R )

µ = − +

= = − −

%

%
 (10) 

where 2
tR k /= νε% %  is the local turbulent Reynolds number 

and the model constants are given in Table 2. 
The term E, Jones and Launder (1972), is expressed as: 

 
22

i
t

j k
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 ∂
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 (11) 

The extra source term, Sε , stands for the ‘Yap’ 
correction term which is discussed in the later sections. 
 
 
Modified non-linear low-Re k − ε  model (NLEVM2) 

The turbulent stresses are obtained from: 

t
i j ij t ij 1 ik kj kl kl ij

k2 1u u k S c S S S S
3 3

ν  = δ − ν + − δ ε  %
 

( )t t
2 ik kj jk ki 3 ik jk lk lk ij

k k 1c S S c
3
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2

t
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 (12)  

2
t
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k 2c S S S

3
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2 2
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+ + Ω Ω
ε ε% %

 

where Sij and ijΩ  are strain and vorticity rate tensors and 

model coefficients, 1 7c c− , are given in Table 3. 

The turbulent heat fluxes, iu θ , are modelled using the 
simple eddy-diffusivity approximation (equation 5). 

The k and ε%  transport equations and eddy-viscosity 
formulation are similar to those of the EVM; however, the 
following modifications are proposed. 
 
 

Modelling of µc . In a departure from the original 

NLEVM1, the following µc  function was proposed by 
Craft et al. (1999): 

 RSc min[0.09,  1.2 /(1 3.5 f )]µ = + η+  (13) 
where 

 ij ij ij ij
k kmax( 0.5 S S , 0.5 )η = Ω Ω
ε ε% %

 (14) 

 2
RS tf 0.235[max(0, 3.333)] exp( R / 400)= η− − %  (15) 

Near-wall damping. In the non-linear two equation 
model, the viscous damping function fµ  is provided: 

 1/ 2 2
t tf 1 exp[ (R / 90) (R / 400) ]µ = − − −% %  (16) 

The near wall source term E is expressed as: 

 

22 2
t i

t
k

t

S k U0.0022    for R 250
E  x  x

0                                             for R 250

  ν ∂ ≤   = ε ∂ ∂  
>

l

%
%

%

%

 (17) 

Length-scale correction term. To overcome the 
tendency of low-Re models to predict excessively high 
levels of near-wall turbulence, Yap (1987) introduced an 
extra source term into the dissipation rate equation, based 
on the wall distance Y: 

 
2

2S [Yap] 0.83 max ( / 1)( / ) ,0
kε ε ε
ε  = = − 
%

l l l l  (18) 

where l  is the turbulent length-scale, 3/ 2k / ε%  and 
2.55Yε =l  is the equilibrium length-scale . 

To eliminate the wall distance, a differential form was 
proposed by Iacovides and Raisee (1999): 
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2 2S [NYP] max C F(F 1) / k,0ε ω
 = = + ε 

%  (19) 

where 
 1/ 2

i iF {[( /  x )(  /  x )] (d / dY)}/ cε= ∂ ∂ ∂ ∂ − ll l l  (20) 

represents the difference between the predicted length-scale 
gradient, and the “equilibrium length-scale gradient”, 
d / dYεl , defined by: 
 t t td / dY c [1 exp( B R )] B c R exp( B R )ε ε ε ε= − − + −l ll (21) 

where c 2.55=l , B 0.1069ε = and the coefficient Cω  for 
the linear model retains the original value of 0.83 while for 
the non-linear k-ε is defined as: 

 t
4

t

0.83min(1,R /5)C
[0.8 0.7( /3.33) exp( R /12.5)]

ω =
′+ η −

%

%
 (22) 

with max(S, )′η = Ω% %  and: 

 
ij ij

ij ij

S max[k / , / ] 0.5S S  

max[k / , / ] 0.5

= ε ν ε

Ω = ε ν ε Ω Ω

% %

% %
 (23) 

 
 
NUMERICAL METHOD ASPECTS AND BOUNDARY 
CONDITIONS 

The calculations presented in this paper were obtained 
using version of the STREAM-3D code of Lien & 
Leschziner (1994). It employs Finite-Volume (FV) 
methodology in a fully-collocated grid system. A bounded 
version of the QUICK scheme, developed by Iacovides 
(1997), is used for the approximation of convective terms. 
The pressure field is linked to that of velocity through the 
well-known SIMPLE, algorithm. To avoid stability 
problems associated with pressure-velocity decoupling, the 
Rhie and Chow (1983) interpolation scheme is also 
employed. The flows considered in the present study are 
assumed to be periodic. Thus, computations are carried out 
in only one rib interval. The periodicity of the flow is 
imposed by equating the values of each variable (except 
temperature and pressure) at nodes just upstream and 
downstream of the inlet plane to the nodal values upstream 
and downstream of the output plane. 
 
 
RESULTS AND DISCUSSION 

The computed velocity field using the NLEVM2 in the 
mid-span (Z/W= 0.0) of the ducts with “staggered” ribs is 
displayed in Figure 2. For this configuration the sudden 
expansion after each rib creates a fairly large recirculation 
bubble downstream of the rib. The separated flow reattaches 
onto the wall at around X/P=0.4. The flow also separates as 
it approaches the next rib, creating a smaller recirculation 
bubble in front of the rib. 

In Figure 3, the predicted stream-wise and cross-stream 
velocity profiles for the duct with “staggered” ribs, using 
the EVM and NLEVM2, are compared with the measured 
data of Iacovides et al. (1998). The mean flow predictions 
of both models are similar and, in good agreement with the 
experimental data, except over the rib, where the cross-
stream velocities are under-predicted by both models. 
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Figure 2: Velocity vectors along the mid-span of the  duct 

with “staggered” ribs using NLEVM2 with ‘NYP’. 
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Figure 3: Velocity profiles for air flow through the duct 

with “staggered” ribs, --- EVM with ‘NYP’,  NLEVM2 
with ‘NYP’, o Expt. Iacovides et al. (1998). 

 
 

Figure 4 shows the predicted turbulence intensity and 
turbulent shear stress profiles in the symmetry plane of the 
duct with “staggered” ribs. Both models predict the very 
high, in comparisons to those in a duct with smooth walls, 
levels of turbulence intensities and turbulent shear stress, 
present in the measurements. The linear EVM, as expected, 
returns identical distributions for the stream-wise and cross-

stream intensities 2
bu / U  and 2

bv / U  respectively. The 
non-linear model, NLEVM2, in closer accord with the data, 
produces an anisotropic turbulence field. The computed 
values of the cross-stream component of the turbulence 

intensity, 2
bv / U , with both EVM and NLEVM2 models 

are similar and close to the measured data. Within the 
separation bubble, at X/P=0.25, the cross-stream turbulence 
intensity is somewhat under-predicted by the NLEVM2.  

For the stream-wise component, 2
bu / U , the differences in 

the two sets of predictions are noticeable. The non-linear 
model, NLEVM2, in agreement with the measurements, 
returns higher stream-wise turbulence intensity levels near 
the two ribbed walls. Comparisons for the turbulent shear 
stress, 2

buv / U , levels show that except for the region over 
the rib, where shear stress levels are under-estimated, the 
profiles returned by both turbulence models are in good 
agreement with the experimental data.  
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Figure 4: Turbulence intensity profiles for air flow through 

the duct with “staggered” ribs. Legend as in Figure 3. 
 

The models tested produce similar and satisfactory 
predictions of the mean flow field, with some differences 
emerging in the predictions of the turbulence field. The non-
linear model is in closer agreement with the measurements. 

Figures 5 shows comparisons between the measured 
(Baughn and Yan (1992)) and the predicted Nusslet number 
contours on the ribbed walls of the square duct with “in-
line” ribs. Comparisons show similar Nu distributions 
between the two sets of predictions and also with the 
experimental data. The highest heat transfer, as expected, 
occurs on the top of each rib. Between consecutive ribs, 
both the EVM and NLEVM2 models, consistent with the 
experiment, produce a low heat transfer zone immediately 
downstream of the rib, followed by a high heat transfer 
region between the ribs, presumably associated with the 
flow re-attachment. In the span-wise direction (from the 
symmetry-line of ribbed wall towards the smooth side wall) 
the predicted Nusselt numbers gradually drops towards the 
smooth side wall, and eventually reaches its lowest level at 
the corner between the ribbed and smooth walls. This is 
possibly due to the fact that as one approaches the corner, 
the flow becomes less active, i.e. the momentum of the flow 
and the turbulence levels decrease. In the experimental data, 
in contrast to both computations, downstream of the rib, the 
high heat transfer levels recorded at the reattachment point, 
extend from the symmetry line over most of the span of the 
ribbed wall, towards the corners. This suggests that both 
models tested underestimate the secondary motion and, 
consequently, the turbulence levels in the corner regions. 

In Figure 6 the computed center-line Nusselt number 
variations, using EVM and NLEVM2 with both ‘Yap’ and 
‘NYP’ are compared with the experimental data of Baughn 
and Yan (1992). The results of both models, and especially 
those of NLEVM2, are in better agreement with the 
measurements. Within the recirculation bubble, 
computations with both models and the ‘NYP’ term still  
overestimate the Nusselt numbers. On the other hand, 
outside the separation bubble (i.e. X / P 0.4> ) while the 
EVM somewhat underestimates the heat-transfer levels, the 
NLEVM2 predictions are close to the measured values. 
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Symmetry line 

 
Expt. of Baughn and Yan (1992) 

Flow 

 
NLEVM2 with ‘NYP’ 

 
Corner 

Figure 5: Comparison of computed and measured 
distributions of the local Nusselt number on the  

ribbed wall of the duct with “in-line” ribs. 
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Figure 6: Predicted distribution of the centre-line Nusselt 

number through the duct with “in-line” ribs. 

 
The same conclusion can be reached from Nusselt 

number comparisons presented in Figure 7 for air flow 
through the duct with “staggered” ribs. As found for the 
duct with “in-line” ribs, both models with the ‘Yap’ term 
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over-estimate the center-line Nusselt number. The center-
line variation of the Nusselt number is best reproduced 
using the NLEVM2 model with the ‘NYP’ correction term. 

The thermal predictions are consistent with those of the 
same models for flow through axi-symmetric and two 
dimensional ribbed passages; see Raisee et al. (2004). Both 
sets of comparisons thus suggest that the center-line Nusselt 
numbers are best reproduced using the NLEVM2 model 
with the ‘NYP’ correction term. 
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Figure 7: Predicted distribution of the centre-line Nusselt 

number through the duct with “staggered” ribs. 

 
CONCLUSIONS 

From the computational results presented it is found that 
both the EVM and NLEVM2 models were able to produce 
reliable velocity fields. As expected, the NLEVM2, which 
has some sensitivity to turbulence anisotropy, generally 
predicts the turbulence quantities more faithfully than the 
EVM. Of the two turbulence models considered, the heat 
transfer predictions of the recent version of cubic non-linear 
k − ε  model (NLEVM2) with the ‘NYP’ term are closer to 
the experimental data. Thus, this modified version of the 
non-linear k − ε model that has been shown in earlier studies 
to improve the thermal predictions in two-dimensional and 
axi-symmetric ribbed passages, also produces reliable heat 
transfer predictions in three-dimensional ribbed ducts. 
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