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ABSTRACT

In this study, large eddy simulations of boundary layer

flows over large-scale roughness have been performed target-

ing the experiments conducted by Cheng and Castro (2002).

In order to duplicate the experimental conditions, the quasi-

periodic boundary method for rough-wall boundary flows

was applied to the inlet boundary conditions. The spatial

variation of vertical profiles of mean and fluctuation veloci-

ties are studied in detail and compared to the experimental

data. We focus on the influence on the spatial variations of

turbulence structure deduced by large-scale roughness. The

characteristics of the turbulent boundary layer flows over

urban-like roughness (with a roughness area density of 25%

and a boundary layer height ratio δ/h around 7) were dif-

ferent from the common homogenous roughness with δ/h

larger than 50. The variable height of the roughness ele-

ments increased the zero-plane displacement height and the

roughness length compared to those of uniform height rough-

ness.

INTRODUCTION

The turbulence characteristics of the boundary layer

flows over urban terrains are different from those of well-

studied homogenous rough-wall turbulent boundary layer

flows. In homogenous rough-wall turbulent boundary layer

flows the upper limit of the roughness sublayer is from

2− 5h and the inertial sublayer, which correspond with the

logarithmic layer, is approximately 15% of boundary layer

thickness (Jiménez, 2004). While the most of the urban ter-

rain have small δ/h, it could be less than 20 in the case

of a huge city. The roughness sublayer may extend to a

significant height and the inertial sublayer then becomes

squeezed between the roughness sublayer and the outer layer

(Cheng and Castro, 2002). Cheng and Castro measured the

spatially averaged mean velocity of the turbulent boundary

layer flows over an urban-type surface (δ/h = 7) in a wind

tunnel and identified the upper limit of the inertial sublayer

to be 2.3 − 2.4h, where h is the cube height. Besides, the

turbulence characteristics of turbulent boundary layer flows

over relative large-scale roughness have not been well stud-

ied compared to those of homogenous rough-wall turbulent

boundary layer flows.

The randomness of roughness size and roughness distri-

bution of urban terrain may influence the characteristics of

the boundary layer flows. The mean height and the mean

roughness density may not be only parameters for the urban-

like roughness. Grimmond and Oke (1999) suggested that

an array of elements with variable heights is rougher than

one with uniform heights.

The objectives of this study are to simulate the flows over

large-scale inhomogenous roughness using LES and com-

pare the turbulence characteristics with those of Cheng and

Castro’s (2002). The turbulence characteristics of a bound-

ary layer flow over random height roughness is compared to

those of a boundary layer flow over uniform height roughness

using flow by visualizing vortical structures using second in-

variant of velocity gradient tensor.

NUMERICAL METHODS

The Navier-Stokes equations for an incompressible fluid

combined with subgrid-scale turbulent viscosity are used for

the large-eddy simulation. The filtered equation of continu-

ity and Navier-Stokes equations can be described as follows:

∂ūi

∂xi
= 0 (1)

∂ūi

∂t
+

∂ūj ūi

∂xj
= − ∂p̄

∂xi
+

∂τij

∂xj
+ Re−1 ∂2ui

∂xk∂xk
(2)

τij = −2νsgsS̄ij (3)

νsgs = C∆2|S̄| (4)

where ∆ is the filter size, S̄ij is the velocity gradient ten-

sor and |S̄| is
√

2S̄ij S̄ij . The dynamic procedure based on

the Smagorinsky model is used to identify the model coeffi-

cient C. The model coefficient is determined through a least-

squares minimization procedure (Lilly, 1992). Fourth-order

central differencing scheme is used as spatial discretization

and second-order time accurate explicit Adams-Bashforth

differencing scheme is used for the convective terms and

a part of the SGS turbulent diffusion terms. The rest of

the diffusion term is treated semi-implicitly by using Crank-

Nicolson formulation. The Reynolds number based on the

free stream velocity and the boundary layer thickness is

9.3× 104.

Simulating Spatial Developing Boundary Layer Using LES

The quasi-periodic boundary condition is introduced in

streamwise direction to simulate the spatially developing
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boundary layers. The quasi-periodic boundary condition

was proposed by Lund (1998) and modified by Nozawa and

Tamura (2001) to apply to a rough-wall turbulent boundary

layer flow. In this method the velocities at the recycle station

are rescaled and reintroduced at the inlet and the outflow

boundary is set far downstream of the recycle station (Fig.1).

The rescaling of the velocity is done by decomposing the ve-

locities into mean and fluctuating parts and applying the

appropriate scaling laws to each component separately. Ve-

locity fluctuations in the inner and outer regions are rescaled

according to the ratio of friction velocities at the inlet and

at the recycle station. The mean velocities are rescaled ac-

cording to the “law of the wall” in the inner region and a

“velocity defect law” in the outer region.
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Figure 1: Schematic presentation of Lund’s method with

roughness blocks.

The method is originally limited to the generation of

turbulent boundary layer over smooth surfaces that deter-

mine the rescaling parameter γ(= u∗,inst/u∗,recy, subscript

“inlt”; quantity at inlet, subscript “recy”: quantity at recy-

cle station) in the form

γ = β−1/8 (5)

, where β is the ratio of momentum thickness(θ) at inlet

to momentum thickness at recycle station (Lund, 1998).

We apply the resistance formula of sand-roughened plate

by Prandtl (Schliching, 1979) to apply the quasi-periodic

boundary condition to the flow over rough surface. In the

modified method the friction velocity ratio γ can be deduced

as follows (Nozawa and Tamura, 2001),

β−1 = 1 +
c′f (x)

2θinlt

`

1− r

{
γ2−2/r − 1

}
. (6)

In the equation ` is the estimated distance from the leading

edge of the turbulent boundary layer , c′f is the coefficient

of skin friction of sand-roughened plate by Prandtl and r is

r =
3.95

2.87 + 1.58 log `
ks

, (7)

where ks is equivalent sand roughness. The periodic bound-

ary conditions for velocities and pressure are applied in span-

wise direction. At the outflow boundary the convective-type

boundary condition is applied. The boundary conditions on

the top surface of the computational domains are

∂U

∂z
= 0, V = U0

dδ∗

dx
,
∂W

∂z
= 0, (8)

where U0 is the free stream velocity and δ∗ is the displace-

ment thickness of the boundary layer.

Roughness Surfaces

The computational domains for the simulations are 88h×
40h×20h in longitudinal(x), vertical(y) and lateral(z) direc-

tions respectively, where h is the height of the cubic rough-

ness elements (Fig.2). The uniform cubic blocks are placed

in staggered pattern following the experiments (Cheng and

Castro, 2002). The roughness density defined as the ratio of

frontal area to the floor area occupied by a single element

is around 25%. The virtual boundary method proposed by

Goldstein et al. (1994) and modified by Saiki and Brin-

gen(1996) is carried out to set non-slip boundary condition

on the surface of the roughness elements. In the case of

random roughness, the height of the roughness elements is

set as random variable, having five different heights chosen

from a normal distribution with a mean and a standard de-

viation of 1.0h and 0.37h respectively. The tallest roughness

element is 1.67h high and the lowest roughness element is

0.31h high.

(a) uniform height roughness

(b) random height roughness

Figure 2: Roughness surface and longitudinal velocity con-

tour.

RESULTS

In this study the spatially averaged quantities are av-

eraged over 8h(x-direction)×20h(z-direction) plane. The

nondimensional sampling time based on the freestream ve-

locity and the boundary layer thickness is almost 90 in both

uniform roughness and random roughness cases.

Flow Close to the Roughness

The vertical profiles of spatially averaged normal and

shear stress are shown in Fig.3. The stresses are normal-

ized by the friction velocities u∗ which are deduced from the

profiles of shear stress in both the roughness sublayer and

the inertial sublayer. The shear stress profile of the random

roughness has thicker constant stress layer compared to that

of the uniform roughness. The profile of the random rough-

ness slowly increases at y < 1.3h and gradually decrease at
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y > 1.7h, while that of uniform roughness has a peak at

y = 1.1h and gradually decrease at y > 1.1h. The both

profiles almost collapse at y > 2.2h although the stresses

of the random roughness are larger than those of the uni-

form roughness at almost y < 2.2h. The vertical profiles of

dispersive shear stresses are shown in Fig.4. The dispersive

shear stress 〈ū”v̄”〉 can be defined as follows.

〈ū”v̄”〉 =
1

A

∫

s

(ū− 〈ū〉)(v̄ − 〈v̄〉)ds (9)

, where A is the spatially averaging area, angular brackets

denotes spatially averaging and overbar denotes time averag-

ing. The dispersive shear stress represents the contribution

to momentum transfer from correlations between point-to-

point variations in the time-averaged flow. The profiles have

large values at h < y < 2.2h and this range almost match

with the height where the roughness blocks occupy the flow

area in the horizontal plane. The departure of the verti-

cal profiles between the random roughness and the uniform

roughness at y > h may cause the difference of the constant

stress layer thickness. The range where random roughness

has larger longitudinal and vertical stresses compared to

those of the uniform roughness consist with the range the

dispersive shear stress of the random roughness surpass that

of the uniform roughness.
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Figure 3: Spatially averaged stress normalized with friction

velocity (u∗) and roughness height (h). black symbol, uni-

form roughness; white symbol, random roughness.

Figure 5 shows the instantaneous vortical structures of

flows identified using isosurface of second invariant of ve-

locity gradient tensor (Q). In this study Q is normalized

by u2∗. The white dashed line in the pictures indicate the

height (y = 2.2h) where stress profiles of the uniform rough-

ness and the random roughness begin to collapse. The small

vortical structures almost fill the region (y < 2.2h) in the

random roughness case while there are many void places in

the uniform roughness case. These small vortical structures

are strongly influenced by the local roughness elements di-

rectly. The positive values of second invariant of velocity

gradient tensor (Q+) are averaged over horizontal plane and

its vertical profiles are shown in Fig.6 with their standard

deviation profiles. These figures indicate that the random

roughness case has vortical structures identified by large Q

compared to those of the uniform roughness case at the range

within random roughness heights.
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Figure 4: Dispersive shear stress normalized with friction

velocity (u2∗).

(a) uniform roughness

(b) random roughness

Figure 5: Instantaneous vortical structure identified using

isosurface of second invariant of velocity gradient tensor

(Q = 100).−−−,y = 2.2h.

Large Scale Structures in the Outer Region

In the upper region above the vortical structure in Fig.5

the large scale structures are dominant in the outer region

(Fig.7). In this pictures the isosurface of second invari-

ant of velocity gradient tensor normalized with its stan-

dard deviation (del Álamo et al., 2006), Q/
√

Q′(y)2, is

applied to identify the outer region large scale structures

which upraise their forward part in longitudinal direction.

These large scale structures, whose length are approximately

1.7δ ∼ 3.5δ, are formed at almost even intervals horizontally.

We couldn’t see any evident difference between the uniform

roughness and the random roughness in the size and the

interval of the large scale structures in the outer region.

These large scale structures can also be distinguished
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Figure 6: Mean and standard deviation of the second invari-

ant of velocity gradient tensor (Q+). black symbol, uniform

roughness; white symbol, random roughness.

from the picture of the instantaneous longitudinal veloc-

ity fluctuation contour on a horizontal plane at y = 0.6δ.

The boundary layer thickness δ is approximately 6h in this

study. The large scale low speed region could be found in

both uniform and random roughness cases. The axes of these

structures are leaning to the lateral direction. The low speed

region correspond to the region where the large scale struc-

tures identified using Q/
√

Q′(y)2. The length of the low

speed regions indicated by dashed line circles in the pic-

tures are 2.9δ (longitudinal) × 0.9δ(lateral) in the uniform

roughness case and 3.0δ(longitudinal) × 1.5δ(lateral) in the

random roughness case. Tsubokura and Tamura (2003) con-

ducted the large eddy simulation of high Reynolds number

(Reτ=590, 1180) fully developed turbulent channel flows

and found large-scale streaky patterns in the outer-layer,

whose longitudinal and lateral size reach about three times

and twice as large as the channel-half width respectively.

The size of the low speed regions appeared in the turbulent

boundary layer flows over urban-like roughness consist with

the size of the streaky patterns found in the fully developed

turbulent channel flows.

Spatially Averaged Vertical Mean and Stress Profiles

The mean velocities are normalized using the friction

velocity which was deduced from the shear stress profiles

(Fig.9). The roughness length y0 and zero-plane displace-

ment height d are identified fitting the mean velocity profiles

to the log-law. The zero-plane displacement height and

the roughness length of the random roughness is 1.14h and

0.04h respectively and both are 30% larger than those of the

uniform roughness. These results are consistent with the ex-

perimental result (Cheng and Castro, 2002), that roughness

length is dependent on the standard deviation of height vari-

ability in roughness elements. The zero-plane displacement

height deduced by using the method (Jackson, 1981) which

assumes that it is the mean height of momentum absorption

by the surface (Raupach et al., 1991) was too small to fit

the mean velocity profiles with the log-law.

The vertical profiles of spatially averaged stress are plot-

ted against (y − d)/δ in Fig.10. The profiles of the ran-

dom roughness and the uniform roughness collapse well at

(y − d)/δ > 0.2 in all stresses. The ratios σu/u∗,σv/u∗
and σw/u∗ take values of approximately 2.1, 1.4 and 1.1

respectively at 10% of the boundary layer thickness in the

(a) uniform roughness

(b) random roughness

Figure 7: Instantaneous isosurface of the second invariant of

velocity gradient tensor normalized with its standard devia-

tion (Q/
√

Q′(y)2 = 1.0).

typical wind tunnel test, whose δ/h were 9-20 (Raupach et

al., 1991). The profiles of both cases are in the range uncer-

tainties in the wind tunnel test. These results indicate that

the difference in turbulence characteristics of flows close to

the roughness between the uniform roughness and the ran-

dom roughness is limited to almost 2.2h even though the

tallest roughness height in the random roughness is 1.67h.

SUMMARY

The large eddy simulation of spatially developing rough-

wall turbulent boundary layer flows has been performed to

study the effect of urban-like roughness on the turbulence

structure. The random roughness case had large disper-

sive shear stress at h < y < 2.2h and this may cause the

thicker constant flux layer compared to that of the uniform

roughness case. The random roughness case had vortical

structures identified by large second invariant of velocity gra-

dient tensor (Q) compared to those of the uniform roughness

case. The zero-plane displacement height and the roughness

length of the random roughness case was 1.14h and 0.04h
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(a) uniform roughness

(b) random roughness

Figure 8: Instantaneous longitudinal velocity fluctuation

(
u−〈u〉

σu
) on an x − z plane at y = 0.6δ. white, high speed

region; black low speed region.
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Figure 9: Spatially averaged mean velocity normalized with

friction velocity (u∗).

respectively, and both were almost 30% larger than those

of the uniform roughness case. The difference in turbulence

characteristics of flows close to the roughness between the

uniform and the random roughness was limited to almost

2.2h and the mean and stresses vertical profiles of the flows

normalized with the friction velocity (u∗), zero-plane dis-

placement height (d) and boundary layer thickness (δ) were

in good agreement in the outer region.
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