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ABSTRACT

The flow near the leading edge of a deep-water hydraulic

jump has been studied experimentally. Measurements of the

instantaneous velocity field show that this flow shares some

important features with the well known mixing layer sep-

arating two streams with different velocities. Namely, the

constant convective velocity of the large coherent structures

found in the flow, the linear relation between their size and

downstream position and a collapse of the self-similar be-

havior of the dimensionless mean velocity profiles. However,

some interesting differences arise. On the one hand, the con-

vective velocity of the large eddies is much slower than what

would be expected in a mixing layer, due to the effect of

the hydrostatic pressure. Furthermore, the measured value

of the numerical constant relating growth rate and convec-

tive velocity is slightly larger than the values reported in the

classical literature for mixing layers.

INTRODUCTION

The entrainment of air bubbles in strong hydraulic jumps

or turbulent breakers is a phenomenon of interest in a wide

range of applications, from aeration of flow in dam spillways

to the formation of bubbly wakes in ships. It is, however, far

from being fully understood. The key difficulty is that the

flow field close to the leading edge, or toe, where most of the

entrainment occurs, is not easy to characterize using conven-

tional measurement techniques in fluid mechanics nor is it

easy to study using well established analytical or numerical

tools. As an example, high void fraction together with large

bubble sizes make classical optical velocimetry techniques

inadequate for the study of the flow in the region of main

interest.

It is commonly accepted that near the leading edge of a

turbulent bore, where the high-speed stream impinges into

a region of slower and deeper fluid, an unsteady two dimen-

sional shear layer between the upper (nearly stagnant) and

lower (fast) streams is formed. This mechanism was first

clearly stated by Peregrine & Svendsen (1978). Moreover,

they also pointed out that even in hydraulic jumps, where

the bottom of the channel is close enough to affect the overall

flow field, the initial development of this mixing layer may

be considered to be free of this effect. This idea was further

advanced by Hoyt & Sellin (1989), who investigated vari-

ous similarities between the hydraulic jump and the mixing

layer. They found linear growth of the coherent structures,

with a strong asymmetry between the fast and slow streams.

Unfortunately, they performed only a limited set of mea-

surements of the spread angle and no measurements of the

velocity field, so very little quantitative information can be

drawn from their results. Accurate experimental character-

ization of the instantaneous velocity field in the shear layer

found in a weak spilling breaker was obtained by Lin & Rock-

well (1994) from PIV measurements. This technique allowed

them to clearly identify large coherent structures develop-

ing between the high speed stream and the spilling water

mass. More recently Liu, Rajaratnam & Zhu (2004) used

Doppler Ultrasound Velocimetry to characterize the turbu-

lent stresses in low Froude number hydraulic jumps, where

the void fraction is small enough for this technique to op-

erate properly. These authors found a peak in the shear

Reynolds stress at the center line of the mixing layer, where

turbulent intensities of more than 20% are reported. More

interestingly, they also found that these stresses exhibit a

self-similar profile.

On the other hand, some researchers have focused on the

direct measurement of the void fraction and bubble distribu-

tion in hydraulic jumps using pitot tubes, and conductivity

or optical probes, (Chanson & Brattberg, 2000, Murzyn et

al., 2005). The void fraction distribution that they measure

corresponds fairly well with that expected in a two-phase

shear layer. Nevertheless, the structure of the turbulent ve-

locity field is not addressed in these studies.

In the present work, the structure of the mixing layer de-

veloping from the leading edge of a turbulent hydraulic jump

is experimentally studied, with the aim at characterizing the

dynamics of the large coherent structures found in the flow.

Furthermore, the structure of the mean velocity field will be

investigated, pointing out some similarities and differences

with classical shear layers. To the best of our knowledge,

this is the first time that such studies are performed in hy-

draulic jumps with high void fractions, where conventional

velocimetry techniques fail to yield reliable results.

It is worh mentioning that, since this investigation deals

with the dynamics of the flow in the entrainment region

where bottom effects are negligible, the conclusions that will

be obtained are applicable to other entraining flows such as

breaking waves and turbulent bores.

EXPERIMENTAL SET-UP

The experiments were carried out in a recirculating water

channel with a capacity of roughly five cubic meters. The

test section is 2 m long and has a square cross section of 0.6

m x 0.6 m. The channel has a series of grids and honey-

combs, followed by a contraction, to assure that fluctuations

originating at the pump are damped out before the flow

reaches the test section. The underlying turbulent intensity

of the free stream is very low, less than 0.5%. A plexiglass

plate was cut to dimensions 0.6 m x 0.0127 m x 1 m and

fixed to supports so it could be placed vertically across the

test section of the water channel. An auxiliary plate was
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Figure 1: Sketch and detail of the experimental facility.

located horizontally along the channel at a low depth under

the free surface upstream of the jump. In this way, the sur-

face oscillations and spurious bubbles entrained upstream of

the region of interest were avoided. Once positioned inside

the test section, the flat plate extended through the entire

width of the test section, from a distance of about 0.2 m

(depending on the experimental session) from the bottom of

the channel to well above the free surface. The end of the

sluice gate that induces the hydraulic jump was machined to

a sharp edge so that the free stream detaches cleanly from

the gate without any possible boundary layer growth that

would perturb the experiment and hinders its reproducibil-

ity. For each experimental session, the free stream velocity

was measured using a pitot tube. It must be pointed out

that the velocity of the free stream was measured at differ-

ent locations under the region of interest to check that it

was kept almost constant, thus allowing us to discard any

possible effect of the bottom in the dynamics of the large

coherent structures. A sketch of the facility, as well as a de-

tailed picture of the free stream initiated at the sharp edge,

are shown in figure 1.

Flow visualization technique

Light scattered by the air bubbles entrained by the flow

was captured by a Kodak ES 1.0 (1 Mpixel) digital camera

at 180o collection angle (first mode reflection). Illumination

was provided by a strobe light positioned nearly coaxial with

the optical axis of the camera. The camera was focused in a

very narrow vertical plane aligned with the mean direction

of the flow and located a few centimeters from the channel

walls. Thus, the behaviour of the flow and the bubbles in a

characteristic plane away from the influence of the bound-

aries was measured and analyzed.

In order to obtain as much information as possible on the

dynamics of the large coherent structures, correlation algo-

rithms commonly used in particle image velocimetry (PIV)

were applied to the analysis of image pairs of the hydraulic

jump acquired ∆t = 1ms apart. The synchronization of

the camera and the strobe light was performed with a Real-

Time Linux (RTAI) PC, which allows for accurate control

of the timing. This technique, referred to as Bubble Im-

age Velocimetry (BIV, Ryu et al. 2005), is able to detect,

although with some limitations, the rolling motion of the

cloud of bubbles entrained by the large eddies, thus allowing

the measurement of the velocity field wherever the bubble

concentration field is such that there are more than a few

bubbles in the interrogation window. It must be pointed out

that due to the nature of BIV, it is not suited to character-

ize the fine scale velocity fluctuations of the flow. Therefore,

the size of the interrogation window was chosen to be rela-

tively large in order to average these small scale fluctuations.

Thus, the velocity measurements correspond only to the ve-

locity field associated with the large scale eddies in the flow.

All the experimental results described in this paper were ob-

tained with an interrogation window of 64×64 pixels with a

50 % overlap, which provided for about 10 velocity measure-

ments along the diameter of a large eddy.

Vortex detection technique

Although numerous techniques to determine the position

of the centre of a vortex are available in the literature, most

of them require the calculation of the spatial derivatives of

the velocity field. Unfortunatelly, the BIV technique used

does not provide the spatial resolution necessary to allow

for the application of any of those techniques. However, in

the case under consideration it is possible to take advantage

of the slender nature of the flow to carry out the detection

using an algorithm that involves integration of the velocity

field rather than differentiation. Similarly to what happens

in a classical mixing layer, the centres of the large eddies lay

along a line that is nearly parallel to the free stream, which

coincides with the horizontal direction in the present flow.

Thus, when evaluated along this line, the vertical velocity

is expected to experience a change in sign precisely at the
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Table 1: Experimental conditions. As sketched in figure

1, U0 and h0 are the free stream velocity and water depth

upstream of the jump whereas ∆h is the height jump. On the

other hand, umin is the minimum mean horizontal velocity

measured in the flow, that corresponded to that at the top

of the “roller”.

Session U0 (m/s) umin (m/s) h0 (m) ∆h (m)

1 2.48 -0.29 0.115 0.151

2 2.21 -0.19 0.098 0.144

3 2.07 -0.04 0.150 0.110

centre of every vortex. Moreover, since the sense of rotation

of the vortices must always be counterclockwise, this change

in sign must be from negative to positive values as we move

towards increasing values of x. To simplify the detection

process and to make it more robust, the vertical velocity

along x-stations is integrated. The change in sign of this

integral quantity corresponds to the downstream position of

the vortex centre. An example of the detection performed

with this criterion is shown in figure 2. The upper part of

the figure is a snapshot of the flow with the velocity vectors

overimposed. The lower graph shows the value of the av-

erage vertical velocity for constant x stations together with

the detected positions of the vortices marked with circles.

Finally, in order to avoid spurious zero-crossings of the av-

erage vertical velocity to be taken as vortices, the detected

positions were visually inspected and, when the detection

was not successful, they were removed from the data.

EXPERIMENTAL RESULTS

Three experimental conditions, summarized in table 1,

have been studied following the procedure described in the

previous section. The analysis of the instantaneous velocity

fields obtained through BIV reveals the existence of large co-

herent vortices already described in the literature for both

hydraulic jumps and spilling breakers, Hoyt & Sellin (1989),

Lin & Rockwell (1995), Svendsen, Veeramony, Bakunin &

Kirby (2000). Nevertheless, to our best knowledge no quan-

titative description of the dynamics of these structures has

been published. An interesting feature of these vortices, is

that they exhibit a nearly constant convective velocity, at

least within the measurement region. In figure 3, the time

evolution of the position of the centres of the large vortices

is shown for the three experimental sessions available. From

the x − t trajectories of the centres, the mean convection

velocities of the vortices for the three sessions can be mea-

sured, obtaining uc = 0.71 ± 0.14 m/s, uc = 0.59 ± 0.16

m/s and uc = 0.72 ± 0.14 m/s respectively. This constant

velocity resembles the behaviour observed for the large co-

herent structures in a classical mixing layer. However, some

interesting differences arise. The first one is that the mea-

sured convective velocities do not correspond to the average

speed between the maximum and the minimum measured

in the flow, which for this particular flow would correspond

to the velocities of the free stream and the spilling mass of

fluid close to the free surface, respectively. Also, in parallel

to what happens in stratified mixing layers between fluids of

different densities in the presence of gravity, very few pairing

events between consecutive eddies are observed. These two

effects will be discussed in more detail in the next section.

This mixing-layer-like behaviour of the flow near the toe

of the jump is not incompatible with the classical picture of

a roller structure. The streamlines computed for the mean

velocity field of sessions 1 and 3 are presented in figure 4.

The streamlines for session 2 are not shown, as they are very

similar to the result from session 1. The roller, or recircula-

tion region, can be observed in these representations of the

average velocity. Moreover, the mean velocity field can also

be used to characterize the growth rate of the mixing layer.

This is preferable rather than measuring the visual thickness

based on the size of the large vortices, as this last technique

has proven to be too sensitive to the illumination conditions.

Therefore, to charaterize the growth rate of the mixing layer,

a dimensionless horizontal velocity will be defined as

U =
u − umin

U0 − umin
(1)

with umin being the minimum horizontal velocity measured

in each experimental session, which corresponds to that of

the spilling fluid close to the free surface. The growth

rate will be defined from the separation between iso-lines

U(x, y0.1) = 0.1 and U(x, y0.35) = 0.35 respectively. These

values have been chosen as far as possible from each other

but without entering into regions too close to the free surface

or to the lower limit of the shear layer, where measurements

are noisier. In figure 5, lines y0.1 and y0.35 corresponding

to the three experimental sessions are shown. The existence

of a region where the mixing layer grows linearly can be

clearly observed. The tangents of the spread angles in the

linear-growth region for the three sessions are δ = 0.125,

δ = 0.123 and δ = 0.110. Furthermore, comparison with

figure 4a indicates that the linear growth occurs in a region

that corresponds fairly well with the roller.

At this point, it is tempting to plot the profiles of the di-

mensionless velocity, U(x, y), for different x stations within

the region of linear growth versus a dimensionless vertical

coordinate defined as η = (y − y0.1) / (y0.35 − y0.1), looking

for some kind of self-similarity. This is done in figure 6. In-

deed, all the velocity profiles seem to collapse into a single

curve for a reasonably wide range of the dimensionless ver-

tical coordinate, η. This self-similar behaviour is partially

represented by the error function, as suggested by Townsend

(1976) for the velocity profiles in a classical shear layer. The

measured dimensionless velocity profiles are not antisym-

metric, however, in a departure of the dynamics of this flow

with the canonical shear layer.

ANALYSIS AND DISCUSSION OF THE RESULTS

As shown in the previous section, the flow in the prox-

imity of the toe of a strong hydraulic jump shares some

features with the classical shear layer described in the litera-

ture, namely the existence of large coherent vortices that are

convected downstream, the linear growth of the layer (and

therefore of these large vortices) and the collapse of the hor-

izontal velocity profiles, when properly made dimensionless,

into a self-similar profile. Nonetheless, when quantitative

results of the measurements are compared with predictions

made using the classical shear layer theory, some interesting

differences arise.

Convective velocity of the large eddies

The first difference concerns the convective velocity of

the large coherent structures, uc. Indeed, the measured ve-

locities are notably lower than the value predicted for a shear

layer developing between two streams with velocities U0 and

umin respectively, that it would be uSL
c = (U0 + umin) /2 or,

making uSL
c dimensionless through expression (1), USL

c =
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Figure 2: Example of vortex detection. At the top, a flow image, with the velocity vectors obtained from BIV, is shown. In the

lower plot, the mean vertical velocity at each x-station is shown, with the circles representing the horizontal positions of the

vortices detected by the algorithm.
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Figure 3: x − t graph showing the time evolution of the position of the centres of the large eddies for sessions 1 (a), 2 (b) and

3 (c).
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Figure 4: Streamlines and velocity vectors of the average ve-

locity field corresponding to experimental sessions 1 (a) and

3 (b). The dashed line corresponds to the average position

of the free surface.
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Figure 5: Lines corresponding to dimensionless horizontal

velocities equal to 0.1 (upper) and 0.35 (lower) for sessions

1 (circles), 2 (squares) and 3 (crosses). Vertical coordinates

are refered to the height of the virtual origin, y0, and sessions

2 and 3 have been shifted 0.1 m and 0.2 m respectively for

clarity.
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Figure 6: Dimensionless velocity profiles within the

region of linear growth for the three sessions. The

solid line corresponds to the fitting curve U =

(1 + tanh (1.085 (η − 0.561))) (1 + tanh (0.125 (η − 1.178))) /4,

whereas dashed line is given by a function of the form

U =
(

1 + erf
(

(η − η0) /
√

2C
))

/2, as suggested by

Townsend (1976).

0.5. Instead, the measured dimensionless convective veloc-

ity is Uc = 0.35. To explain this lower velocity, a reasoning

similar to the one used by Dimotakis (1986) is followed. In a

galilean reference frame moving downstream with speed uc,

such that the large vortices lay at rest on it, a stagnation

point must exist between two consecutive eddies (point C

in figure 7). Assuming irrotational flow outside the vortices

and neglecting unsteady effects, Bernoulli equations can be

applied between point C and points A and B corresponding

the former to a point at the free surface upstream of the toe

and the latter to the position where the minimum horizontal

velocity is found (see figure 7). Combining Bernoulli equa-

tions between points A − C and B − C respectively yields

1

2
ρ (umin − uc)

2 + ρg∆h =
1

2
ρ (U0 − uc)

2 (2)

An extra simplification has been to assume that point B is

at a height ∆h over the upstream free surface. Now, the con-

vective velocity, uc, can be isolated from the above equation,

resulting

uc =
U0 + umin

2
− g∆h

U0 − umin
(3)

Substituting into equation (3) the values corresponding to

the three experimental sessions, the following values are

obtained for the predicted convective velocities: uP
c =

0.56, 0.42 and 0.50 m/s. Although these values are much

closer to the measured ones than those obtained without ac-

counting for the effect of the height difference, ∆h, still they

exhibit some differences. The main reason for this, is that

the height difference between the layer where the minimum

velocity is found and that where the centres of the vortices

lay is actually smaller than ∆h.

To conclude this subsection, it is worth mentioning that

the measured value of the dimensionless horizontal velocity

(Uc = 0.35) is nearly that corresponding to the inflexion

point of the self-similar velocity profile, as inspection of fig-

ure 6 reveals. This seems to indicate that the large coherent

structures form at the position where the turbulent shear

stress is maximum, as could be expected. However, due to

the lack of antisymmetry exhibited by the velocity profiles,
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Figure 7: Sketch of the flow field with the paths used to

apply Bernoulli equation.

in the present flow this does not occur at the vertical po-

sition where the average velocity between both streams is

found.

Growth rate

As mentioned above, very few pairing events between

consecutive eddies were observed. Therefore, engulfment of

irrotational fluid analogous to the one described by Dimo-

takis (1986) and Hernan & Jimenez (1982), among others,

emerges as the mechanism responsible for the growth of the

shear layer. In order to compare with results available in the

literature, a vorticity thickness can be calculated

δω =
U0 − umin

|∂u/∂y|max

(4)

Using the curve corresponding to solid line in figure 6 to

evaluate the derivative of the velocity profiles, the vorticity

thickness may be related with the measured one, δ = y0.1 −
y0.35, resulting δω = 3.78 δ. The values thus obtained for

the three sets are δω = 0.472, 0.465 and 0.415. It is well

known that in a shear layer, the thickness must be related

to the maximum velocity difference, ∆U = U0 − umin, and

the convective velocity of the large eddies, uc in the following

way
dδω

dx
= α

∆U

uc
, (5)

where α is a constant that, for this particular flow, takes the

value α = 0.124 ± 0.017. It is interesting to notice that the

value suggested by Dimotakis (1986), αD ≈ 0.085, is smaller

than the one obtained here. This fact is consistent with the

non-antisymmetric behavior of the velocity profiles. Indeed,

α∆U is related to the turbulent intensity found in the flow,

which in a mixing layer with zero-pressure-gradient, is about

17% of the maximum velocity difference, ∆U (Townsend,

1976), whereas in the hydraulic jump this value is larger

(Liu, Rajaratnam & Zhu, 2004). However, as pointed out

also by Townsend (1976) (section 6.10), a relatively small

turbulent intensity is required in order for the velocity profile

to be antisymmetric. Thus the non-antisymmetry of the

velocity profiles may be associated to higher values of the

turbulent intensity.

CONCLUSIONS

The flow near the leading edge of a deep-water hydraulic

jump has been characterised using bubble image velocimetry.

This technique has been used to study the dynamics of the

large coherent vortices whose existence, for this kind of flows,

is widely reported in the literature. Indeed, measurements

show that the flow in this region not only resembles the

well known mixing layer separating two infinite streams with

different velocities, but also shares a number of common

features from the quantitative point of view.

First, the large coherent vortices are convected down-

stream at a nearly constant speed. However, this convective

velocity does not correspond to the mean value between the

maximum and the minimum horizontal velocities found in

the flow, as is the case in a mixing layer. Rather than that,

it has been showed that proper computation of the convec-

tive velocity requires taking into account the effect of the

hydrostatic pressure.

Second, the shear flow under study, and therefore the

large eddies, grow linearly with the downstream distance,

although the measured values of the growth rate are slightly

greater than those reported in the literature for a mixing

layer. Regarding the growth mechanism of this shear flow,

very few pairing events, or amalgamations, have been ob-

served. Therefore it can be concluded that the eddies grow

due to the engulfment of irrotational fluid.

Furthermore, when properly made dimensionless, the

mean velocity profiles exhibit a self-similar behavior within

the region of linear growth. This self-similar velocity profile

is not antisymmetric with respect to the point of maximum

shear stress or, equivalently, the inflexion point. On the

contrary, it approaches the free stream velocity more slowly

than what would be expected in a mixing layer. This lack of

antisymmetry is indicative of a larger value of the turbulent

intensity that would also be consistent with the larger values

of the growth rate measured.
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