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ABSTRACT

Direct numerical simulation (DNS) of small prolate el-

lipsoidal particles suspended in a turbulent channel flow is

reported. The coupling between the fluid and the particles

is one-way. The particles are subjected to the hydrodynamic

drag force and torque valid for creeping flow conditions.

Six different particle cases with varying particle aspect ra-

tios and equivalent response times are investigated. Results

show that, in the near-wall region, ellipsoidal particles tend

to align with the mean flow direction, and the alignment

increases with increasing particle aspect ratio. When the

particle inertia increases, the particles are less oriented in

the spanwise direction and more oriented in the wall-normal

direction. In the core region of the channel, the orientation

becomes isotropic.

INTRODUCTION

The suspension of small elongated particles in a turbulent

stream occurs in several industrial applications and envi-

ronmental phenomena. Most of the research on particulate

flows consider spherical particles. This is often due to the

isotropic nature of the sphere which makes it much easier

to consider both mathematically and numerically. Since a

sphere is isotropic, its orientation is immaterial, and the

translational motion can be solved independently of the ro-

tational motion. On the other hand, for elongated particles

the orientation must be considered since it influences the

translational motion.

Even though most of the literature considers spherical

particles (see for instance Marchioli et al. (2007), Kuerten

(2006), Kulick et al. (1994)), the study of elongated par-

ticles immersed in a viscous fluid has been a subject for

research through several decades. There exist several an-

alytical studies on elongated (ellipsoidal) particles, see for

instance Jeffery (1922), Brenner (1963,1964) and Harper and

Chang (1968). Also, the literature reports both numerical

and experimental work on elongated particle or fiber suspen-

sions, such as Fan and Ahmadi (1995), Zhang et al. (2001),

Lin et al. (2003) and Parsheh et al. (2005) to name a few.

The purpose of the present paper is to study how small

inertial prolate ellipsoids orient in a turbulent shear flow.

The effects of aspect ratio and particle inertia will be re-

ported. It is assumed that the particles are smaller than the

inner scales of turbulence for a frictional Reynolds number

of 360. Further it is assumed that the flow field in the im-

mediate neighborhood of the particles is locally Stokesian.

The ellipsoids are subjected to hydrodynamic drag force and

torque (Jeffery (1922)). The coupling between the particles

and fluid is one-way, i.e., the flow field only act on the par-

ticles.

EULERIAN FLUID DYNAMICS

The incompressible, isothermal and Newtonian fluid into

which the particles are released is governed by the continuity

and the Navier-Stokes equation

∇ · u = 0, (1)

∂u

∂t
+ u∇u = ∇p + Re−1

∗
∇2u. (2)

In the equations above, u =< ux, uy, uz > is the fluid ve-

locity vector, p is the pressure and Re∗ = u∗h/ν is the

frictional Reynolds number based upon the friction velocity

u∗, channel height h and kinematic viscosity ν.
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Figure 1: Computational domain.

A direct numerical simulation is used to solve the fluid

equations of motion (Eq. (1) and (2)) at a frictional

Reynolds number Re∗ = 360. The size of the computational

domain (fig. 1) is 1.5h in the streamwise direction, 0.75h in

the spanwise direction and h in the wall-normal direction.

Periodic boundary conditions are applied in the streamwise

(x) and spanwise (y) directions, respectively. In the wall-

normal direction (z), no-slip conditions are enforced at both

walls (z = 0 and z = h). The computations are carried out

with 48 × 48 × 192 gridpoints in the x, y and z directions,

respectively. The timestep is ∆t+ = 0.036 in wall-units.

The same algorithm as that used by Gillissen et al. (2007)

is employed for solving the fluid equations of motion.
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Figure 2: Cartesian coordinate systems; inertial frame x,

particle frame x′ and co-moving frame x′′.

LAGRANGIAN PARTICLE DYNAMICS

In order to describe the general motion of prolate ellip-

soids it is convenient to invoke three different Cartesian co-

ordinate systems: the inertial frame, the particle frame and

the co-moving frame. The inertial frame, x =< x, y, z >,

is the frame that spans the computational domain. The

particle frame, x′ =< x′, y′, z′ >, is attached to the parti-

cle with origin at the particle mass-center. The coordinate

axes are aligned with the principal directions of inertia. The

co-moving frame, x′′ =< x′′, y′′, z′′ >, is attached to the

particle with origin at the mass-center of the particle. The

coordinate axes are parallel to the inertial frame. The differ-

ent coordinate systems are shown in figure 2. The purpose of

introducing the co-moving system is to describe the orienta-

tional behavior of the ellipsoids. The particle orientation is

important since it influences both the rotational and transla-

tional motion. The orientation of the particle frame relative

to the co-moving frame is given by the the nine direction

cosines (Goldstein (1980)) which relates the same vector in

two different coordinate systems through the linear transfor-

mation x′ = Ax′′. The orthogonal transformation matrix

A comprises the direction cosines and is given by

A =

(

a11 a12 a13

a21 a22 a23

a31 a32 a33

)

(3)

where the direction cosines aij are

a11 = e2
0 + e2

1 − e2
2 − e2

3

a12 = 2(e1e2 + e0e3)

a13 = 2(e1e3 − e0e2)

a21 = 2(e1e2 − e0e3)

a22 = e2
0 − e2

1 + e2
2 − e2

3

a23 = 2(e2e3 + e0e1)

a31 = 2(e1e3 + e0e2)

a32 = 2(e2e3 − e0e1)

a33 = e2
0 − e2

1 − e2
2 + e2

3.

The parameters e0, e1, e2 and e3 are the Euler parame-

ters. These parameters are dependent and must satisfy the

following constraint

e2
0 + e2

1 + e2
2 + e2

3 = 1. (4)

The translational equation of motion is given by the linear

momentum relation according to

m
dv

dt
= F. (5)

Here, m is mass of the ellipsoid and v =< vx, vy , vz > is

the velocity vector. The drag force F, acting on an ellipsoid

under creeping flow conditions is given by (Brenner (1964))

F = µAtK′A(u − v) (6)

where µ = ρν is the dynamic viscosity of the fluid. For an

ellipse of revolution about the z′-axis, the resistance tensor

K′ is

K′ =

(

k′

xx 0 0

0 k′

yy 0

0 0 k′

zz

)

(7)

where k′

xx, k′

yy, k′

zz are the components along the x′, y′,

z′ axes (principal directions), respectively, and are given as

(Gallily and Cohen (1978))

k′

xx = k′

yy =
16πa(λ2 − 1)

3

2

(2λ − 3) ln(λ + (λ2 − 1)
1

2 ) + λ(λ2 − 1)
1

2

,

(8)

k′

zz =
8πa(λ2 − 1)

3

2

(2λ − 1) ln(λ + (λ2 − 1)
1

2 ) + λ(λ2 − 1)
1

2

. (9)

In eq. (8) and (9), the aspect ratio λ = b/a where a is the

semi-minor axis and b is the semi-major axis of the ellipsoid.

The particle translational displacement is given by

x =

∫

vdt. (10)

An important parameter is the particle response time, i.e.

the time the particle needs to respond to changes in the flow

field due to its inertia. For an ellipsoidal particle which is

non-isotropic, the response time is not as obvious as for a

spherical particle. Shapiro and Goldenberg (1993) defined

an equivalent response time based upon isotropic particle

orientation and the inverse of the resistance tensor. Zhang

et al. (2001) presented their result in the form

τ+ =
2λDa+2

9

ln(λ +
√

λ2 − 1)√
λ2 − 1

(11)

where D is the density ratio of particle to fluid. The su-

perscript “+” indicates that the parameters are scaled with

viscous units ν and u∗.

The rotational motion of the ellipsoids is given by the

Euler equations (Goldstein (1980))

I′xx

dω′

x

dt
− ω′

yω′

z(I′yy − I′zz) = N ′

x (12)

I′yy

dω′

y

dt
− ω′

zω′

x(I′zz − I′xx) = N ′

y (13)

I′zz

dω′

z

dt
− ω′

xω′

y(I′xx − I′yy) = N ′

z , (14)

where ω′

x, ω′

y and ω′

z are the components of the angular

velocity vector, respectively. Notice that the Euler equations

are solved in the particle frame. The principal moments of

inertia are

I′xx = I′yy =
(1 + λ2)ma2

5
, I′zz =

2ma2

5
. (15)

The torque components (N ′

x, N ′

y, N ′

z) were derived by Jef-

fery (1922) for an ellipsoid subjected to linear shear under

creeping flow conditions and are given as

N ′

x =
16πµa3λ

3(β0 + λ2γ0)
[(1 − λ2)f ′ + (1 − λ2)(ξ′ − ω′

x)] (16)

N ′

y =
16πµa3λ

3(λ2γ0 + α0)
[(λ2 − 1)g′ + (λ2 + 1)(η′ − ω′

y)] (17)

N ′

z =
32πµa3λ

3(α0 + β0)
(χ′ − ω′

z), (18)
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Table 1: Particle parameters for the six different cases.

Case λ D τ+ N

F10 10 23 0.5 20000

F30 30 152 0.5 20000

F50 50 377 0.5 20000

S10 10 463 10 20000

S30 30 3052 10 20000

S50 50 7539 10 20000

where f ′ and g′ are the rate of strain coefficients

f =
1

2
(u′

z,y + u′

y,z) (19)

g =
1

2
(u′

x,z + u′

z,x) (20)

and ξ′, η′, χ′ are the rotation rate coefficients

ξ′ =
1

2
(u′

z,y − u′

y,z) (21)

η′ =
1

2
(u′

x,z − u′

z,x) (22)

χ′ =
1

2
(u′

x,y − u′

y,x) (23)

The parameters α0, β0, γ0 are (Gallily and Cohen (1979))

α0 = β0 =

2λ2(λ2 − 1)
1

2 + λ ln

(

λ−(λ2
−1)

1

2

λ+(λ2
−1)

1

2

)

2(λ2 − 1)
3

2

(24)

γ0 =

2(λ2 − 1)
1

2 + λ ln

(

λ−(λ2
−1)

1

2

λ+(λ2
−1)

1

2

)

(λ2 − 1)
3

2

(25)

The time rate of change of the Euler parameters is related

to the particle angular velocities and is given as







ė0

ė1

ė2

ė3







=
1

2







e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0













0

ω′

x

ω′

y

ω′

z







(26)

The particle translational and rotational equations of

motion (eq. (5) and (16)) are solved by a mixed differenc-

ing procedure (Fan and Ahmadi (1995)). Equation (10) and

equation (26) are solved by a second order Adams Bash-

forth scheme. Since the constraint (4) should be preserved in

time, the Euler parameters are re-scaled after every timestep

in order to avoid accumulation of numerical errors (Allan

and Tildesley (1987))). The timestep used in the particle

equations is the same as that used for the Navier-Stokes

equations. The particle boundary conditions are periodic in

the two homogeneous directions. If a particle hits the wall,

it is re-introduced randomly into the computational domain.

RESULTS AND DISCUSSION

In the present study, six different particle sets are inves-

tigated, see table 1. In all cases, the number of particles

N is kept constant. The density ratio D is varied in order

to fix the response times for different aspect ratios. The

results will focus on the orientation of the ellipsoids, where

the orientation is described by the three angles (or direction

θ
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Figure 3: Orientational angles of an ellipsoid with semi-

major axis z’.
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Figure 4: Turbulent velocity fluctuations; (—) Streamwise

fluctuations, (- -) spanwise fluctuations, (-·-) wall-normal

fluctuations.

cosines) the ellipsoids semi-major axis makes with the axes

of the co-moving system, see figure 3.

Figure 4 shows the rms values of the turbulent velocity

fluctuations. Even though the channel geometry is relatively

small, the characteristic behavior of the second order mo-

ments are captured (see also Jimenez and Moin (1993)). It

is expected that the turbulent fluctuations will contribute to

the orientation of the ellipsoids.

Ellipsoids with equivalent response time τ+ = 0.5
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Figure 5: Pdf of particle orientations; (—) Case F10, (- -)

Case F30, (-·-) Case F50.

The probability density function of particle orientations

(mean direction cosines) is shown in figure 5. It is seen

that the particles have large probability of orientation in the
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streamwise direction and lower probability of being oriented

in the spanwise and wall-normal direction. These probabil-

ities become more pronounced with increased aspect ratio

λ.
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Figure 6: Absolute value of mean direction cosines for el-

lipsoids with equivalent response time τ+ = 0.5; (− − −)

Case F10, (−−) Case F30, (− · −) Case F50. a) |cosθx|, b)

|cosθy|, c) |cosθz|

Figure 6 shows the mean orientations of the ellipsoids

relative to x, y and z directions, respectively. It is seen that

particles achieve increasing orientation in the streamwise di-

rection in the near-wall region with increasing aspect ratio.

Also, it is noted that the peak is shifted towards the wall

with increasing aspect ratio. The opposite trend is seen for

the spanwise orientation (fig 6b), in which direction the par-

ticles seem to be less oriented with increasing aspect ratio.

The wall-normal orientation is shown in figure 6c. In the core

of the channel, the particles are oriented towards the wall

while they are more aligned with the wall in the near-wall

region. In the near-wall boundary layer, the streamwise tur-

bulent fluctuations dominate the spanwise and wall-normal

fluctuations, see figure 4. It is possible that the net effect

of the fluctuations is to stabilize the ellipsoids such that

they mostly orient in the streamwise direction due to the

dominating streamwise turbulent intensity. Also, since the

particles mainly rotate about the y′′ axis (not shown here),

they will spend most of their time oriented in the stream-

wise direction. When the aspect ratio increases, the moment

of inertia about the two semi-minor axes becomes larger.

Hence, the effect is that the ellipsoids have larger probability

of being oriented in the streamwise direction with increas-

ing aspect ratio. In the core region of the channel, where

the turbulent fluctuations are nearly isotropic, the orienta-

tion also becomes isotropic. The particles do not seem to

preferentially orient in a specific direction.
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Figure 7: Rms of the direction cosines for ellipsoids with

equivalent response time τ+ = 0.5; (−) Case F10, (−−)

Case F30, (−·−) Case F50. a) |cosθx|, b) |cosθy|, c) |cosθz|

The fluctuations of the particle orientations are shown

in figure 7. Away from the wall the fluctuations become

isotropic. In the near-wall region, the orientational fluctua-

tions dominate in streamwise and spanwise directions while

they are less prominent in the wall-normal directions.

Ellipsoids with equivalent response time τ+ = 10

Figure 8 shows the probability of orientation for ellipsoids

with equivalent response time τ+ = 10. Also here it is seen

that the particles have larger probability of orienting in the

streamwise direction and this tendency increases with aspect

ratio. It is interesting to see that case S10 particles behave

quite differently than S30 and S50 particles. Comparing

case F10 and case S10 it is seen that S10 particles have larger

probability of being oriented in the spanwise direction. Also,

S10 particles seem to be less oriented in the wall-normal

direction, which is also the case for S50 particles.

The absolute value of the mean direction cosines for el-

lipsoids with equivalent response time τ+ = 10 is shown in

figure 9. Comparing with figure 6, the effect of particle iner-

tia is important for the orientations. In this case, also here

the particles seem to preferentially orient in the streamwise

direction in the near-wall region. This tendency increases

with particle aspect ratio. On the other hand, the particles
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Figure 8: Pdf of particle orientations; (—) Case S10, (- -)

Case S30, (-·-) Case S50.
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Figure 9: Absolute value of mean direction cosines for ellip-

soids with equivalent response time τ+ = 10; (−) Case S10,

(−−) Case S30, (− · −) Case S50. a) |cosθx|, b) |cosθy|, c)

|cosθz|

seem to be less oriented in the spanwise direction as com-

pared to figure 6 and less aligned with the wall. It is possible

that, due to the increased inertia, the particle orientation is

basically affected by the mean shear and the dominating

streamwise turbulent intensity. The effect of the streamwise

turbulent fluctuations would be to orient the particles with

the mean flow direction, and the mean shear would rotate

the particle about the spanwise axis. Sine it is expected that

the turbulent intensities contribute more to the orientation

for lighter particles (case F10, F30, F50), it can explain why

the rotational motion for heavier particles (case S10, S30,

S50) seem to be more confined to the xz-plane with rotation

about the spanwise axis. Therefore, the heavier particles

will be less oriented in the spanwise direction.
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Figure 10: Rms of the direction cosines for ellipsoids with

equivalent response time τ+ = 10; (−) Case S10, (−−) Case

S30, (− · −) Case S50. a) |cosθx|, b) |cosθy|, c) |cosθz|
Figure 10 shows the fluctuations in orientation for τ+ =

10 particles. Also here, the fluctuations become more or less

isotropic away from the near-wall region (z+ > 40). It is seen

that the heavier particles fluctuate more in streamwise and

wall-normal orientation. There is a small exception for S10

particles in the region z+ < 7 where the fluctuations in the

streamwise orientation for F10 particles are larger. Anyway,

the small fluctuations in spanwise orientation support the

idea that the rotation of heavier particles is largely confined

to the xz-plane.

CONCLUSIONS

Direct numerical simulation has been conducted in order

to study the orientation of ellipsoidal particles in a turbu-

lent channel flow. It was assumed that the particles were

smaller than the Kolmogorov scales at a frictional Reynolds

number of 360. The creeping flow versions of the drag force

and torque were applied in the particle equations of motion.

Six different particle cases were studied with varying aspect

ratios and particle equivalent response times. Results show

that, in the near-wall region, prolate ellipsoids tend to ori-

ent in the mean flow direction. This effect becomes more

pronounced with increasing aspect ratio. The effect of in-

creasing particle inertia causes the rotational motion to be
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more confined to the xz-plane, and heavier particles are less

oriented in the spanwise direction. In the core region of the

channel, the orientations become isotropic.
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