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ABSTRACT

The classical picture of one mean dissipation scale which

is known as the Kolmogorov length can be extended to a

continuum of local dissipation scales in order to capture for

the intermittent nature of small-scale turbulence. The dis-

tribution of these local dissipation scales is found to agree

with a recently calculated analytical form. We discuss con-

sequences of this generalized perspective for the decay of

energy spectra in the far-dissipation range and the turbulent

mixing of passive scalars in the viscous-convective range at

Schmidt numbers larger than unity.

MOTIVATION

Turbulence is a real multiscale phenomenon in classical

physics. In case of a turbulent bulk flow, the scales are

usually divided into an inertial range which is characterized

by a constant energy flux from large to small scales and a

viscous or dissipation range, respectively. In the classical

theory of turbulence, the so-called Kolmogorov dissipation

length ηK marks the small-scale end of the inertial range.

Nonlinear advection is then balanced by viscous dissipation

and the well-known relation for the Kolmogorov dissipation

length

ηK =

(

ν3

〈ǫ〉

)1/4

, (1)

follows with 〈ǫ〉 being the mean energy dissipation rate and

ν the kinematic viscosity of the turbulent fluid (Kolmogorov,

1941). On scales ℓ < ηK , the fluid is dominated by viscous

effects and expected to be spatially smooth in contrast to

the much more irregular turbulent motion on scales ℓ > ηK

where most studies on turbulence are concentrated. How-

ever, there are good reasons for a closer inspection of the dy-

namics on Kolmogorov and even on sub-Kolmogorov scales.

Definition (1) does not capture for the intermittent na-

ture of the small-scale turbulence, in particular for that of

the energy dissipation rate field. The intermittent fluctua-

tions of the dissipation field, which is given as

ǫ(x, t) =
ν

2

(

∂ui

∂xj

+
∂uj

∂xi

)2

(2)

with i, j = x, y, z, are however a well-known fundamental

building block of our understanding of the small-scale na-

ture of turbulence (Kolmogorov, 1962). This intermittency

means that, on one hand, very steep gradients as appear-

ant in thin and stretched vortex tubes can be expected to

have diameters that are finer than ηK . Spatial variations

across sub-Kolmogorov scales will thus exist. On the other

hand, ambient regions will exist with typical spatial varia-

tions larger than ηK . It seemed therefore plausible to include
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Figure 1: Probability density function of η(x) for two differ-

ent Taylor microscale Reynolds numbers Rλ as indicated in

the legend. The vertical arrows mark the grid resolution of

the corresponding simulation. Data are from Runs 1 and 4

(see table 1).

these fluctuations and to extend the definition of a single dis-

sipation scale to that of a range of local dissipation scales.

This idea was put forward first within the multifractal for-

malism and resulted in the intermediate dissipation range

model by Frisch and Vergassola (1991). In a nutshell, the

finest (largest) local dissipation scales correspond there with

the roughest (smoothest) subsets of velocity increments in

the inertial range. Spatial roughness means nothing else but

steep local gradients. The ideas which were outlined in the

multifractal approach are based on algebraic scaling proper-

ties of velocity subsets in the inertial range which are hard

to determine in simulations or experiments.

Therefore other approaches to locally varying dissipation

scales have been suggested. A simple way to extend defini-

tion (1) is the substitution of the mean energy dissipation

rate by its local fluctuating value (Schumacher et al., 2005),

i.e.

η(x) =

(

ν3

ǫ(x)

)1/4

. (3)

The finest local dissipation scales are then assigned with

the maxima of the dissipation field. Figure 1 shows the

corresponding scale distributions for two different Reynolds

numbers. With increasing value of the Taylor microscale

Reynolds number Rλ the tails of the distribution get fatter

to both sides. However, this extension (3) still relies on the
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classical dimensional estimate which combines the viscosity

and the dissipation rate to a length scale.

A more recent approach to this issue which stayed close

to the Navier-Stokes equations was suggested by Yakhot

(2006). He derived a relation for the local dissipation scales,

which will be denoted as η in the following, starting from

exact equations for the n-th order velocity increment mo-

ments. This result is also related to the dissipative anomaly

in turbulence. Loosely speaking, this anomaly means that

for the limit of vanishing viscosity velocity gradients become

infinitely large such that the dissipation rate (which contains

basically the product of both) remains finite. The relation

which follows from this calculation is

ν ≈ ηδηu = η|u(x + η) − u(x)| . (4)

We see, that the dissipation scale η is now considered as

a field fluctuating in space and time, simply since the ve-

locity increments δηu will fluctuate and the r.h.s. of (4) is

constant. Starting from (4), it is possible to derive an ana-

lytical expression for the probability density function (PDF)

of the local dissipation scales, Q(η, Re). Furthermore, Eq.

(4) suggests an implicit way to determine the local dissi-

pation scales from direct numerical simulations, namely via

velocity increments taken over scales which are smaller and

larger than the Kolmogorov scale. Figure 2 shows an in-

stantaneous isolevel set of local dissipation scale field η. It

underlines the fluctuating character of the local dissipation

scales arising from (4) very nicely.

NUMERICAL SIMULATIONS

The Navier-Stokes equations that describe here a homo-

geneous and locally isotropic turbulent flow are solved by

a standard pseudospectral method with a 2/3 de-aliasing.

Time advancement is done by a second-order predictor-

corrector method. The statistics of the turbulent velocity

field is kept in a statistically stationary state by a large-scale

volume forcing. More details on the scheme that sustains

turbulence are described in Schumacher et al. (2007). The

passive scalar fields, which are advected in such flow, are

sustained statistically stationary by a constant mean scalar

gradient. The magnitude of the gradient remained un-

changed throughout the parameter studies. More details on

the passive scalar parameters can be found in Schumacher

et al. (2005). The superfine numerical mesh which we will

apply here limits the Taylor microscale Reynolds numbers

to moderate values up to Rλ ∼ 100 even for resolutions of

up to N3 = 20483 points. We will see later in the text

that these resolutions are necessary for the study at hand.

It opens however the opportunity to explore systematically

Reynolds numbers trends in the dissipation range. Further

turbulence parameters of the pseudospectral simulations are

summarized in table 1.

THEORETICAL PREDICTION

In the following, we line out the calculation of the dis-

tribution of local dissipation scales as suggested by Yakhot

(2006). The evaluation of the distribution is based on the

Mellin transform (Courant 1989). It allows the calculation

of the symmetric part of the PDF of the longitudinal veloc-

ity increments across a scale ℓ, denoted as Pℓ(δℓu), on the

basis of the corresponding increment moments of all orders

and is given as

Pℓ(δℓu) =
1

iπδℓu

∫

+i∞

−i∞

dn (δℓu)−n
〈(δℓu)n

〉 (5)

Table 1: DNS parameters: Rλ =
√

15/(〈ǫ〉ν)σ2
L

is the

Taylor-microscale Reynolds number, and Re the large scale

Reynolds number with the integral scale L and σL. The

spectral resolution is indicated by kmaxηK where kmax =
√

2N/3. The mean energy dissipation rate is 〈ǫ〉 = 0.1.

Run N ν L Rλ Re kmaxηK

1 512 1/30 1.02 10 12 33.6

2 1024 1/75 0.92 24 32 33.6

3 1024 1/200 0.76 42 74 15.9

4 1024 1/400 0.69 65 143 9.6

5 2048 1/400 0.69 64 140 19.2

6 2048 1/1000 0.66 107 339 9.7

Figure 2: Spatial distribution of local dissipation scales.

An instantaneous snapshot of a simulation with 10243 grid

points resolution is shown (see Run 4 in table 1). Isosurfaces

are plotted at the level η = 4ηK/3.

By using the result that the increment moments are Gaus-

sian distributed at the outer scale of turbulence, L, we can

write down the following expression for the increment mo-

ments in the inertial range of turbulence, ηK ≤ ℓ ≤ L,

〈(δℓu)2p
〉 = (2p − 1)!! σ2p

L

(

ℓ

L

)ξ2p

, (6)

where σL = 〈(δLu)2〉1/2. It is then used that for p > 0 the

factorial can be substituted by an Gaussian integral to

(2p − 1)!! =
2p

√
π

∫

+∞

−∞

dx exp(−x2)x2p . (7)

The large scale Reynolds number will be defined as

Re =
σLL

ν
. (8)

The inertial range scaling exponents ξ2p of the longitudinal

structure functions (see equation (6)) can be approximated

well by the following polynomial for the lowest moment or-

ders (p > 0)

ξ2p = 2ap − 4bp2 , (9)

with a ≈ 0.383 and b = (3a − 1)/9 ≈ 0.0166. Constants

a and b have been chosen such that ξ0 = 0 and ξ3 = 1

hold. The latter is nothing else but the famous Kolmogorov

4/5-th law (1941). The increment moments are evaluated

at the crossover region between inertial and viscous range,
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i.e. exactly for scales η. Recall that at the lower end of the

inertial range relation (6) still holds and we have

〈(δηu)2p
〉 = (2p − 1)!! σ2p

L

(

η

L

)2ap−4bp
2

, (10)

Equations (7) and (10) are inserted into the Mellin transform

for n = 2p and it follows

Pη(δηu) =
2

i
√

π3δηu

∫

+i∞

−i∞

dp

∫

+∞

−∞

dx exp(−x2) ×

×2px2p(δηu)−2pσ2p

L

(

η

L

)2ap−4bp
2

. (11)

The distribution Pη(δηu) is now transformed into the distri-

bution of the local dissipation scales Q(η, Re). The relation

that connects velocity increments with scales is given by

equation (4) which is made an equation now by introducing

an additional constant c of order one,

ηδηu = cν , . (12)

Recall that relation (4) was an approximate result. Con-

sequently, δηu = cν/η can be substituted in (11). With

Pη(δηu)dδηu = Q(η, Re)dη one gets the PDF for the local

dissipation scales via

Q(η, Re) = −
cν

η2
Pη

(

cν

η

)

. (13)

The integral resulting from (10) and (12) is solved by a

saddle point approximation for small p. One gets the final

expression

Q(η, Re) =
1

πη

√

b log
(

L

η

)

∫

+∞

−∞

dx ×

× exp







−x2
−

(

log

(

√

2xRe

c

(

η

L

)a+1
))2

4b log
(

L

η

)







, (14)

which will be evaluated by numerical quadrature for a direct

comparison with the DNS results. The PDF of the local

dissipation scales is supported on scales 0 ≤ η ≤ L only.

SIMULATION RESULTS

Dissipation scale distribution

The calculation of Q(η, Re) from the simulation data

works as follows. The scale ℓ is fixed as an integer multiple

of the grid spacing, ℓ = n∆. The longitudinal velocity incre-

ments with respect to ℓ are determined at each grid vertex

in all three directions. If the relation ℓuℓ/ν ≈ 1 holds, the

grid site is counted for Q(ℓ, Re). The resulting distributions

are shown in figure 3. The inset of this figure underlines the

necessity for the large spectral resolution applied here. We

compare the distributions of a standard resolution case with

the present one. All other parameters were left the same. It

can be seen, that the whole left tail of the distribution can-

not be resolved in the standard resolution case. It is noted

that the number of data points for the standard- and high-

resolution cases was about the same order of magnitude such

that statistical convergence issues can be ruled out.

The main picture of the figure compares our data for

Runs 1,4 and 6 with the theoretical prediction from (14). We

see that the distributions coincide quite well in the core and

right tail of the PDF with the analytical shape. The nearly

algebraic decay for scales η > ηK does not vary significantly

with the Reynolds number, neither for the data nor for the

theory. Deviations arise in the left tail, i.e. for the finest

local dissipation scales. Since we substitute η ∼ 1/δηu, high-

order moments of the local dissipation scale do not exist.

They correspond with large negative increment moments of

the velocity field and thus with the left tail.

It can be observed that the maximum of the distribu-

tion gets shifted from 1.2 ηK at Rλ = 10 to 1.4 ηK at

Rλ = 107. The right tail of the distributions Q(η, Re) which

corresponds with increments over larger distances remains

nearly insensitive to the increase of the Reynolds number.

All data collapse. They have been shifted in this figure for

a better visibility only, the data for Rλ = 65 by one order

of magnitude and the data for Rλ = 107 by two orders, re-

spectively. The left tail however becomes slightly fatter with

increasing Reynolds number which indicates an increasing

probability of very fine scales to appear. Increasingly finer

scales go in line with increasing degree of the small-scale in-

termittency in turbulence, i.e. with larger breakouts of the

velocity gradients magnitudes to very large magnitudes (see

Schumacher et al., 2007). The small-scale end of the support

of the PDFs is denoted as the scale ηmin. It can be consid-

ered as the lower end of the intermediate dissipation range

that was suggested by Frisch and Vergassola (1991) within

the multifractal model. Exactly these scales will be assigned

with the steepest velocity gradients. The theoretical model

by Yakhot (2006) predicts an estimate for this scale,

ηmin = LRe−1 . (15)

Note that relation (15) puts a stronger constraint on direct

numerical simulations in terms of resolution. The standard

requirement, that the Kolmogorov length is the smallest

scale which has to be resolved, results in a weaker Reynolds

number dependence as given by

ηK = LRe−3/4 . (16)

We have compared the smallest scale of the support of

Q(η, Re) with the prediction (15) from the theory. It was

found that ηDNS

min
decreases more slowly with respect to the

Reynolds number. The value of ηDNS

min
reached 0.6ηK for the

largest Reynolds number in Run 6. To conclude, ever finer

sub-Kolmogorov scales are clearly excited for increasing Re,

but not as strong as predicted by Yakhot (2006).

Far-dissipation range energy spectra

One resulting question from our studies above is if the in-

creasing degree of small-scale intermittency in physical space

manifests as well for the energy spectra in the crossover to

the dissipation range or even in the far-dissipation range.

We recall here that Kolmogorov himself postulated a uni-

versal form of the energy spectrum E(k) reaching from the

inertial range deep down to the viscous scales (Kolmogorov,

1941). Since then several analytical attempts have been

made to determine the form of the decay of the energy spec-

trum in the dissipation range. They left however unspecified

constants (Heisenberg, 1948; Kraichnan, 1959; Foias et al.,

1990; Gagne and Castaing 1991) or considered an infinitely

extended range of excited scales which is not present in real-

life flow (Sirovich et al., 1994; Lohse and Müller-Groehling

1995). The generally accepted form of this exponential de-
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Figure 3: Comparison of numerical and theoretical results

for the probability density function (PDF) of the local dis-

sipation scale field η at a given Reynolds number, Q(η, Re).

Data are for Runs 1 (circles), 4 (asterisks) and 6 (squares)

as given in Tab. 1. The values for the constant c (see

equation (12)) are 2.6 (Run1), 4.0 (Run4), and 4.3 (Run6)

respectively. All other parameters in DNS and (14) are iden-

tical. The data for Runs 4 and 6 are shifted upwards in

the diagram for a better visibility. The inset shows a com-

parison of Q(η, Re) for the standard grid resolution with

kmaxηK = 1.2 and N = 128 (red asterisks) and the present

very-high-resolution case (Run 4). It demonstrates clearly

the necessity of the high resolution taken here.

cay for k̃ = k/ηK ≥ 1 is

Ẽ(k) =
E(k)

ν5/4〈ǫ〉1/4
= F (k̃) = k̃α exp(−βk̃) . (17)

We take kd = η−1

K
as the dissipation wavenumber and α

and β are Reynolds-number-dependent dimensionless con-

stants. It is immediately clear, that investigations of such

rapidly decaying spectral intensities are extremely challeng-

ing since small amplitudes have to be advanced in the direct

numerical simulations (DNS) (Chen et al., 1993; Martinez

et al., 1997; Ishihara et al., 2005). The rapid decay of

the spectra is shown in figure 4. Table 2 lists the fit re-

sults for both coefficients (see equation (17)) in the range

4 ≤ k̃ ≤ 9. While a direct comparison with the results of

Ishihara et al. (2005) cannot be made since their studies

were focussed on the near-dissipation range, the magnitude

of the slope β is nevetheless consistent with the results of

Chen et al. (1993), Martinez et al. (1997) and Ishihara et

al. (2005). The table displays systematic trends of both con-

stants with Reynolds number and suggests a saturation of

the far-dissipation range coefficient β to a non-zero asymp-

totic value for larger Reynolds numbers (Kraichnan, 1959).

The decreasing slope of decay of the spectra in the far-

dissipation range can be interpreted as a growing excitation

of sub-Kolmogorov fluctuations of turbulence. Our obser-

vations seem therefore to be directly connected with the

increasing degree of small-scale intermittency which is ob-

served for the velocity gradients (Schumacher et al., 2007).

The larger amplitudes seem also to be connected with the

excitation of ever finer local dissipation scales as seen in the

last chapter.
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Figure 4: Decay of energy spectra E(k) in the far-dissipation

range of turbulence. The corresponding Reynolds numbers

are indicated in the legend. The vertical dashed lines mark

the range for which the spectra were fitted to relation (17).

Table 2: Constants α and β as obtained by a least square fit

of equation (17) to the energy spectra E(k). The fit range

was 4 ≤ kηK ≤ 9 for all simulations.

Run Rλ α β

1 10 -2.83 -6.60

2 24 -0.58 -6.12

3 42 -2.16 -5.13

5 64 -4.08 -3.62

6 107 -6.96 -2.85

Possible impact on high-Schmidt number scalar mixing

If these intermittent excitations at sub-Kolmogorov

scales increase with Reynolds number they should have an

impact on the mixing of scalar fields θ(x, t) at Schmidt num-

bers larger than unity. The Schmidt number is defined as

Sc =
ν

κ
. (18)

It relates the kinematic viscosity of the fluid, ν, to the diffu-

sivity of the scalar, κ. When this dimensionless parameter is

larger unity, a significant fraction of the scalar filaments will

be mixed on scales that are smaller than the Kolmogorov

length. This regime was studied first by Batchelor (1959)

and one of the main assumptions in his model is the spatial

smoothness of the flow field. Corresponding to Batchelor,

the full information on the flow is contained in the local

principal rates of strain which are nothing else but the first

order Taylor expansion coefficients of the velocity, describ-

ing a local pure-strain flow. In the light of our findings, the

conclusion follows that this basic assumption of Batchelors

model might not be vaild, at least not in the intermediate

dissipation range. In other words, as deep down as fila-

ments and patches from the inertial range can sweep into

the sub-Kolmogorov scale range the scalar will be stirred by

a partially rough flow. Furthermore, the obtained Reynolds-

number dependent decay of the spectra in the far-dissipation

range will introduce a Reynolds number dependence for the
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Figure 5: Distribution of the local cross-section thickness ld
of the scalar dissipation rate filaments for level sets that ex-

ceed four times the mean scalar dissipation rate. Left panel:

Probability density function (PDF) p(ld/ηB) for three dif-

ferent Schmidt numbers at Rλ = 24 (Run2). The flow

corresponds to Run 2. Right panel: PDF p(ld/η) for two

different Reynolds numbers at Sc = 32. Data correspond to

Runs 1 and 2.

scalar mixing. This might be one reason why it is so difficult

to observe a Batchelor scaling of the variance spectrum, i.e.

Eθ(k) ∼ k−1. Numerical studies in this range are currently

out of reach, since they would require both, large Reynolds

and Schmidt numbers.

This circumstance does however not prevent us from a

study of local dissipation scales in scalar mixing. First steps

in this direction were done experimentally by Buch and

Dahm (1996) in low-Reynolds-number jet flow geometries

at Sc ≈ 1900. Schumacher et al. (2005) discussed this is-

sue in direct numerical simulations of passive scalar mixing

for Sc between 2 and 32. The relation (3) was simply ap-

plied for the Batchelor diffusion length which is the relevant

mean dissipation scale in the case of passive scalar mixing

at Sc ≫ 1t. This results to

ηB =
ηK
√

Sc
−→ ηB(x) =

η(x)
√

Sc
. (19)

Due to the linearity of the passive scalar dynamics, the

distribution of the local dissipation scales of the flow will

determine the distribution of the local diffusion scales of the

advected passive scalar.

Kushnir et al. (2006) proceeded directly to the determi-

nation of the local diffusion scale distribution. A fast mul-

tiscale algorithm was applied to quantify the cross-section

thickness ld of sheet-like maxima of the scalar dissipation

rate field which is defined

ǫθ(x, t) = κ

(

∂θ

∂xi

)2

. (20)

The locally varying thickness was interpreted as the local

diffusion scale. The result of this procedure is shown in figure

5 where we compare local diffusion scale distributions as a

function of the Schmidt number for a flow at fixed Reynolds

number (Run 2) in the left panel. The right panel shows

the distributions at two Reynolds numbers (Runs 1 and 2).

The good collapse of the data in figure 5 suggests that this

transformation of the dissipation scale to the diffusion scale

picture, as suggested by relation (19), is appropriate. We

observe in the right panel a slightly less steep decay of the

left tail which seems to be consistent with our findings on

the ever finer scales in the local dissipation scale distribution

which are excited.

In conclusion, we see that the whole concept of local

dissipation scales of the turbulent velocity can be carried

over to local diffusion scales for the passive scalars for the

case of high-Schmidt-number mixing.

SUMMARY

The present work discussed ideas of how one mean dissi-

pation scale arising from classical turbulence theory can be

extended to a whole range of local dissipation scales. This

generalization incorporates the strongly intermittent nature

of the gradients fields in turbulence which has been mea-

sured in many experiments and simulations in the past. The

finest dissipation scales will be associated with the steepest

gradients.

It was demonstrated that local dissipation scales can be

implicitely calculated via velocity increments. The theoret-

ical prediction for the distribution fits well to the results of

the numerical simulations. With increasing Reynolds num-

ber the excitation of ever finer scales becomes more and

more probable. A second way to determine the growing

sub-Kolmogorov fluctuations was done here by the study of

the decay of the energy spectra in the far-dissipation range.

The slope of the exponential spectral decay is found to be

less steep with growing Reynolds number.

The concept of local dissipation scales was finally carried

over to that of local diffusion scales in case of passive scalar

mixing at high Schmidt numbers. As a consequence, one

can expect a Reynolds number dependence of the fine-scale

statistics of the scalar fields. This approach can be of interest

for non-premixed combustion processes and will be discussed

elsewhere.
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