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ABSTRACT

Turbulent channel and homogeneous shear flow of a sus-

pension of non-Brownian elongated particles (fibres) are

studied using Direct Numerical Simulation (DNS).

The effect of the fibres is governed by a stress tensor

depending on the fourth order moments of the local dis-

tribution of fibre orientation, which is computed using the

equation for the second moment of the distribution, involv-

ing a closure (Gillissen et al. 2007). The non-Newtonian

fibre viscosity is defined as the ratio of dissipation due to fi-

bre stress and Newtonian stress. It is demonstrated that the

effect of the fibers can be modeled by adding the fibre vis-

cosity to the molecular viscosity. In channel flow this yields

nearly identical changes in flow structure as compared to the

effect of the full constitutive equations.

Homogeneous shear flow of fibre suspension is compared

to Newtonian shear flow. The effective viscosity (molecu-

lar plus fibre) is artificially kept equal in both flow. Similar

evolution of the Reynolds stress anisotropy tensor, indicates

that dynamics are the same. Fibre viscosity is shown to

decrease and increase as a function of the shear number

and Reynolds number, respectively. Within the ranges of

Reynolds and shear numbers studied, the fibre viscosity is

observed to depend on a single parameter. An analogy to

rheology of Brownian fibres is drawn, in which turbulence

is considered to induce diffusion on the distribution of fibre

orientation.

INTRODUCTION

Suspended particles with a large length to diameter ra-

tio r ∼ 103 can induce significant changes in the turbulent

structures of the carrier fluid at volume concentrations as

low as c ∼ 10−5 (see for instance Paschkewitz et al. 2005).

Most striking is the reduction of the drag coefficient in tur-

bulent pipe flow. The mechanisms for drag reduction is a

fundamental problem in fluid mechanics and numerical tools

have widely been used to gain insight.

A distinction can be made between two types of elon-

gated particles, rigid and flexible. Simulations have demon-

strated that rigid particles (Paschkewitz et al. 2004) and

flexible particles (Ptasinski et al. 2003) have very simi-

lar effects on turbulent boundary layer flow: reduced drag

coefficient, increased energy and anisotropy in the velocity

fluctuations, smaller strength and larger time and length

scales of the near-wall vortical structures. Despite the fact

that the dynamics of rigid particles (fibres) are substan-

tially less complicated as compared to flexible particles, most

research has addressed flexible particles and only a few nu-

merical investigations on drag reduction in turbulent fibre

suspension are reported.

In this paper we study turbulent channel and homoge-

neous shear flow of a suspension of non-Brownian fibres by

means of Direct Numerical Simulation (DNS). We focus on

the concept, of modeling the effect of the particles as an

additional viscosity (Lumley 1969). Benzi et al. (2005) ap-

plied this idea in a one-equation turbulence model. They

concluded that drag reduction originates from an additional

viscosity which increases with wall-distance.

Our purpose is to explore the possibilities of modeling

the effects of the fibres in a k − ε (two-equation) turbulence

model (Wilcox 1993). Variables which need to be modeled

are identified and measured using DNS. Empirical relations

are constructed between these and the other k−ε variables.

GOVERNING EQUATIONS

Fibre suspension flow is governed by the incompressible

Navier-Stokes equations, supplemented by the divergence of

the fibre stress tensor τ (Doi and Edwards 1986).

ρ
Du

Dt
= ∇ · (−Πδ + 2µS + τ ) ∇ · u = 0 (1)

Here D/Dt = ∂/∂t + u · ∇ is the material derivative, ∇

is the gradient operator, δ is the unit tensor, u is the fluid

velocity vector, Π is the pressure, ρ is the mass density and

µ is the solvent dynamic viscosity.

The fibre stress τ in Eq. (1) equals the rate of strain
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projected on the fibre directional vec-

tors by means of a double contraction with the fourth-order

moment of the fibre distribution function as given by (Doi

and Edwards 1986):

τ = 2αµS : 〈pppp〉 α ∼ cr2/ ln r (2)

Here p is the directional unit vector of an individual fibre,

c is particle volume fraction and r is particle aspect-ratio.

Eq. (2) involves averaging 〈· · · 〉 over fibres contained in

a volume, surrounding the point at which the stress is to

be determined. To compute τ we use the equation for the

second moment of the fibre distribution function.

D〈pp〉
Dt

−∇u
T ·〈pp〉−〈pp〉·∇u+2∇u : 〈pppp〉 = D∇2〈pp〉

(3)

The fourth-order moment 〈pppp〉 is modeled using the clo-

sure developed by Wetzel who extended the method intro-

duced by (Cintra and Tucker 1995). The right hand side

of Eq. (3) models the effect of unresolved variations aris-

ing from turbulent advection at zero diffusivity (Batchelor

1959). Parameter D is referred to as artificial diffusivity.

This approximate method was shown to provide very accu-

rate results (Gillissen et al. 2007).

CHANNEL FLOW

Eqs. (1), (2) and (3) are integrated in the channel ge-

ometry, using the numerical method described in Gillissen

et al. (2007). The flow is driven by means of a constant

pressure gradient −∂Π/∂x between two parallel no-slip walls

separated a distance H. The over-bar denotes Reynolds

averaging (Tennekes and Lumley 1973). The Reynolds num-

ber Re = Uτ H/ν = 360 is based on the friction velocity

Uτ =
q

(1/2)(−∂Π/∂x)(H/ρ). Here ν = µ/ρ is the kine-

matic solvent viscosity. The fibre concentration parameter

α = 20 and the artificial diffusivity D = ν. The channel di-

mensions and resolutions in x (stream-wise), y (wall-normal)

and z (span-wise) are 1.5H×H×0.75H and 48×192×48. Ac-

cording to Reynolds decomposition · · ·, (· · · )′ and (· · · )rms

denote mean part, fluctuating part and standard deviation.

A variable with superscript + is given in wall-units, i.e. it

is scaled with µ, ρ and Uτ . Figs. 1a. and b compare

first and second order fluid velocity statistics between the

non-Newtonian fibre suspension flow and Newtonian flow

(α = 0). The increased mean velocity in the suspension

as compared to Newtonian implies a reduced drag coeffi-

cient. Furthermore the energy and anisotropy in the velocity

fluctuations increase, which is consistent with findings of

previous research (Paschkewitz et al. 2004), (Ptasinski et

al. 2003).

K − ε MODEL

The purpose of the present research is to make a first

step towards a k − ε model (Wilcox 1993) of fibre suspen-

sion flow. The analysis presented here is restricted to the

equations for mean momentum and turbulent kinetic energy

k = u′
· u′/2, whereas the equation for dissipation ε of tur-

bulent kinetic energy will be studied in an upcoming work.

Mean momentum is governed by:

„
∂

∂t
+ u · ∇

«
u = ∇·

 
−u

′
u

′ − Π

ρ
δ + 2µS +

1

ρ
τ

!
(4)

Within the k − ε model, the Reynolds stress is modeled as
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Figure 1: Mean (a) and standard deviation (b) of fluid veloc-

ity as a function of wall distance in channel flow. Compari-

son between Newtonian flow (dashed lines), fibre suspension

flow computed with full constitutive equations (solid lines)

and fibre suspension flow computed with (Eq. 7) (circles).

an eddy viscosity νT times the mean rate of strain tensor:

−u
′
u

′ = νT S νT = Cµ
k2

ε
(5)

with Cµ = 0.09 a coefficient fitted to experimental data. In

analogy to the modeling of the Reynolds stress, we pose for

the mean fibre stress:

τ

ρ
= 2ανηM S ηM =

1

2αµ

S : τ

S : S
(6)

The mean fibre viscosity ηM is formulated such that the

dissipation of u·u due to fibre stress is modeled correctly. To

investigate the validity of this approach we have simulated

Eq. (1) in the channel geometry, where the fibre stress is

modeled as:

τ = 2αµηS (7)

in which the total fibre viscosity η is defined such that the

dissipation resulting from Eq. (7) equals the dissipation pre-

dicted by the unmodeled constitutive equations (2) and (3):

η =
1

2αµ

S : τ

S : S
(8)

In this simulation η was taken from the fibre suspension

channel flow simulation, shown in Fig. 2a. In Figs. 1a
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Figure 2: (a) Total fibre viscosity (Eq. 8) as a function of

wall distance in channel flow. Non-Newtonian flow (solid

line). Newtonian flow (dashed line). (b) Shear number and

Reynolds number based on Taylor’s micro-scale as a function

of wall distance in Newtonian channel flow.

and b. simulation results are compared to those obtained

using the full constitutive equations. Close correspondence

indicates that the fibre stress is modeled well as an additional

Reynolds averaged viscosity.

The equation of turbulent kinetic energy reads:

„
∂

∂t
+ u · ∇

«
k = −S : u

′
u

′ +

∇ ·
"„

−
»
Π′

ρ
+ k

–
δ +

τ ′

ρ

«
· u

′ + ν∇k

#
−

ν
“
2S

′ : S
′ + αS

′ : τ
′
”

(9)

In the k − ε paradigm, the transport terms are modeled as

∇ ·
“
u′ [−Π′/ρ − k]

”
= ∇ · (νT /σk∇k), where the coeffi-

cient σk = 1.0 is based on experimental data. Although

not dealt with here, it seems natural that the inclusion of

∇ ·
“
τ ′/ρ · u′

”
in the transport terms can be accounted for

by a σk dependence on fibre properties. The dissipation due

to fibre stress can be written as:

ναS
′ : τ

′ = 2ναηT S
′ : S

′ ηT =
1

2αµ

S
′ : τ

′

S
′ : S

′
(10)

where ηT is referred to as the turbulent fibre viscosity.

Table 1: Parameters used in the homogeneous shear flow

simulations. The markers correspond to the markers in Figs.

3-5.

RUN S 2Sk
ε

2k√
νε

α Marker

(t = 0) (t = 0)

1 2 3.3 15 0 5

2 5 8.2 15 0 �
3 5 19 13 0 4

4 10 38 13 0 ◦

5 10 38 13 20 •

HOMOGENEOUS SHEAR FLOW

In order to construct a k − ε model of fibre suspension

flow, relations are required for ηM and ηT . Our approach

is to measure these variables in homogeneous shear flow by

means of DNS, and relate them to other k − ε variables:

k, ε, mean shear S and viscosity ν. We have chosen to

study homogeneous shear flow, instead of channel flow, since

DNS of channel flow is restricted to relatively low Reynolds

numbers, which causes the near-wall region to dominate the

flow. It is known that the k − ε model performs rather poor

under these conditions.

In homogeneous shear flow the Reynolds averaged veloc-

ity is assumed u = Sx2δ1 with S the mean shear and δ1 the

unit vector in the stream-wise direction. Vector components

in stream-wise, gradient-wise and span-wise directions are

labeled 1, 2 and 3. In homogeneous shear, the equation of

turbulent kinetic energy (Eq. 9) can be written as:

dk

dt
= −Su′

1u′
2 − 2ν (1 + αηT ) S

′ : S
′ (11)

where ηT is given in Eq. (10).

The fluctuations u
′ and the second moment of the fibre

orientation distribution 〈pp〉 are solved using an extended

version of the computer code developed by Brethouwer

(2005). Five runs are carried out: four Newtonian runs

(α = 0) and one non-Newtonian run(α = 20). The initial

fields are generated from a simulation of decaying isotropic

turbulence (S = 0). The domain size and resolutions in x1,

x2 and x3 are 2 × 1 × 1 and 256 × 128 × 128. Relevant pa-

rameters are listed in table 1. In all simulations the effective

viscosity

νeff = ν (1 + αηT ) = 5 × 10−3 (12)

To establish this in run 5, the molecular viscosity changes in

time as ν = νeff / (1 + αηT ). This is done to further explore

the hypothesis that fibre stress can be modeled as additional

viscosity. The artificial diffusion D = νeff .

Runs 4 and 5 are compared in Fig. 3a, showing the time

development of k and the dissipation ε = νeff S
′ : S

′ nor-

malized with the values at St = 0. It appears that energy

and dissipation are smaller in the fibre suspension as com-

pared to the pure solvent. Furthermore, the ratio ε/k is

smaller in fibre suspension flow, indicating that the energy

cascades at a smaller rate towards the dissipating scales.

Despite these differences we argue that flow dynamics in

Newtonian and fibre suspension shear flow are very simi-

lar when compared at constant νeff . The nearly identical

time development of the Reynolds stress anisotropy tensor

implies that the large scales have very similar structure in

both flows (Fig. 3b). Therefore we conclude that fibre stress

is modeled accurately as a viscous stress, when the fibre vis-

cosity is chosen such that the resulting dissipation matches

the unmodeled dissipation.
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Figure 3: (a) Energy (solid lines) and dissipation (dashed

lines), normalized by their initial values, as a function of

time in homogeneous shear flow. Comparison between New-

tonian flow (open circles) and fibre suspension flow (filled

circles). (b) Components of the Reynolds anisotropy tensor

as a function of time in homogeneous shear flow. Com-

parison between Newtonian flow (open circles) and fibre

suspension flow (filled circles).

In the following we focus on the Newtonian simulations,

i.e. runs 1,2,3 and 4. The aim is to relate fibre viscosity to k,

ε, S and ν, which could be used in a k− ε turbulence model.

Based on these quantities, two independent dimensionless

groups can be made. Here we use the shear number S∗ and

the Reynolds number based on Taylor’s micro-scale Reλ:

S∗ =
2Sk

ε
Reλ =

2k√
νε

(13)

The development of S∗ and Reλ for the four runs are

shown in Fig. 4a. We focus on special time intervals. The

interval starts when tε/k ≈ 1. This is done, in order for

the flow to have developed from isotropic to shear. The

interval ends when the integral length scale of the velocity

fluctuations (Tennekes and Lumley 1973) reaches half the

domain-size. This is done, in order for the domain-size to

have a negligible effect on the flow (Pumir 1996). The stud-

ied fields are indicated with the markers in Fig. 4a. Within

these fields Reλ varies between 40−65 and S∗ varies between

13 − 34. For comparison we present the Reynolds number

(0-25) and shear number (0-45) in channel flow in Fig. 2b.
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S
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St = 0

St = 20

10 20 30 40
0.01

0.1

(b)

S∗

Cµ

Figure 4: (a) Trajectories on the (shear number, Reynolds

number)-plane for four simulations of Newtonian homoge-

neous shear flow. The markers indicate the different runs

as described in table 1. (b) Cµ (Eq. 5) as a function of

the shear number for four simulations of Newtonian homo-

geneous shear flow. The markers indicate the different runs

as described in table 1.

Before turning to fibre viscosity, we first consider the

relation for the eddy viscosity (Eq. 5). Fig. 4b shows that

within the ranges of S∗ and Reλ considered, Cµ decreases

one order of magnitude as a function of S∗, while being

nearly independent of Reλ. Since k − ε assumes constant

Cµ this indicates one of its drawbacks.

A relation is sought between ηT (Eq. 10) and S∗, Reλ.

It is found that for the S∗ and Reλ ranges considered, a

relation exist in terms of one parameter only: S∗Re
−3
4

λ . The

exponent −3
4

is chosen such that the data taken from the

four runs collapse on a single curve. This result is presented

in Fig. 5a.

Similarly as for turbulent fibre viscosity, a relation is ex-

tracted for the mean fibre viscosity ηM (Eq. 6), which for

shear flow reads:

ηM =
1

αµ

τ12

S
(14)

For the parameter ranges considered, ηM is found to depend

monotonically on S∗Re
−1
2

λ . To interpret this result an anal-

ogy is drawn to the rheology of a suspension of Brownian

fibres. The fibre viscosity in laminar shear flow of such a
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suspension:

ηB =
1

αµ

τ12

S
τ12 = αµ (2S〈p1p1p2p2〉 + 6dB〈p1p2〉)

(15)

is calculated from the Smulochowski equation (Doi and Ed-

wards 1986):

S∇p · (δ1δ2 · p · (δ − pp)f) = dB∇2
pf (16)

using the numerical method described in Gillissen et al.

(2007). Here distribution function f(p) gives the probabil-

ity of finding a fibre with orientation p, ∇p is the gradient

operator on the unit sphere, and dB is the Brownian rotary

diffusivity dB = 3kBT log r/(πµL3), with kB the Boltzmann

constant, T temperature and L fibre length. The averaging

operator in Eq. (15) is related to f by: 〈· · · 〉 =
R
· · · fdp.

Fig. 5b shows that ηB decreases as a function of S/dB ,

known as shear-thinning (Doi and Edwards 1986). Matching

the data for ηM to the shear thinning curve yields that the

rotary diffusivity dT induced by turbulence decreases with

the fifth power of the shear number:

dT ≈ 0.25
k

ν
S∗−5Reλ (17)

As can be seen from Fig. 5b, the analogy applies for S/dT >

102. Furthermore, it must be noted that this result is based

on a relatively small range of parameters. A wider parameter

range will be studied in an up-coming work.

CONCLUSIONS

The effect of fibres on channel and homogeneous shear

turbulence can be modeled as an additional Reynolds av-

eraged viscosity. In channel flow this viscosity depends

on wall distance, which causes changes in the near-wall

vortical structures leading to drag reduction. In homoge-

neous shear turbulence this viscosity is homogeneous and

non-Newtonian structures are nearly identical to Newtonian

structures, when the flows are compared at the same effec-

tive viscosity (molecular plus fibre).

For the ranges of shear numbers and Reynolds numbers

considered it is found that the fibre viscosity in homoge-

neous shear turbulence depends on a single dimensionless

group, involving k, ε , S and ν. The findings of this research

may serve as a guidance towards a formulation of a k − ε

turbulence model of turbulent fibre suspension flow.

ACKNOWLEDGMENTS

The research has been partially supported through the

PETROMAKS programme funded by The Research Council

of Norway.

REFERENCES

Batchelor, G. K., 1959, ”Small-scale variation of con-

vected quantities like temperature in turbulent fluid. Part

1. General discussion and the case of small conductivity.”,

J. Fluid Mech. Vol. 5, pp. 113-133.

Benzi, R, Ching, E. S. C., Lo, T. S., L’vov, V. S. and

Procaccia, I., 2005, ”Additive equivalence in turbulent drag

reduction by flexible and rod like Polymers.”, Phys. Rev. E

Vol. 72, pp. 016305.

Brethouwer, G., 2005, ”The effect of rotation on rapidly

sheared homogeneous turbulence and passive scalar trans-

port. Linear theory and direct numerical simulation.”, J.

Fluid Mech., Vol. 542, pp. 305-342.

10010−2

10−1

(a)

S∗Re
−3
4

λ

ηT

101 102 103 10410−2

10−1
(b)

S/dB , S/dT

ηB , ηM

Figure 5: (a) Turbulent fibre viscosity in Newtonian homoge-

neous shear flow. Different markers correspond to the differ-

ent runs, as described in table 1. (b) Line: Fibre viscosity ηB

(Eq. 15) in simple shear for a suspension of Brownian fibres

as a function of the shear rate, non-dimensionalized with

the Brownian rotary diffusivity dB = 3kBT log r/(πµL3).

Markers: Mean fibre viscosity ηM (Eq. 14) in Newtonian

homogeneous shear flow as a function of the mean shear rate,

non-dimensionalized with the turbulent rotary diffusivity dT

(Eq. 17) Different markers correspond to the different runs,

as described in table 1.

Cintra, J. S. and Tucker, C. L., 1995, ”Orthotropic clo-

sure approximations for flow-induced fiber orientation.”, J.

Rheol. Vol. 39, pp. 1095-1122.

Doi, M.& Edwards S. F., 1986, ”The theory of polymer

dynamics.”, Clarendon Oxford.

Gillissen, J. J. J. , Boersma, B. J. , Mortensen, P. H.

,Andersson, H. I., 2007, ”On the performance of the mo-

ment approximation for the numerical computation of fibre

stress in turbulent channel flow.”, Phys. Fluids Vol. 19, pp

035102.

Lumley, J. L., 1969, ”Drag reduction by additives.”, Ann.

Rev. Fluid Mech. Vol. 1, pp. 367-383.

Paschkewitz, J. S., Dubief, Y., Dimitropoulus, C. D.,

Shaqfeh, E. S. G. and Moin, P., 2004, ”Numerical simula-

tion of turbulent drag reduction using rigid fibres.”, J. Fluid

Mech. Vol. 518, pp. 281-317.

Paschkewitz, J. S., Dimitropoulus, C. D., Hou, Y. X., So-

mandepalli, V. S. R., Mungal, M. G., Shaqfeh, E. S. G. and

1329



Moin, P., 2005, ”An experimental and numerical investiga-

tion of drag reduction in a turbulent boundary layer using a

rigid rodlike polymer.”, Phys. Fluids Vol. 17, pp. 085101.

Ptasinski, P. K., Boersma B. J., Nieuwstadt, F. T. M.,

Hulsen, M. A., van den Brule, B. H. A., and Hunt, J. C. R.,

2003, ”Turbulent channel flow near maximum drag reduc-

tion: simulations, experiments and mechanisms.”, J. Fluid

Mech. Vol. 490, pp. 251-291.

Pumir, A. , 1996, ”Turbulence in homogeneous shear

flow.”, Phys. Fluids Vol. 8, pp. 03112.

Tennekes, H., Lumley, J., L., 1973, ”A First Course in

Turbulence.”, Cambridge: MIT Press.

Wilcox, D. C., 1993, ”Turbulence modeling for CFD.”,

DCW Industries, La Canada, California.

1330


	Volume3_part2
	Part1
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Part2
	TSFP5 Author indexA4.pdf
	Sheet1




