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ABSTRACT

Fully compressible Large-Eddy Simulation (LES) of high

Reynolds impinging round-jet is performed in order to assess

the impact of both inlet profiles and boundary conditions on

turbulence development. The modification to the Navier-

Stokes Characteristic Boundary Conditions (NSCBC) pro-

posed by Yoo et al. (2005) is extended to the 3D problem and

a specific treatment for the computational domain edges and

corners is proposed together with compatibility conditions

for inlet/outlet and wall/outlet joining regions. Compar-

isons of the statistical results against the experimental data

demonstrate the effectiveness of the proposed improvement,

which allows for reproducing mean flow velocity up to the

computational domain limits.

INTRODUCTION

Impinging jets are of great interest for many practical ap-

plications in engineering and a better description of various

phenomena characterizing such flow is still needed, as scalar

mixing and heat exchange at the wall, turbulent mixing in

the very near wall-jet region, etc. The high complexity of

the flow field characterizing this configuration, makes the im-

pinging jet a particularly difficult test bench for turbulence

modeling. The flow is characterized by three main regions:

(a) free jet, (b) stagnation-point and (c) wall-jet. Each of

these regions retains a number of interesting features pecu-

liar of this configuration (e.g. the influence of the jet’s length

scales in the near-wall region, the turbulent energy creation

mechanism or the impact of the strong curvature on flow

structure). Furthermore, the presence of the wall boundary

layer and the relevant necessary grid refinement put some

limitation to the use of LES.

Wall-jet interaction was studied by Hällqvist (2006) us-

ing low-Mach number LES without explicit Sub-Grid Scale

(SGS) modeling. Compressible LES have been performed

by Hadžiabdić and Hanjalić (2006) using an unstructured

finite-volume code. In both cases, the computational grid

was highly refined (5.5M nodes and 9.9M nodes respectively)

leading to very well resolved simulations with an inlet forcing

imposed by means of a precursor simulation of fully devel-

oped turbulent pipe flow.

We report on the assessment of the inlet/outlet boundary

conditions when performing compressible LES of unexcited

impinging round-jet with explicit SGS modeling starting

from an assumed a priori simplified velocity profile. A spe-

cific treatment is discussed to deal with edges and corners

when imposing boundary conditions in fully compressible

simulations.

FLOW CONFIGURATION AND NUMERICS

LES have been performed by means of a parallel solver

based on an explicit finite volume 4th order centered skew-

symmetric-like scheme by Ducros et al. (2000). The scheme

is augmented by a blend of 2nd and 4th order artificial dissi-

pation for spatial discretization (Tatsumi et al., 1995; Swan-

son and Turkel, 1992), in order to suppress spurious oscilla-

tions and damp high-frequency modes. A two-stage Runge-

Kutta scheme is retained for time integration. Within the

framework of LES approach, the Navier-Stokes equations

are filtered with a low-pass filter, the low frequency compo-

nents of the flow field—those which represent the large scale

structures of the flow—being directly resolved, and the cou-

pling term arising from the non-linear convective term being

modeled by the Sub-Grid Scale model. We adopt an im-

plicit filtering approach, therefore the filter’s cutoff length

∆ is equal to the local grid spacing, while SGS terms are

modeled using the eddy viscosity assumption of the Wall-

Adapting Local Eddy-viscosity model proposed by Nicoud

and Ducros (1999) in order to have a better scaling of the

eddy viscosity in the near-wall region.

The configuration has been chosen to have a direct ref-

erence with experimental data produced by Cooper et al.

(1993). Therefore, the jet nozzle is located at a distance

equal to twice the jet diameter D from the impingement wall

and the Reynolds number, based on the jet diameter and the

bulk velocity Ub, is equal to 23,000. The computational do-

main is a cartesian grid with the x-axis aligned with the axis

of the jet. Three meshes have been used depending on the

test performed: a 170k (45× 62× 62 for a physical domain

of 2D×6D×6D) mesh points domain for the qualitative as-

sessment of the boundary conditions, a 1.5M (70×146×146

for a physical domain of 2D×7D×7D) mesh points domain

for accurate comparison with experimental data and a 4.1M

(70× 242× 242 for a physical domain of 2D × 14D × 14D)

mesh points extended domain to assess the influence of the

domain width.

To avoid problems arising from the influence of the

boundary condition over the flow, it is generally advisable

to have the boundaries quite far from the jet axis. Still,

the pressure waves developing especially during the initial

transient, can negatively affect the solution due to unphys-

ical wave reflections at the frontiers of the computational

domain. In order to limit both of these effects, all the

boundary conditions are enforced using a modified version

of the NSCBC strategy (Poinsot and Lele, 1992): no-slip

adiabatic wall condition for the impingement wall, subsonic

non-reflecting outflow for the four lateral sides and subsonic

non-reflecting inflow with relaxed velocities and tempera-
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ture (Yoo et al., 2005). Furthermore, a correlated random

noise (Klein et al., 2003) is injected at the inlet with a time-

step independent sampling rate computed from the jet’s

characteristic time-scale.

MODIFIED NSCBC BOUNDARY CONDITIONS

The NS Equations are rewritten in terms of the char-

acteristic wave’s amplitude time variation Li by means

of the characteristic analysis (Thompson, 1990). Suppos-

ing that the boundary is normal to x1 and choosing U =˛̨
ρ u1 u2 u3 p

˛̨T
as the primitive variables vector,

the system becomes:

∂ρ

∂t
+ d1 +

∂

∂xt
(mt) = 0 (1)

∂m1

∂t
+ u1d1 + ρd2 +

∂

∂xt
(m1ut) =

∂τ1j

∂xj
(2)

∂m2

∂t
+ u2d1 + ρd3 +

∂

∂xt
(m2ut) +

∂p

∂x2
=

∂τ2j

∂xj
(3)

∂m3

∂t
+ u3d1 + ρd4 +

∂

∂xt
(m3ut) +

∂p

∂x3
=

∂τ3j

∂xj
(4)

∂ρE

∂t
+

1

2
ukukd1 +

d5

γ − 1
+ mkdk+1

+
∂

∂xt
[(ρE + p) ut] =

∂(ujτij)

∂xi
−

∂qi

∂xi

(5)

where k = 1, 2, 3 and the subscript t indicates derivation

in the directions parallel to the boundary—in this case

t = 2, 3—and the di terms are known functions of the wave

amplitude time variations Li:

d =

0BBBBBBB@

1
c2

ˆ
L2 + 1

2
(L5 + L1)

˜
1

2ρc
(L5 −L1)

L3

L4

1
2

(L5 + L1)

1CCCCCCCA
(6)

In the framework of the standard NSCBC approach, all the

incoming wave amplitudes Li are imposed under the hypoth-

esis that the flow at the boundary can be regarded as Locally

Mono-Dimensional and Inviscid. The so called LODI sys-

tem, which is used to enforce the boundary conditions, is

in fact built from the Navier-Stokes equations for primitive

variables written in characteristic form and putting to zero

all the transverse convective terms and pressure gradients

terms, as well as all the diffusive terms:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

∂ρ

∂t
+

1

c2

»
L2 +

1

2
(L5 + L1)

–
= 0

∂u1

∂t
+

1

2ρc
(L5 −L1) = 0

∂u2

∂t
+ L3 = 0

∂u3

∂t
+ L4 = 0

∂p

∂t
+

1

2
(L5 + L1) = 0

(7)

The problem under study is characterized by a strong tri-

dimensionalty of the flow field at the boundary. The LODI

assumption has proven to be too restrictive to reduce bound-

ary reflection to an acceptable level and to limit unphysical

flow distortion, especially in regions where the flow is not

aligned in the direction normal to the boundary. Further-

more, the relaxed quantities are not able to reach their

target value in regions where the flow is characterized by

strong convection in the boundary plane, leading to non-

negligible transverse terms. Better results can be achieved

including these transverse terms in the computation of in-

coming wave amplitudes, as already pointed out by Yoo

et al. (2005) for two-dimentional counterflow flames simu-

lation. The LODI system is therefore augmented with the

contribution of transverse convection1:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

∂ρ

∂t
+

1

c2

»
L2 +

1

2
(L5 + L1)

–
− T1 = 0

∂u1

∂t
+

1

2ρc
(L5 −L1)− T2 = 0

∂u2

∂t
+ L3 − T3 = 0

∂u3

∂t
+ L4 − T4 = 0

∂p

∂t
+

1

2
(L5 + L1)− T5 = 0

(8)

with

T =

0BBBBBBB@

− ∂
∂xt

(ρut)

−ut
∂

∂xt
(u1)

−ut
∂

∂xt
(u2)− 1

ρ
∂p

∂x2

−ut
∂

∂xt
(u3)− 1

ρ
∂p

∂x3

−ut
∂p
∂xt

− γp ∂
∂xt

(ut)

1CCCCCCCA
(t = 2, 3) (9)

It should be noted that system (8), which is used to com-

pute incoming waves, refers to the outside flow field. Ti

terms, therefore, should, in principle, be computed on the

external flow. This consideration poses a limit on the use of

transverse terms since the external flow field is, in general,

not known a priori. The most immediate approach would

be to approximate Ti using the computed internal solution.

This technique, indeed, works perfectly for the inflow bound-

ary condition, where the convergence of the solution toward

the target values is definitely improved (see figure 1, top).

Nonetheless, for the outflow boundary, even though the con-

vergence toward the target pressure become faster and more

accurate (see figure 1, bottom), the flow field shows a ten-

dency to align in the transverse direction and the solution,

eventually, becomes unstable. As suggested by Yoo et al.

(2005), a remedy for this problem is to add a small relaxation

to the transverse terms toward a reasonable exact known so-

lution. In the present case, relaxation toward the inviscid

potential solution for the Axisymmetric Stagnation-Point

Flow (Schlichting and Gersten, 2000) has proven to be effec-

tive to ensure stability. From a qualitative point of view, the

inclusion of transverse terms in the computation of incom-

ing wave amplitude variations shows a dramatic impact in

reducing flow deformation at the boundary, especially when

the flow itself is characterized by a strong tridimensionality.

Figure 2 shows a comparison of the behavior of the modified

boundary conditions when the big toroidal vortex, which de-

velops at the beginning of the injection, meets the outflow

boundaries.

Modified Subsonic Non-Reflecting Outflow. The outflow

condition must be imposed to obtain L1, with Ti terms

1More precisely, transverse convection and pressure gradi-
ents. In order to avoid confusion, they will be called transverse
terms in what follows to imply that pressure gradients are also
included
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Figure 1: Transverse terms influence on boundary accuracy.

Time evolution of the normalized computed inlet velocity

(top) and outlet pressure (bottom). Solid-line: with trans-

verse terms. Dash-line: without transverse terms.

Figure 2: Transverse Terms influence on flow distortion. Iso-

surfaces of velocity field in the early stages of the simulation

with transverse terms (left) and without transverse terms

(right).

being computed from interior points; nonetheless, as previ-

ously mentioned, it’s advisable to impose a small relaxation

for transverse terms. If the boundary is located at x1 = Lx

(L1 is the only incoming term), the relevant condition reads:„
∂p

∂t
− ρc

∂u1

∂t

«
+ α (p− p∞)− β (T5 − ρcT2 − Tex) = 0

(10)

where α is the relaxation parameter for the pressure, β ∈
[0 : 1] is the relaxation parameter for the transverse terms

and Tex represents the exact transverse terms for the L1

equation, namely:

Tex = −
»
u0t

∂p0

∂xt
+ γp0

∂u0t

∂xt
− ρ0c0u0t

∂u01

∂xt

–
(11)

the subscript 0 indicating quantities referring to the chosen

exact solution (i.e. Axisymmetric Stagnation-Point Flow).

From the system 8, the equation for L1 then becomes:

L1 = α (p− p∞) + (1− β) (T5 − ρcT2) + βTex (12)

Modified Non-Reflecting Inflow. The steady state pres-

sure field is generally not known a priori, therefore the direct

imposition of the target velocity can lead to strong initial

pressure waves and unphysical oscillations. Due to the high

value of the target velocity for the problem under study,

negative pressure regions developed, in the nozzle area, just

beneath these strong initial pressure waves. In order to avoid

this problem, the target velocity and temperature are re-

laxed towards the target values, rather than being imposed

directly (Yoo et al., 2005); therefore, the solution is able to

reach the steady state in a smoother way and, at the same

time, pressure waves reflected back by the impingement wall

leave the domain trough the inlet with negligible reflection.

Supposing that the L1 is the only outgoing wave (x1 = 0),

the nonreflecting subsonic inflow condition is:8>>>>>>>>>>><>>>>>>>>>>>:

„
∂p

∂t
+ ρc

∂u1

∂t

«
+ β5(u1 − u10 ) = 0

∂

∂t

„
p

ργ

«
+ β2(T − T0) = 0

∂u2

∂t
+ β3(u2 − u20 ) = 0

∂u3

∂t
+ β4(u3 − u30 ) = 0

(13)

where the β2, . . . , β5 are the relaxation parameters for the

relevant quantities and u10 , u20 , u30 and T0 are the tar-

get values for velocities and temperature. As before, the

system 8 is used to obtain the unknown wave amplitude

variations:

L5 = β5(u1 − u10 ) + T5 + ρcT2 − ρ c
dU0

dt
(14)

L2 = β2(T − T0) + c2T1 − T5 (15)

L3 = β3(u2 − u20 ) + T3 −
dV0

dt
(16)

L4 = β4(u3 − u30 ) + T4 −
dW0

dt
(17)

U0, V0 and W0 are additional signals which can be superim-

posed on the target solution by mean of their time derivative.

In particular, they have been used to inject the correlated

random noise.

Treatment of Edges and Corners

On the edges of the computational domain, two sets of

waves are traveling along orthogonal directions and two main

questions are posed: (a) it may be needed to impose two

types of boundary conditions at the same location (wall-

inflow, wall-outlet or inflow-outlet) and, in general, com-

patibility conditions have to be used in order to ensure well

posedness; (b) normal terms for one boundary become trans-

verse terms for the other and vice versa, therefore, transverse

terms’ implementation has to be adapted at this specific grid

location. In other words, as pointed out by Valorani and

Favini (1998), unknown incoming waves become coupled on

edges and corners. The Navier-Stokes equations have now to

be written in characteristic form considering two directions.

Supposing the case of boundaries normal to x1 and x2 (the

edge is along x3), new Mi terms appear relevant to waves

traveling along x2 and the system 8 becomes2:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

∂ρ

∂t
+

1

c2

»
L2 +

1

2
(L5 + L1)

–
+

1

c2

»
M3 +

1

2
(M5 + M1)

–
− T1 = 0

∂u1

∂t
+

1

2ρc
(L5 −L1) + M2 − T2 = 0

∂u2

∂t
+ L3 +

1

2ρc
(M5 −M1)− T3 = 0

∂u3

∂t
+ L4 + M4 − T4 = 0

∂p

∂t
+

1

2
(L5 + L1) +

1

2
(M5 + M1)− T5 = 0

(18)

2The extension to the case of domain corners is straightfor-
ward and is done expressing convection and pressure gradient
along x3 in terms of wave amplitude variations Ni.
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The Ti terms represent convection and pressure gradient

along x3 only. Depending on the kind of boundary con-

ditions to be imposed a linear system of equations in the

incoming unknown waves amplitudes is solved as given be-

low, while the compatibility conditions, if necessary, are

imposed in terms of constraints on the solution.

Outflow/Outflow with Transverse Terms Relaxation. Sys-

tem 18, in analogy with system 8, can be used to derive

boundary conditions for unknown incoming waves. Once

the two boundary types are identified, a set of n conditions

involving time derivatives of primitive variables is imposed

which corresponds, through system 18, to a set of n equa-

tions in Li and Mi, the number of unknown wave amplitude

variations being exactly n. Supposing, for instance, that the

edge is the joining region between two outflows located at

x2 = Ly and x3 = Lz (L1, M1 unknown), boundary condi-

tions are:8>><>>:
„

∂p

∂t
− ρc

∂u1

∂t

«
+ α (p− p∞)− β

`
T1 − T 1

ex

´
= 0„

∂p

∂t
− ρc

∂u2

∂t

«
+ α (p− p∞)− β

`
T2 − T 2

ex

´
= 0

(19)

where T 1
ex and T 2

ex—which refer to the L1 and M1 equa-

tions respectively—are computed on the supposed exact so-

lution. T1 and T2 are the analogous terms relevant to the

computed solution and can be explicitly identified resorting

to the system 8:

„
∂p

∂t
− ρc

∂u1

∂t

«
+ L1+

1

2
(M5 + M1)− ρcM2 − (T5 − ρcT2)| {z }

−T1

= 0 (20)

„
∂p

∂t
− ρc

∂u2

∂t

«
+ M1+

1

2
(L5 + L1)− ρcL3 − (T5 − ρcT3)| {z }

−T2

= 0 (21)

From the system 19 and the equations 20 and 21, the solving

system for L1 and M1 becomes:8>><>>:
L1 +

1− β

2
M1 = α (p− p∞) + (1− β)eT1 + βT 1

ex

1− β

2
L1 + M1 = α (p− p∞) + (1− β)eT2 + βT 2

ex

(22)

eT1 and eT2 being the known part of transverse terms:

eT1 = −
1

2
M5 + ρcM2 + (T5 − ρcT2) (23)

eT2 = −
1

2
L5 + ρcM3 + (T5 − ρcT3) (24)

It should be noted that, being 0 ≤ β ≤ 1, the system 22

always admits solution3; nonetheless, some care has to be

taken in general as, depending on the particular boundaries

considered, a check on this regard is recommended. On the

other hand, when no relaxation of transverse terms is neces-

sary, the matrix of coefficient will be fixed, as can be verified

setting β = 0 in system 22.

3The determinant of the relevant matrix of coefficient is zero
for β = −1 and β = 3

Outflow/Wall Compatibility Condition. On this kind of

edge, in principle, one should impose the pressure, for what

concerns the outlet condition, and velocity, for what con-

cern the wall condition. As suggested by Poinsot and Lele

(1992), just imposing all these quantities at the same time

simply does not work, but allowing smooth transient for the

pressure, namely relaxing outlet pressure, is a possible so-

lution, and indeed it does work. Since the velocity at the

wall is zero, the only non-zero wave amplitude variations are

L1,5 and M1,5 (those characterized by characteristic speeds

u1 ± c and u2 ± c). T1, T2, T3 and T5 are zero as well.

Supposing the wall is normal to x1 and the edge is located

at x1 = Lx and x2 = 0, the boundary conditions are im-

posed by setting to zero the time derivative of u1 and by the

pressure relaxation condition (second equation in system 19,

in the present case with the + sign for the ρc term). From

system 18 the relevant equations are:

∂u1

∂t
+

1

2ρc
(L5 −L1) = 0 (25)„

∂p

∂t
+ ρc

∂u2

∂t

«
+ M5 +

1

2
(L5 + L1)| {z }
−T2

= 0 (26)

and the solving system for L1 and M5 reads:(
L1 = L5 [⇒ T2 = −L5]

M5 = α (p− p∞) + (1− β)T2 + βT 2
ex

(27)

u2 and u3 are simply forced to zero.

Inlet/Outflow Compatibility Condition. Although a bit

more cumbersome (there are 5 unknowns in this case), the

very same procedure used to build the outflow/outflow con-

dition could be followed. Inlet and outlet boundary con-

ditions could be simultaneously imposed. Even allowing

smooth transients for pressure, the two boundary conditions

have shown problems of stability when simultaneously im-

posed. A simple remedy, which has proven effective, is to

set to zero the incoming wave amplitude relevant to the out-

flow boundary (“perfectly non-reflecting” outflow). In this

way, the pressure is left free to adapt to the local flow field

and tends anyway to the expected value due to the effect

of the neighboring regions. Supposing for instance the inlet

normal to x1 and located at x1 = 0 and the outflow located

at x2 = Ly , imposing the inlet boundary condition (sys-

tem 13) through the system 18, leads to the expression for

the unknown wave amplitude variations:8>>>>>>>>>>>><>>>>>>>>>>>>:

M1 = 0 (compatibility condition)

L5 = β5(u1 − u10 )−
1

2
M5 + T5 + ρc (T2 −M2)− ρ c

dU0

dt

L2 = β2(T − T0)−M3 + c2T1 − T5

L3 = β3(u2 − u20 )−
1

2ρc
M5 + T3 −

dV0

dt

L4 = β4(u3 − u30 )−M4 + T4 −
dW0

dt
(28)

INLET PROFILE INFLUENCE

The influence of the target velocity profile has been as-

sessed using three profiles:

• Top Hat profile.

U(r)

Ucl
=

(
1 if 0 ≤ 2r/D ≤ 1,

0 if 2r/D > 1.
(29)
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Figure 3: Inlet profile shape influence. Mean streamwise

velocity. Symbols: experimental data. Lines: power law

profile (n = 7.4, Eq. 31). Dots: Smoothed profile (D/θ =

20, Eq. 30). Dashed lines: top hat profile (Eq. 29).

• Smoothed profile (Lesieur et al., 2005):

U(r)

Ucl
=

1

2

»
1− tanh

„
1

8

D

θ

„
2r

D
−

D

2r

««–
(30)

• Power Law profile for turbulent pipe flow:

U(r)

Ucl
=

„
1−

2r

D

«1/n

(31)

where Ucl is the centerline velocity, r is the distance from the

jet axis, θ is a parameter to control the shear layer thickness

and n is a coefficient which depends on the pipe’s friction

factor4.

In figure 3, a comparison for these different inlet profiles

is displayed. The shape of the profile used has a dramatic

impact on the simulated flow. An almost top hat-shape pro-

file is not effective in catching the experimental data: the

spreading of the jet before the stagnation point is too high

and the jet core does not retain enough kinetic energy. The

axial velocity is also lower. Furthermore, the shear layer

thickness is not well controlled and depends on the grid re-

finement. Smoothed profiles resembling a fully developed

pipe flow give better results; the shear layer thickness can

be used to fine tune the profile but still, it is not possible to

retain enough kinetic energy on the centerline while main-

taining the expected Ub/Ucl ratio. The best results have

been obtained using the power law profile. The fairly good

agreement with the experimental data (see also figure 5)

clearly justify the use of this profile when a pre-simulation

of a fully developed turbulent pipe flow cannot be performed,

as it would be the case when simulating more complex sys-

tems.

DOMAIN WIDTH INFLUENCE

The results from two simulations made with different do-

main widths (7D and 14D) and using the smoothed inlet

profile are shown in figure 4. Data have been sampled at

fixed locations near the jet (y/D=0.0–1.0) and far from it

(y/D=2.5–3.0); the latter sampling locations are, for the

small domain case, just before the outflow. The presence

of the outflow has a negligible effect on the average flow

4A value of n = 7 is generally used; in what follows, n has
been set to 7.4 in order to retain the same ratio between bulk
velocity and centerline velocity as in the Cooper’s experiment.
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Figure 4: Domain size influence. Average streamwise (top)

and fluctuation velocity (bottom). Wide Domain (symbols):

outlet at y/D = 7.0, 4.1M mesh points. Small Domain

(lines): outlet at y/D = 3.5, 1.5M mesh points.

field; the influence on the fluctuating parts is slightly more

pronounced though, especially approaching the boundary,

where the peak in the case of the small domain is around

10% higher. This suggests that the outlet boundary condi-

tions, and its acoustic coupling with the inlet conditions, are

only slightly perturbing the flow.

COMPARISON AGAINST EXPERIMENTS

Statistical results have been extracted on the 1.5M mesh

points run for comparison with the experimental data. Av-

eraging has been performed, after the establishment of a rea-

sonably developed flow, over a time equal to about 61D/Ub

seconds for a statistical sample of 3,400 data. Furthermore,

assuming the validity of the Taylor hypothesis, additional

averaging has been done around the jet’s axis for a total sam-

ple ranging from 108,800 and 911,200 data depending on the

distance of the sampling location from the axis. The simula-

tion shows fairly good agreement in terms of mean velocity

profiles at all the locations (see figure 5); average velocity is

slightly overpredicted for x/D > 0.025 at almost all the loca-

tions, due probably to the approximation related to the inlet

profile used, which is not able to fully resemble the devel-

oped turbulent pipe flow. Nonetheless, the boundary, which

is located just after the last sampling location, does not have

a strong impact, and the overall accuracy seems to be well

preserved. Turbulent fluctuations are given in figure 6. Near

the jet, turbulence development follows the expected behav-

ior and the turbulent kinetic energy is fairly well predicted.

On the other hand, in the wall-jet region, turbulent energy

becomes higher than expected and this accounts for an ex-

cess in radial fluctuations in the near wall region and an

excess in transverse fluctuations right above it. This level of

fluctuations is sensitive to the inlet forcing and to the artifi-

cial dissipation that is added in the numerics, it is therefore

expected that some slight adjustments would provide results

very close to the measurements. Nevertheless, the novel

boundary treatment discussed above allows for decoupling

the fluctuating simulated flow from the imposed limits of

the computational domain, as shown in figure 7 (middle),

where coherent vortex structures are shown by means of iso-

surfaces of Q = 0.5(∂ui/∂xj)(∂uj/∂xi). The typical size of

vortical structures in the wall-jet region is about the same as

in the jet shear layer, meaning that the information travels

from the inlet without being perturbed by the outlets.

1303



y/D=0.0

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2
y/D=0.5

y/D=1.0

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

U
/U
b

y/D=1.5

y/D=2.0

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2
y/D=2.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x/D

y/D=3.0

 0

 0.4

 0.8

 1.2
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