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ABSTRACT

We study experimentally the dynamics of the duct flow

usptream of a high-Reynolds number swirling jet. Our setup

involves a rotating honeycomb and allows to vary the con-

traction ratio of the final duct portion preceding the jet

exhaust plane. Stereo-PIV measurements are realized in the

duct directly upstream of these final portions, for increas-

ing values of the swirl number. It is shown that the flow

dynamics is strongly influenced by its supercritical or sub-

critical nature with respect to axisymmetric inertial waves.

In the subcritical regime, complex mean flows are observed,

which differ according to the duct geometry under considera-

tion. Discrepancies are in turn detected in the flow unsteady

behaviour, with the appearance, at the highest values of the

swirl number, of transient small-scale recirculations located

either close to the duct axis or near the edge of the boundary

layer.

INTRODUCTION

Swirling jet experiments are designed to produce a ra-

dially unconfined flow with both an axial and an azimuthal

component of velocity. They traditionaly involve a rotation-

imparting device such as swirl vanes or a rotating honey-

comb, followed by cylindrical duct portions in which the flow

is settled or accelerated before exhausting as a free jet. Past

experiments dealing with such configurations have chosen

the exit plane flow as their upstream boundary condition,

and aimed at establishing links between the velocity profile

there and the subsequent dynamics of the jet (see e.g. Panda

and McLaughlin, 1994, and Billant et al. 1998). Such an ap-

proach has allowed significant progress in the understanding

of phenomena specific of rotating flows, e.g. centrifugal in-

stabilities, modified properties of the turbulence and of the

jet potential cone, and vortex breakdown.

In our high-Reynolds-number swirling jet facility, a uni-

formly rotating flow is generated by a rotating honeycomb,

and passes through a portion of constant cross-section duct

terminated or not by a converging portion. In some regimes,

fully turbulent flow has been measured in the exit plane,

thereby suggesting that the duct flow could blur the gener-

ating condition of the jet. To our knowledge, no detailed

account exists in the literature on the dynamics of the duct

flow preceding swirling jets. We thus investigated the flow

directly upstream from the final duct portion by means of

Stereoscopic PIV, with respect to both the swirl number of

the flow exiting from the honeycomb and the final contrac-

tion ratio. This paper presents the outcome of this work,

and is organized as follows. The experimental setup is first

described. In a second part, mean flow quantities are ana-

lyzed in order to define several flow regimes, controlled by

the value of the swirl number. The unsteady dynamics of

the flow is then analyzed for some of these regimes.

EXPERIMENTAL SETUP

We use a centrifugal fan to generate an axial flow in a

cylindrical duct of radius R0. This radius is taken as the

reference length throughout the study. We also use a cylin-

drical coordinate basis (r, θ, z) and denote the corresponding

instantaneous velocity components as (u, v, w). The mean

and fluctuating velocity components will be respectively de-

noted as (U, V, W ) and (u′, v′, w′). As sketched in figure 1,

rotation is imparted to the initially axial flow by means of

a rotating duct portion equipped with a fine-celled honey-

comb. For moderate values of the angular velocity Ω0, the

flow has a uniform axial velocity and rotates as a rigid body

except in the boundary layers. It develops in a duct of con-

stant cross-section, whose downstream part is transparent in

order to allows Stereo-PIV measurements in a longitudinal

plane. The measurement zone is represented by a shaded

rectangle in figure 1. The flow is then accelerated by a con-

verging duct and finally exhausts as a swirling jet.
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Figure 1: Schematic description of the wind-tunnel. The

flow zone investigated by S-PIV is shaded. Lengths are

nondimensionalized using the upstream duct radius R0. W

denotes the mean axial velocity built from the volume flow

rate.

The contraction ratio of the final duct portion is defined

as

χCV = (R0/R1)2 (1)

where R1 stands for its downstream radius. We consider four

different duct geometries, χCV = 1 (i.e. with a constant

cross-section), 4, 9 and 18.4. The second variable control

parameter is the swirl number S of the flow exiting from the

honeycomb,

S =
R0Ω0

W
, (2)

where W denotes the mean axial velocity built from the

volume flow rate. For each of the duct geometries, S is varied

from 0 to about 3.4 by first setting the plug axial velocity

of the flow when Ω0 = 0, and subsequently increasing Ω0

by small steps. At each step, 800 images are recorded at a

frequency fa = 4 Hz.

The Reynolds number of the flow is defined by Re =

2R0W/ν. It is comprised between 55100 and 58100 for

χCV = 4, 9 and 18.4, and between 50500 and 56700 for

χCV = 1.
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FLOW REGIMES

Figures 2 shows the mean axial velocity W , nondimen-

sionalized by W , measured at the centre of the duct, r = 0,

at the axial location z = 4.70. It should be noted here that

in the following, all plotted quantities will be extracted from

this precise axial location unless otherwise stated.
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Figure 2: Mean axial velocity W at r = 0, z = 4.70, as a

function of S, for the different contraction ratios χCV . The

horizontal dotted line separates flow with a velocity excess

on the axis from flows with a velocity defect on the axis.

As the honeycomb is set into motion (increasing S), the

axial velocity profile progressively departs from uniformity.

As a matter of fact, W (r = 0) gradually increases i.e. the

profile of W becomes parabolic with a velocity excess on the

axis. For 0 < S < 1.6 (regime I), no difference is observed

between all values of χCV , whereas for 1.6 < S < 2 (regime

II) the behaviour of W (r = 0) for χCV = 1 slightly departs

from that for χCV > 1: this is due to the occurrence of

vortex breakdown in the jet in the case χCV = 1, that results

in an axial deceleration already noticeable at z = 4.70.

Figure 2 shows a clear change in behaviour when the swirl

number is further increased above S ≈ 2 (regimes III an IV).

This is actually linked to the flow becoming locally subcrit-

ical. This term refers to the propagation direction of the

axisymmetric inertial (or Kelvin) waves, which stem from

the Coriolis force and are known to strongly influence the

dynamics of rotating flows. Similarly to the context of com-

pressible or free-surface flow, a flow invariant by translation

in the axial direction is termed supercritical if infinitesi-

mal perturbations are only propagated downstream by these

waves, and subcritical if both the upstream and the down-

stream directions are possible. The subcritical regime is

moreover characterized by the ability of the flow to sustain

infinitesimal standing axisymmetric Kelvin waves. The tran-

sition between both regimes is driven by the swirl number

and occurs at a critical value denoted SB , and separates low-

swirl supercritical flows (S < SB) from high-swirl number

flows (S > SB). The notation SB refers to the study of Ben-

jamin (1962) on the vortex breakdown phenomenon, which

was among the first to highlight such concepts in the frame-

work of rotating flows. In this work, Benjamin described

theoretically vortex breakdown as a spatial transition zone

between an upstream supercritical flow and a downstream

subcritical flow. Such a phenomenology has been confirmed

in subsequent experimental (Tsai and Widnall, 1980) and

numerical studies (Ruith et al., 2003).

For a flow consisting of a plug axial velocity with solid-

body rotation and no boundary layer, it is found that

SB = j1,1/2 ≈ 1.916, where j1,1 denotes the first non-trivial

root of the Bessel function of order 1 of the first kind. Inter-

estingly, this value is close to the experimental one (S ≈ 2).
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Figure 3: Mean velocity profiles at z = 4.70 for S = 2.24

(χCV = 1). The lower zone of the boundary layer is not

included due to a spurious reflexion of the laser sheet.
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Figure 4: Mean velocity profiles at z = 4.70 for S = 2.77

(χCV = 18.4).

For subcritical flows (regimes III and IV), the presence

of a contraction downstream leads to a different flow than

for χCV = 1, but the values of χCV > 1 tested in our study

all yield the same dynamics, as seen on figure 2. Whereas

for χCV = 1 profiles with a defect or with an excess of axial

velocity on the axis are alternatively found as S is increased,

only the latter configuration is obtained for χCV > 1, with

very large values of the velocity excess on the axis (and a

corresponding velocity defect at the periphery, i.e. large

gradients in the radial direction). Figures 3 and 4 respec-

tively show examples of these velocity profiles, respectively

for χCV = 1, S = 2.24 and χCV = 18.4, S = 2.77.

In the case χCV > 1, the evolution of W (r = 0)

with S is explained by the presence in the flow of large-

amplitude standing axisymmetric Kelvin waves without any

breakdown-like phenomenon. This conclusion was confirmed

by simulating numerically the flow from the honeycomb to
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the jet exit plane for χCV = 4. We imposed a no-slip condi-

tion at the wall, and an inflow condition of solid-body rota-

tion with angular velocity Ω0 and plug axial flow of velocity

W0. Steady flow solutions were then sought for a moderate

inflow Reynolds number (Re0 = R0W0/ν = 1000) and in-

creasing values of the inflow swirl number S0 = R0Ω0/W0

(see Leclaire (2006) for more details on this simulation). Fig-

ure 5 displays the axial velocity at r = 0 as a function of z

obtained for selected values of S0. By extracting the value of

W (r = 0) at z = 4.70, it can be shown that this simulation

is in very good agreement with the experimental data even

if the Reynolds number are not of same order of magnitude.

Figure 5 shows that these waves have a wavelength of order

unity, that progressively decreases as S increases, thereby

leading to “oscillations” of W (r = 0) when observed at a

fixed axial location for increasing S.

z

W
(r

=
0)

0 2 4 6 8

1

2

3

4

5

6

7

8

S0=0.00
S0=2.00
S0=2.72
S0=2.90
S0=3.36

4.70

Figure 5: Axial velocity W on the duct axis for different

values of S0 (numerical simulation at Re0 = 1000, χCV =

4).

The distinction between regimes III and IV is based

on the unsteadiness observed in the flow corresponding to

χCV > 1 and will be accounted for in the following.

UNSTEADINESS AND TURBULENCE

To characterize the unsteady and turbulent behaviour of

the flow, we first introduce the turbulence rates, built from

the mean axial veloctiy W :

qr =
u′

W
, qθ =

v′

W
, qz =

w′

W
(3a)

q =

s
< u′2 > + < v′2 > + < w′2 >

2W
2

(3b)

These quantities are here more used as a qualitative way

to describe the unsteady flow behaviour, since the number

of samples taken at each measurement is not large enough

to allow a rigorous convergence of the turbulent quantities.

Conclusions pertaining to the azimuthal symmetry of the

perturbations may be drawn from the behaviour of qθ and qz

at the duct axis. To show this, let us consider infinitesimal

normal-mode perturbations

(u, v, w)(r, θ, z, t) = (V, W )+ε<{(u′, v′, w′)ei(kz+mθ−ωt)},
with ε << 1 (4)

of respective real axial and azimuthal wavenumbers k and m,

and complex frequency ω, superimposed on a parallel flow

V (r), W (r) (i.e. with no axial gradients nor radial velocity).

Upon using a Taylor expansion at r = 0, it can be found

that for axisymmetric modes (m = 0)

u′(r), v′(r) = O(r), w′(r), p′(r) = O(1) (5)

whereas for asymmetric modes (m 6= 0)

u′(r), v′(r) = O
�
r|m|−1

�
, w′(r), p′(r) = O(r|m|) (6)

Therefore, qθ(r = 0) 6= 0 is the signature of a helical

(|m| = 1) perturbation whereas qz(r = 0) 6= 0 is that of

an axisymemtric (m = 0) perturbation.

The χCV = 1 case

Figure 6 shows the evolution with S of the azimuthal and

axial turbulence rates at the centre of the duct for χCV = 1.

An increase of qθ(r = 0) is detected from S ≥ 2.24, reveal-

ing the appearance of a helical perturbation. As mentioned

above, the flow is found subcritical from S > 2 and for cer-

tain values of S, axial velocity profiles display a defect on

the axis when χCV = 1. These features are currently en-

countered in flows downstream of vortex breakdown (see for

instance the review of Leibovich, 1984), and could therefore

suggest that breakdown occurs upstream from the PIV zone,

presumably directly downstream of the honeycomb.
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Figure 6: Azimuthal and axial turbulence rates qθ and qz at

r = 0, z = 4.70, as a function of S (χCV =1).

Figure 7 further charaterizes this helical disturbance by

plotting the correlation coefficient of the radial velocity fluc-

tuations at r = 0, defined by

Ruu(0, r) =
< u′(0)u′(r) >

< u′2(0) >1/2< u′2(r) >1/2
(7)

As soon as this helical instability appears in the flow (i.e.

from S ≥ 2.24), it affects a large central zone of the flow,

ranging typically from r = 0 to r = 0.6. This behaviour

is probably to be associated with the significant width of

the rotational core in our flow, that actually extends to the

boundary layer in a situation with no significant perturba-

tion such as in regimes I and II.

Figure 6 also shows an increase of the axial turbulence

rate qz from S ≥ 3.49, which indicates the appearance of

an axisymmetric perturbation in addition to the helical one.
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Figure 7: Values of the correlation coefficient of the radial

fluctuation Ruu(0, r) at z = 4.70, for selected values of S

(χCV = 1).
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Figure 8: Superposition of instantaneous velocity profiles

of the axial velocity w at r = 0, z = 4.70, for S = 3.63

(χCV = 1).

As a result, for S = 3.63, even if the mean axial velocity

is strictly positive, transient recirculations close to the duct

axis are observed, as plotted on figure 8.

The χCV > 1 case

As well as for the mean flow, discrepancies between cases

χCV = 1 and χCV > 1 are observed in the unsteady flow

behaviour. Figure 9 plots radial profiles of the total tur-

bulence rate q as a function of the swirl parameter S, for

χCV = 18.4. This particular value of the contraction ratio

will be taken in the following as representative of the case

χCV > 1.

As mentioned above, two subcritical flow regimes can

be distinguished. In regime III (2 < S < 3.1), the turbu-

lence rate remains weak at the duct axis, but progressively

increases at the flow periphery. For 2.7 < S < 3.1 a local

maximum of q is observed in the region r≈0.5−0.6. It should

be reminded here that this region is not part of the bound-

ary layer nor close to its edge (the boundary layer typically

extends from r = 0.9− 0.95 to r = 1 in our flow).
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Figure 9: Radial profiles of the total turbulence rate q at

z = 4.70 as a function of S (χCV = 18.4).

At S ≈ 3.1 perturbations of very large amplitude appear

at the duct axis. This event is used to define the onset of

regime IV. In a similar way to figure 6, figure 10 represents

the axial and azimuthal turbulence rates at r = 0, together

with the total turbulence rate at r = 0.6 as a function of S,

for χCV = 18.4. It shows that the perturbations in regime

IV are both axisymmetric and helical in nature (the latter

being of largest amplitude).
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Figure 10: Turbulence rates qθ and qz at r = 0 and q at

r = 0.6, z = 4.70, as a function of S (χCV = 18.4).

As an attempt to find the origin of the turbulence in the

periphery of the flow in regime III, we applied local insta-

bility criteria to the mean flow profiles at z = 4.70. It was

found that the observed unsteadiness cannot be linked to

azimuthal shear, by virtue of the Rayleigh inflexion point

criterion applied to the azimuthal component of velocity.

Axial shear may be involved since all flows of regime III sat-

isfy the necessary condition of Batchelor and Gill (1962).

However this criterion pertains to flows with no azimuthal

velocity, therefore a proof of the implication of such a mecha-

nism would require a complete local stability analysis which

is out of the scope of the present study. On the contrary,

the sufficient criterion derived by Leibovich and Stewart-

son (1983) can be tested here with no further assumption

than parallel flow. Though this hypothesis is clearly not
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fulfilled in the experiment since standing waves are present

in the axial direction, it can be argued that the gradients

asociated with these standing waves are of the order of mag-

nitude of the duct radius, whereas the criterion of Leibovich

and Stewartson (1983) predicts the ability of a parallel flow

to undergo a generalized centrifugal instability of asymptot-

ically small scale. As a matter of fact, it states that in the

limit of inifinite |m|, the growth rate ωi∞ of a perturbation

superimposed on the base flow (V (r), W (r)) satisfies

ω2
i∞ =

2V (rVr − V )
�
(V

r
)2 − V 2

r −W 2
r

�

(rVr − V )2 + r2W 2
r

(8)

Generalized centrifugal instabilities indeed seem to be at

work in the duct flow, as attested by figures 11 and 12. On

the former, radial profiles of q and of ω2
i∞ are plotted for

S = 2.77, and are in good agreement, the radial maxima of

both quantities nearly coinciding close to r ≈ 0.5. Figure 12

plots the evolution with S of ω2
i∞,max, defined as the radial

maximum of ω2
i∞, together with W (r = 0) and q(r = 0.6),

still at z = 4.70. Here, it is useful to remind that the value

of W (r = 0) can be used as an evaluation of the magnitude

of the flow gradients in the radial direction. Therefore, fig-

ure 12 shows that the value of ω2
i∞,max strongly depends on

the magnitude of these gradients. Moreover, the increase of

q(r = 0.6) also seems to correlate well with the evolution of

ω2
i∞,max, thereby confirming the implication of generalized

centrifugal instabilities of small scale to explain the turbu-

lence at the flow periphery.
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Figure 11: Comparison of the radial profiles of q and of

the value of the growth rate ω2
i∞ yielded by the criterion

of Leibovich and Stewartson (8) at z = 4.70 for S = 2.77

(χCV = 18.4).

Contrary to the case χCV = 1, axial and azimuthal

perturbations set on at the same value of the swirl num-

ber S ≈ 3.1. Even if their respective orders of magnitudes

are comparable to the case χCV = 1 (see figure 6), the

helical perturbation is characterized by a smaller radial co-

herence length scale. This is shown in figure 13, which plots

Ruu(0, r) for different swirl numbers of regime IV in the

case χCV = 18.4. As a matter of fact, for S = 3.13 and

3.25, Ruu(0, r) is seen to decrease steeply for r > 0, and it

is only for the highest swirl value S = 3.35 that more radial

coherence is attained, Ruu(0, r) decreasing less steeply for

0 < r < 0.45 than for larger r.

More striking is the superposition of radial profiles of the

axial velocity W for S = 3.35, plotted in figure 14. Consis-

tently with the presence of a large velocity excess on the
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Figure 12: Evolution with S of the mean axial velocity W at

r = 0, together with the mean turbulence rate q at r = 0.6

and the maximum of ω2
i∞ over a radial profile at z = 4.70,

for χCV = 18.4.
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Figure 13: Values of the correlation coefficient of the radial

fluctuation Ruu(0, r) at z = 4.70, for selected values of S

(χCV = 18.4).

duct axis, a minimum of W is observed at the flow periph-

ery (between r = 0.7 and r = 0.8). As a consequence of the

axisymmetric instability, transient small-scale recirculations

are observed in that zone. Such events are the counterpart of

the recirculations illustrated in figure 8 for χCV = 1, which

occur in that case near the duct axis due to the different

mean velocity profiles.

CONCLUSION

In this paper we investigated the duct flow upstream of

a high-Reynolds-number swirling jet with a large zone of

solid-body rotation. We measured by Stereo-PIV the flow

in a duct portion located directly upstream of the final con-

traction that generates the jet, and also considered the case

where this contraction is replaced by a straight duct. We

studied the parametric influence of the swirl number S of

the flow generated by the honeycomb and of the contrac-

tion ratio χCV of the final duct portion. It has been found

that supercritical flows have a simple dynamics and remain

weakly unsteady or turbulent, and that subcritical duct flows

are on the contrary characterized by a complex mean flow
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Figure 14: Superposition of instantaneous velocity profiles

of the axial velocity w at r = 0, z = 4.70, for S = 3.35

(χCV = 18.4).

structure and important unsteadiness. Subcritical flows are

moreover strongly influenced by the geometry of the down-

stream duct since large discrepancies have been observed

between the flows corresponding to χCV = 1 and χCV > 1.

However no difference has been noted between χCV = 4, 9

and 18.4. In the cases χCV > 1, the mean flow displays

large-amplitude standing axisymmetric Kelvin waves, which

may result in important radial velocity gradients in the flow,

with a large axial velocity excess on the axis and low axial

velocity close to the boundary layer. When χCV = 1, these

gradients are weaker or of opposite sign (i.e. the axail ve-

locity profiles may display a velocity defect on the axis).

The unsteady behaviours differ as a result of these dis-

crepancies in the mean flow. In the case χCV = 1, a helical

perturbation with a large radial coherent scale is observed

from the beginning of regime III, followed by an axisym-

metric perturbation in regime IV, which leads to transient

recirculations near the duct axis. In the case χCV > 1, no

significant helical or axisymmetric perturbation are observed

in regime III, but small-scale generalized centrifugal insta-

bilities lead to a production of turbulence in the periphery of

the flow. A helical and an axisymmetric perturbation appear

simultaneously in regime IV, the former being characterized

by a smaller radial coherence length scale than for χCV = 1,

and the latter leading to transient small-scale recirculations

in the flow periphery, close to the boundary layer edge.

To this day, the origin of these helical and axisymmetric

perturbations remains unclear and therefore deserves further

theoretical and numerical studies. Work is in progress along

these lines.
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