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ABSTRACT

Comparisons between large eddy simulation (LES) and

velocity measurements have been performed for a turbulent

flow in a real shrouded rotor-stator configuration. The LES

model is based on Spectral Vanishing Viscosity (SVV). The

key particularity of this model is that the SVV is active

only at the short length scales, a feature which is required

to accurately capture the complexity of the flow. Thus, nu-

merical results are shown to compare very favourably with

experimental measurements at rotational Reynolds numbers

Re = Ω.b2/ν = 106 in an annular cavity of radius ratio

s(= a/b) = 0.286 and of aspect ratio G = (b − a)/h = 5,

where a and b are respectively the inner and outer radii

of the rotating disk and h is the inter-disk spacing. The

spectral vanishing viscosity, first introduced by E. Tadmor

for the inviscid Bürgers equation [SIAM J. Numer. Anal.

26, 30 (1989)], is incorporated into the cylindrical Navier-

Stokes equations written in velocity pressure formulation.

The second-order operator involved by the SVV-method is

implemented in a Chebyshev-collocation Fourier-Galerkin

pseudo-spectral code. As far as the authors are aware, LES

of fully turbulent flow in an actual shrouded rotor-stator

cavity have not been performed before.

Keywords: rotor-stator flow, large eddy simulation, spec-

tral vanishing viscosity technique, LDV.

INTRODUCTION

There have been numerous numerical simulations and

experimental studies of flow between rotating and stationary

discs, with a stationary shroud and through-flow (a ”rotor-

stator cavity”) (see references in Serre et al. ,2001; Poncet et

al. ,2005; Randriamampianina and Poncet ,2006). The flow

has significant industrial applications, such as internal gas-

turbine flows and computer hard disks, and the geometry

is relatively simple. A characteristic feature of such flows

is the coexistence of adjacent coupled flow regions that are

radically different in terms of the flow properties (Serre et

al. , 2004).

In the laminar regime, Batchelor (see Fig. 1) solved the

problem relative to the stationary axi-symmetric flow be-

tween two infinite disks. He specified the formation of a

non-viscous core in solid body rotation, confined be-tween

two boundary layers. In contrast, Stewartson claimed that

the tangential velocity of the fluid can be zero everywhere

apart from the Ekman layer on the rotor. This controversy

ended when Mellor discovered numerically the existence of a

multiple class of solutions showing that both Batchelor and

Stewartson flow structures can be found from the similarity

solutions.

Daily and Nece (1960) have carried out an exhaustive

theoretical and experimental study of sealed rotor-stator

flows. They pointed out the existence of four flow regimes

depending upon combination of the rotation speed and the

inter-disk spacing. These correspond respectively to two

laminar regimes (I and II) and two turbulent regimes (III

and IV), each characterized by either merged (I and III)

or separated (II and IV) boundary layers. In the latter

case, the flow is of Batchelor type with two boundary lay-

ers separated by a central rotating core. They provided

also an estimated value for the local Reynolds number at

which turbulence originates with separated boundary lay-

ers, Rer = Ωr2/ν = 1.5 × 105 (r is the radial location) for

aspect ratios G(= (b − a)/h) < 25. However, experiments

have revealed that transition to turbulence can appear at a

lower value of Rer within the Bödewadt layer on the stator,

even though the flow remains laminar in the Ekman layer

along the rotor. From detailed measurements, Itoh et al.

(1995) reported a turbulent regime occurring earlier along

the stator side at Rer = 8× 103, while along the rotor side,

turbulent flow develops later for 3.6×105 < Rer < 6.4×105

for G = 12.5. This is in agreement with the experiment of

Cheah, for which the flow along the rotor side is turbulent

for Rer = 4 × 105 (G = 7.87). Differences in turbulence

characteristics between the rotor and stator sides have also

been observed and attributed to the effects of the radial con-

vective transport of turbulence.

As a consequence, only a few investigations of turbu-

lent rotating disks flows have been done, using Large Eddy

Simulation (LES) based on filtered Navier-Stokes equations.

To our knowledge, only two studies performed by Wu and

Squires (2000) and Lygren and Andersson (2001) provided

useful results. Wu and Squires performed LES of the three-

dimensional turbulent boundary layer over a free rotating

disk at Re = 6.5 × 105 and in an otherwise quiescent in-

compressible fluid using periodic boundary conditions both

in the radial and tangential directions. The authors used

three different dynamical models to model the sub-grid scale

stress arising from the filtering operation: the eddy viscos-

ity model of Germano, the mixed model of Zang and the
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mixed model of Vreman. Their results have offered new

evidence to support the observations of Littell and Eaton

(1994) that streamwise vortices with the same sign as the

mean streamwise velocity are mostly responsible for strong

sweep events, while streamwise vortices with opposite sign

to the mean streamwise velocity promote strong ejections.

Using the same assumptions as in their DNS investigation,

Lygren and Andersson (2004) performed LES of a rotor-

stator flow for Reynolds numbers ranging from Re = 4×105

to Re = 1.6 × 106. Using both the dynamic subgrid-scale

model proposed by Lilly and the mixed dynamic model due

to Vreman, Lygren and Andersson concluded that the best

overall results where obtained with the second model. These

authors performed LES for five different aspect ratios, rang-

ing from the wide-gap cavity to the narrowgap one. As

for Wu and Squires, their LES study supported the view of

Littell and Eaton that the mean flow three-dimensionality

affects the near wall vortices and their ability to generate

shear-stresses.

Following this reasoning, a numerical method is proposed

here to provide accurate solutions to these flows in turbu-

lent regimes based on a highly accurate spectral method that

uses expansions in Chebychev polynomials and Fourier series

to approximate the solution of the Navier-Stokes equations

(NSE) in the non-homogeneous and tangential directions, re-

spectively. Finally, turbulent regimes are investigated here

in an annular rotor-stator cavity, using experimental mea-

surements as well as Large-Eddy Simulation (LES). At our

knowledge, there has been no efficient investigation of turbu-

lent rotor-stator flows within a closed interdisk cavity using

LES. The mean flow is mainly governed by three control pa-

rameters: the aspect ratio of the cavity G(= (b− a)/h) = 5,

the rotational Reynolds number Re = Ω.b2/ν based on the

outer radius b of the rotating disk and the radius ratio

s(= a/b) = 0.286. In this work, LES and experimen-

tal measurements have been used to characterize statistical

properties of turbulent rotor-stator flows at Reynolds num-

bers Re = 106.

Figure 1: Laminar Batchelor’s flow (DNS result). Instan-

taneous velocity field in the meridian plane (r, θ/4, z) at

Re = 10000.

GEOMETRY

The cavity is composed by two smooth parallel disks of

radius b = 140mm, one rotating at a uniform angular ve-

locity Ω (rotor), one being at rest (stator). The disks are

delimited by an inner cylinder (the hub) of radius a = 40mm

attached to the rotor and by an outer stationary casing (the

shroud) slightly larger than the rotor. The cavity is filled

with water maintained at a constant working temperature

20oC.

INSTRUMENTATION AND MEASUREMENTS

The measurements are performed using a two component

laser Doppler anemometer (LDA). The LDA technique is

used to measure from above the stator the mean radial Vr

Figure 2: Details of the cavity and the geometric parameters.

and tangential Vθ velocities as well as the associated three

Reynolds stress tensor components in a vertical plane (r,

z). This method is based on the accurate measurement of

the Doppler shift of laser light scattered by small particles

(Optimage PIV Seeding Powder, 30µm) carried along with

the fluid. Its main qualities are its non intrusive nature and

its robustness. About 5000 validated data are necessary to

obtain the statistical convergence of the measurements. It

can be noticed that, for small values of the interdisk space h,

the size of the probe volume (0.81mm in the axial direction)

is not small compared to the boundary layer thicknesses and

to the parameter h.

NUMERICAL MODELLING

The incompressible fluid motion is governed by the three-

dimensional Navier-Stokes equations written in primitive

variables (see below).




∂
−→
V

∂t
+ div(

−→
V ⊗−→V ) = −−−→gradp + 1

Re

−−→
∆
−→
V in D

div
−→
V = 0 in D−→

V =
−→
W on Γ

(1)

where t is the time,
−→
V is the velocity of components (u,v,w)

in the radial, tangential, and vertical direction respectively,

for cylindrical coordinates (r, θ, z), p is the pressure; and

Γ denotes ∂D, and D denotes D ∪ ∂D. This equation is

completed by initial conditions for the velocity:
{ −→

V (t = 0) =
−→
V0 in D

with div
−→
V0 = 0 in D

(2)

The temporal discretization adopted in this work is a projec-

tion scheme, based on backwards differencing in time. The

projection scheme requires the solution of a pressure Pois-

son equation to (approximately) maintain solenoidality of

the velocity (see Raspo et al. 2002). The specificity of our

algorithm lies in the computation at each time step of a

pressure predictor (through this pressure Poisson equation

is augmented with a pressure Neumann boundary condition

obtained with a projection of the momentum equation on

the normal direction to the domain), which allows the cor-

rect temporal evolution of the normal pressure-gradient at

the boundaries during the time integration. The equations

are discretized in time using a second-order semi-implicit

scheme which combines a second order backward differen-

tial Euler scheme for the unsteady term, an implicit scheme

for the diffusive term, and an explicit Adams-Bashforth ex-

trapolation for the non-linear convective terms. Its good

stability properties for an advection-diffusion equation have

been shown before by Raspo et al. (2002).

In the radial and axial directions, as boundary layers de-

velop in the meridian plane, a collocation Chebychev approx-

imation is used associated with Gauss-Lobatto collocation.
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Then, for each Fourier mode, the solution (
−→
V , p) is approxi-

mated by Chebyshev polynomials of degree at most equal to

N1 in the radial direction and to N3 in the axial direction.

On the other hand, a standard Fourier-Galerkin approxima-

tion is employed for the solution in the 2π-periodic direction.

We note that N2/2 is the cut off frequency of the Fourier

series.

For the computation of the non-linear terms, a pseudo-

spectral technique is used, specifically. The derivatives in

each direction are calculated in the spectral space and the

products are calculated in the physical space as presented

in the book of Peyret. A FFT algorithm is used to connect

the spectral and the physical spaces. On the other hand, the

implicit diffusive term is evaluated through spectral differ-

entiation matrices.

Finally, for each Fourier mode, a full diagonalization

technique is used to solve a set of 2D uncoupled Helmholtz

and Poisson problems obtained after splitting the Euler

scheme to group the implicit part in the left hand side of

the equations (see a detailed analysis in Serre et al. , 2001).

The LES is performed through a Spectral Vanishing

Viscosity technique (SVV) (see Tadmor ,1989). A second

viscosity term is incorporated in the Helmholtz equations of

velocity prediction. It is build (see below) appropriately to

be only active for high wave numbers of the numerical ap-

proximation not to affect the large scale of the flow and to

stabilise the solution by increasing the dissipation where it

is needed the most: near the cut off frequency.

There is no direct way to extend the SVV operator

created by Tadmor to the 3D case. But following the in-

vestigations of Pasquetti et al. (2002), and Karamanos &

Karniadakis (2000), we choose to define our SVV operator

as follow:

{
∆̃VN = div(grad(VN )×QN )

with QN = diag(Qi
Ni

)
(3)

where VN denotes the approximation of the velocity vector−→
V ; QN denotes the 3D SVV operator that is com-posed

of three 1D SVV operators Qi
Ni

; i = 1, 2, 3 corresponding

to the (r, θ, z) directions respectively. Moreover the 1D

operators are only defined in spectral space as a C∞ smooth

function:





Q̂i
Ni

(ω) =

{
0 0 ≤ ω ≤ ωTi

εNi
× e

−
(

ωci
−ω

ωTi
−ω

)2

ωTi
< ω ≤ ωci

εNi
= O( 1

Ni
)

ωTi
= O(ωci )

0 ≤ ωTi
< ωci

(4)

where εNi
are the maximum of viscosity; ωTi

and ωci are

the threshold after which the viscosity is applied and the

highest frequency calculated in the direction i, respectively.

Because our SVV operator is fully linear, we can group

it with the implicit part of our Helmotz equations (as long

as the parameters aren’t time dependent) to be diagonalized

with the standard viscosity term. The resulting scheme can

be globally written as follow:

Prediction step





∆p∗N = −div(AB2(div(VN ⊗ VN )) in D

−−→
gradp∗N =

{
BDE2(VN )

−AB2(div(VN ⊗ VN ))

− 1
Re

rot(rot(AB2(VN )))

on Γ
(5)





1
Re

∆V ∗N + ∆̃V ∗N =

{
BDE2(VN )

+
−−→
gradp∗N

+AB2(div(VN ⊗ VN )

in D

V ∗N = WN on Γ

(6)

Correction (projection) step

{
∆φN = div(V ∗N ) in D−−→
gradφN = 0 on Γ

(7)

{
V n+1

N = V ∗N −−−→gradφN in D

pn+1
N = p∗N − 2

3δt

−−→
gradφN + ∆φN in D

(8)

where p∗N is our pressure predictor that leads to an esti-

mation of the velocity for the next time step V ∗N that may

not be divergence free, hence the use of the projector φN

to recover the final solution (V n+1
N ,pn+1

N ) of the next time

step. AB2(ψ) and BDE2(ψ) denote the explicit second or-

der Adams-Basforth extrapolation and the implicit second

order backward Differential Euler scheme, respectively, of a

given function ψ.

RESULTS

Re = 4× 105

The flow regime is transitional turbulent, characterized

by a fully turbulent stationary disk layer and a transitional

turbulent rotating disk layer at mid to large radius (see

Fig. 3). SVV computation has been carried out on the

grid (N1, N2, N3) = (121, 180, 65) with a time step δt =

10−4Ω−1. The SVV parameters have been chosen equal

to (ε1, ε2, ε3) = ( 1
2.N1

, 1
N2

, 1
2.N3

) and (ωT1 , ωT2 , ωT3 ) =

(
√

ωc1 ,
√

ωc2 ,
√

ωc3 ) . The statistical data (see Fig. 4) have

been averaged in both time and the homogeneous tangential

direction.

Figure 3: LES results showing coherent structures of the

flow at Re = 4 × 105. Iso-surface of the Q-criterium (Q =

0.03). Transitional turbulent rotor (left) layer with large

spiral arms in the middle, characteristics of the unstable

laminar flow. Turbulent stator (right) layer with much finer

and axisymmetric structures than in the rotor.

The agreement between measurements and computations

is satisfying at Re = 4 × 105. The mean flow (Fig. 4a) is

broadly a Batchelor flow as in the laminar regime, with two

boundary layers separated by a core in solid body rotation.

Indeed, on average, there exists a main flow in the tangen-

tial direction coupled with a secondary flow in the (r, z)

plane. The differences in the thickness and shape of the ra-

dial velocity profile near the two discs suggest that the level

of turbulence is higher in the stator layer than in the rotor

layer as expected at this Reynolds number. The LES com-

putations predicts a mean velocity in the core, V = 0.363r

in very good agreement with experimental measurements

V = 0.353r. The main Reynolds-stress components have

been accurately computed and confirm the presence of a
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fully turbulent stator layer and a still laminar rotor layer

at mid-radius. An examination of the off-diagonal Reynolds

stresses from LES results shows that these normal stresses

are dominant. The two profiles (Fig. 4b) show a satisfying

agreement between numeric and experiment. Let’s notice

however, that the agreement between the maxima in stator

layer is less satisfying, with a LES value smaller (respectively

larger) in the radial direction (respectively in the tangential

direction) than the experimental measurement. As a con-

sequence, the anisotropy of the normal stresses is stronger

in LES than in experiment. As would be inferred from a

stress budget, the normal stress is greatest in the tangen-

tial direction, exceeding by a factor of about 2 those in the

two other directions. However, this anisotropy is shown to

decrease when the turbulence level increases. The location

of the normal stresses maxima is relatively well predicted

within the stator layer for both radial and tangential direc-

tions; at a distance from the stator equal to 0.05h for the

radial component and two times closer 0.025h for the tan-

gential component.

(a)

(b)

Figure 4: Numerical (Black triangles) and experimental

(white circles) statistical data at mid- radius and Re =

4 × 105. All the quanti-ties have been normalized by the

local velocity of the rotor Ω.r. The stator is located at z = 1

and the rotor at z = 0. (a) Mean velocity of radial and tan-

gential components, respectively. (b) Square root of the two

first diagonal components of the Reynolds stress tensor V ′2r

and V ′2
θ

.

Re = 106

The flow regime is now fully turbulent both in the

stator and rotor layers. SVV computation has been car-

ried out on the grid (N1, N2, N3) = (121, 250, 81) with a

time step δt = 5 × 10−5Ω−1. The SVV parameters have

been chosen equal to (ε1, ε2, ε3) = ( 1
2.N1

, 1
N2

, 1
2.N3

) and

(ωT1 , ωT2 , ωT3 ) = (
√

ωc1 ,
√

ωc2 ,
√

ωc3 ) . The statistical data

(see Fig. 5) are still averaged in both time and the ho-

mogeneous tangential direction. The agreement between

measurements and computations at Re = 106 are satisfy-

ing even if less accurate to predict the averaged data than

at Re = 4× 105.
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Figure 5: Numerical (Black triangles) and experimental

(white circles) statistical data at mid-radius and Re = 106.

All the quantities have been normalized by the local veloc-

ity of the rotor Ω.r. The stator is located at z = 1 and the

rotor at z = 0. (a) Mean velocity of radial and tangential

components, respectively. (b) Square root of the two first

normal components of the Reynolds stress tensor V ′2r and

V ′2
θ

.

The differences in the thickness and shape of the mea-

sured main Reynolds-stress components profile near the two

discs suggest that the level of turbulence is equal in the ro-

tor layer and in the stator layer as expected at this Reynolds

number. The LES computations predicts a mean velocity in

the core, V = 0.378r in very good agreement (8.11% smaller)

with experimental measurements V = 0.409r. While the

LES computations predict a level of turbulence 23.85%

higher in the stator than in experiment and a level of turbu-

lence 5.80% smaller in the rotor than in the experiment (see

Fig. 5b). However we have a very satisfying level of turbu-

lence within the core region, and an excellent estimation of

the position of the turbulence peaks, respectively at 0.013h

for both stresses in the stator and at 0.026h in the rotor for
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the experiment and 0.018h for the computation. Those re-

sults at Re = 106 explain while most eddy-viscosity models

fail to capture a correct solution.

Indeed, most eddy viscosity models are based on some as-

sumptions on the turbulent boundary layers. More precisely

they use either the hypothesis of isotropy or of homogeneity

in one direction. But it’s neither the case here. Although

the turbulence statistics and structures are similar for three

dimensional and two dimensional boundary layers (3DTBL

and 2DTBL respectively), there is some major differences

including the magnitude and angle of the shear stress vector

in the layer. Near a wall, we can consider the shear stress

vector in each plane parallel to the wall and study the gap,

δγ , between its angle, γτ , and the angle of the mean gradient

vector, γg (displayed in Fig. 6); and we can study its magni-

tude relative to the turbulence magnitude, measured by the

Townsend structural parameter: a1 = τ/(2k) (displayed in

Fig. 7).

Figure 6: Axial evolutions of the three characteristic angles

in wall units for Re = 106 at r∗ = 0.5 along the rotor side

(left) and along the stator side (right). (—) γm, (- -) γg ,

(-.-) γτ .
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Figure 7: Townsend structural parameter a1 = τ/(2k) on

both disk at different radius for Re = 106.

One characteristics of the three-dimensional turbulent

boundary layer is the reduction of the Townsend structural

parameter a1 = τ/(2k), defined as the ratio of the shear

stress vector magnitude τ to twice the turbulent kinetic en-

ergy k. We have reported in figure 9 the variation at four

radial locations of a1 in wall units z+ in both boundary lay-

ers. We can see clearly a significant reduction below the

limiting value 0.15 for a two-dimensional turbulent bound-

ary layer, with behaviors similar to those reported by Itoh et

al. (1995) and Littell and Eaton (1994) from their measure-

ments. It suggests the three-dimensional turbulent nature of

the flow along the rotor and stator walls. This reduction of

a1 indicates also that the shear stress in this type of flow is

less efficient in extracting turbulence energy from the mean

field. Note that a1 > 0.15 is obtained only very locally on

the inner and outer cylinders.

To fix the three-dimensional nature of the boundary lay-

ers, we display in figure 6 the axial variations of the three

characteristic angles in wall coordinates z+: the mean veloc-

ity angle γm = arctan(Vr/Vθ), the mean gradient velocity

angle γg = arctan( ∂Vr
∂z

/
∂Vθ
∂z

) and the turbulent shear stress

angle γτ = arctan(V ′r .V ′z/V ′
θ
.V ′z ). The profile of γm clearly

shows the continuous change of direction of the mean ve-

locity vector with the distance from the wall, one of the

major characteristics of three-dimensional turbulent bound-

ary layer. The angle remains in the range −1o < γm < 17o

within the Ekman layer and in the range −34o < γm < 1o

within the Bödewadt layer. Another feature of 3DTBL is

that the direction of the Reynolds shear stress vector in

planes parallel with the wall is not aligned with the mean

velocity gradient vector. Such a misalignment is observed in

the present LES on both disks. The lag between γτ and γg

is large towards the boundary layers with a maximum value

about 100o on the rotor to be compared with the value 18o

reported by Lygren and Andersson (2004) in infinite disk

system. In their numerical study of non-stationary 3DTBL,

Coleman et al. (2000) obtained large values of the lag es-

pecially near the wall and inferred it from the slow growth

of the spanwise component of the shear stress. These au-

thors observed also the change of the sign of the gradient

angle γg . Such large values of this lag make the assumption

of eddy-viscosity isotropy to fail for the prediction of such

flows. In the present case, this feature indicates a strong

three-dimensionality with highly distorted flow field result-

ing from the shear induced by rotation over the disks, adding

another complexity in comparison with the idealized config-

uration in Lygren and Andersson (2004).
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Figure 8: Polar plot of the velocity distribution in the whole

gap between the two disks at Re = 106 for different ra-

dius. Comparison between (—) LES results, (-.-) laminar

Von Karman solution, and (- -) DNS results of Lygren and

Andersson (2004).

Some may observe that our Townsend structural param-

eters are closer to the 3BTBL than those of Lygren and

Andersson (2004) while our polar plot (see Fig. 8) is closer

to the laminar case. This behaviour may be explained by the

presence of shrouds in our cavity that add more perturba-

tion to the boundary layers since we have multiple impacts

of different strength and different nature and can generate

all but more anisotropy in the layers. On the other hand,

those ending walls breaks the flow on the disk region near
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the cylinders and thus it frees less space for the flow to aim

at the case of Lygren and Andersson with infinite radial ex-

tension.

CONCLUSION

The authors conduct here a parallel investigation both

experimentally and numerically of shrouded rotor-stator flow

at high Reynolds number up to 106. The highly accurate

computation of turbulent rotating flows within cavity is of

interest for both engineering applications with turbomachi-

naries, and fundamental research, as one of the simplest

cases where the turbulent boundary layers should be three-

dimensional. Such flows are difficult to compute when using

spectrally accurate numerical schemes, this result directly

from the fact that spectral approximations are much less

diffusive than low order ones. Nevertheless the numerical

approach is of Large Eddy Simulation using a 3D spectral

code stabilized with a Spectral Vanishing Viscosity model,

which is, at our knowledge, the first LES result of such kind

of flow providing highly accurate data. Statistical results

agree favorably both with experiments and with previous

alternative works found in the literature. Moreover the au-

thors confirmed that the boundary layers are fully 3D on

both the rotor and the stator, which explains the inaptitude

of eddy-viscosity models that use isotropy or homogeneity

assumptions to provide accurate results on this domain of

Reynolds number.
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