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ABSTRACT

Rapid distortion theory is applied to stratified homo-

geneous turbulence which is sheared in a rotating frame.

Insight into the stabilizing and destabilizing effects of the

combined stratification and frame rotation is gained by con-

sidering initial fields that are two-dimensional (but three-

componential), with the axis of independence aligned with

the direction of the mean shear. For these conditions we

derive solutions for the Fourier components of the flow

variables, and we compute one-point statistics such as the

Reynolds stresses and the structure dimensionality tensor.

The results are in very good agreement with the exact nu-

merical solution for initially three-dimensional isotropic ho-

mogeneous turbulence, especially regarding the large time

behavior, and they could be a reference point for the devel-

opment of turbulence models. We also study the short time

behavior of the 3D initially isotropic case, and we show that

it is mainly dependent on the level of stratification.

INTRODUCTION

The effects of system rotation and stratificationon turbu-

lent shear flows have received considerable attention because

of their relevance to important technological and astrophys-

ical problems. The state of sheared turbulence changes

significantly when it is subjected to frame rotation or strat-

ification. Previous work had clearly shown that rotation or

stratification can act to either stabilize or destabilize tur-

bulent shear flow. In the present study, we use inviscid

Rapid Distortion Theory (RDT) to investigate the evolu-

tion of stratified turbulence in a rotating frame as a function

of the rotation rate (including stable, neutral and unsta-

ble regimes), and examine the sensitivity of the results to
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the level of the stratification of the flow. Under RDT the

non-linear effects resulting from turbulence - turbulence in-

teractions are neglected in the governing equations. RDT is

a closed theory for two-point correlations or spectra, but the

one-point governing equations are, in general, not closed due

to the non-locality of the pressure fluctuations (Townsend,

1976; Savill, 1987; Cambon and Scott, 1999). Simple cases

of rapid deformation often admit closed form solutions for

individual Fourier coefficients.

The few cases where closed-form solutions can be ob-

tained for one-point statistics, like the Reynolds stresses,

offer valuable insight. RDT has been widely used in studying

the effects of rotation (Salhi, 2002; Cambon, 1997; Akylas et

al., 2006; 2007) or stratification (Hanazaki, 2002; Hanazaki

and Hunt, 2004; Galmiche and Hunt, 2002) in sheared tur-

bulence. In this study, we use RDT to examine the combined

effects of rotation and stratification in the case of stratified

turbulence which is sheared in a rotating frame (Fig. 1).

The case studied is of relevance to turbomachinery flows

(for example with internal blade cooling passages) and to

geophysical flows (for example the flow over a hill or bump).

Most recently a connected work has been studied by Salhi

and Cambon (2006), where the rotation was aligned with

the vertical direction. Also Kassinos et al. (2007) studied

in detail a case similar to the one presented here, but con-

sidering the turbulence to be independent of the axis of the

mean flow (x1). The latter explained correctly both the sta-

bility criterion and the asymptotic limits for the unstable

cases. In this study, we extend the last work in a way that

allows for a better comparison with the initially isotropic 3D

case. We solve analytically the RDT equations in spectral

space, for a two-dimensional (2D) but three-componential

(3C) initialization. In this case we take the wave number

vector component k2 = 0 initially, which means that the

initial turbulent field is independent of the x2-axis. The in-

vestigation covers the development of the Reynolds stresses

and the structure dimensionality tensor Dij, introduced by
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Figure 1: Illustration of the general case of stratified sheared

homogeneous turbulence which is examined here.

Kassinos et al. (2001). The combined use of these tensors

allows one to distinguish between the componentality of the

turbulence (described by the Reynolds stress tensor) and

its dimensionality, which has to do with the morphology of

the turbulence eddies, and is described by the structure di-

mensionality tensor Dij . For example if D11 = 0 then the

turbulence is independent of the x1-axis; that is, it consists

of very long structures aligned with the x1 direction.

The initially non-isotropic solutions are compared with

the 3D initially isotropic case (solved using the Particle

Representation Model, PRM, developed by Kassinos and

Reynolds, 1994; 1999), in order to assess their potential as

a simplified qualitative representation. The findings of this

work can be seen as additional information on the trends

of the turbulence that is sheared in a rotating frame. In

addition to the general interest, a strong motivation for

this study arose from our efforts to develop an algebraic

structure-based turbulence model (ASBM), which has been

successfullyused, so far, to compute the characteristics of ro-

tating turbulent channel and boundary layer flow (Kassinos

et al., 2005). The model uses the RDT asymptotic limits as

targets or guidelines, for determining the anisotropy of the

Reynolds stress and structure dimensionality tensors, under

strong deformations, aiming to improve the dependability

and reliability.

LINEAR EQUATIONS

Under inviscid RDT, and using the Boussinesq approxi-

mation, the transport equations for the fluctuating velocity

and density components ui and ρ, become (Kassinos et al.,

2007)

u̇i + Sx2ui,1 = −Su2δi1 − p,i/ρ0 − 2ρgδi2/ρ0 + 2εij3Ω
f uj

ρ̇ = u2ρ0N2/g = u2ρ0S2Ri/g (1)

where S = dU1/dx2 is the mean velocity gradient, Ωf is

the frame rotation rate, g is the gravitational constant, and

ρ0 is the reference density. The Brunt-Vaisala frequency

N2 = −Hg/ρ0, and the dimensionless Richardson number

Ri = N2/S2 = −Hg/S2ρ0, are functions of the mean den-

sity gradient H = dρ/dx2 (Figure 1). Using the Rogallo

(1981) transformation we set

ξ1 = x1 − x2St, ξ2 = x2 , ξ3 = x3, τ = t, (2)

and (1) transforms to

∂ui/∂τ = −δi1Su2 − (∂p/∂ξi − δi2Sτ∂p/∂ξ1)/ρ0

− δi2ρg/ρ0 + 2εij3Ωf uj (3)

∂ρ/∂τ = u2ρ0S2Ri/g

Through (3), the Fourier transformed variables (denoted

with )̂ read

dûi/dτ = −δi1Sû2 + ip̂ki/ρ0 − δi2ρ̂g/ρ0 + 2εij3Ω
f ûj

dρ̂/dτ = û2ρ0S2Ri/g (4)

where the wave numbers evolve as ki = k0
i − δi2Sτk1, (the

superscript 0 denotes initial values). Applying the Fourier

transformed continuity equation kiûi = 0 in (4), we solve

for the pressure

ik2 p̂/ρ0 = (2Sk1û2 − 2Ωf k1 û2 + k2ρ̂g/ρ0 + 2Ωf k2 û1) (5)

and by substituting into the system (4), this simplifies to

dûi

dβ
=

[
(2− n)k1ki

k2
− δi1

]
û2 +

ηk2kiû1

k2
+ ηεij3 ûj

+

(
k2ki

k2
− δi2

)
ρ̂g

Sρ0
(6)

dρ̂

dβ
=

ρ0SRi

g
û2

where k2 = k2
1+k2

2+k2
3 , β = St (total shear) and η = 2Ωf /S.

The above system (6) can be solved analytically for simpli-

fied cases where either k0
1 or k0

2 or k0
3 equal zero, that is the

turbulence is initially independent on one direction. This is

equivalent with the derivation of 2D information from the

one-dimensional energy spectra when multiplied by proper

length scales (see Townsend, 1976). As mentioned, Kassinos

et al. (2007), have solved the above system for a two dimen-

sional (2D) turbulence, independent of the flow direction x1,

with ui = ui(x2, x3) for i = 1,2,3, that is for k1 = 0. That

solution explained accurately the stability criterion for the

TKE evolution, through the sign of the combined stability

parameter

Z = B − Ri (7)

where B = η(1 − η) is the Bradshaw(1969)-Pedley(1969)

stability parameter, and Ri = −Hg/S2ρ0 is the Richard-

son number. Furthermore, that solution described well

the asymptotic behavior of the unstable (corresponding to

Z > 0) cases. However, the stable and neutral regimes have

not been described accurately so far.

In this study, we consider a more appropriate, initially

three-component (3C) but two-dimensional (2D) turbulence,

independent of the scalar gradient direction x2, with ui =

ui(x1, x3) for i = 1,2,3. Note that for this initialization, the

3-dimensionality is recovered since there is formation of the

wave number component k2 = −k1β which becomes domi-

nant at large times. As will be shown this solution coincides

at large times with the behavior of the 3D initially isotropic

case. In order to complete the picture, we also calculate the

approximate behavior of the 3D initially isotropic case ex-

panding the Fourier components over β, for short times, as

follows.
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3D EXPANSION FOR SHORT TIMES

The Fourier components of the velocity and density fields

in (6) are expanded as follows

ûi(β) =
∞∑

p=0

ûipβp ρ̂(β) =
∞∑

p=0

ρ̂pβp (8)

Solving (6) to order 3 in β, we analytically compute the ûip

and ρ̂p for p = 1, 2 and 3, and then we integrate the 3D

spectra

Eij(k,β) =
1

2
ûiû∗

j + ûj û∗
i Φρ

j (k, β) =
1

2
ρ̂û∗

j + ûj ρ̂∗ (9)

over all the wave numbers in order to compute the stresses

and the density fluxes. The initial 3D isotropic velocity spec-

trum is given by

Eij(k, 0) =
E(k0,0)

4πk2
0

(
δij −

k0
i k0

j

k0
2

)
(10)

while, for convenience, we consider in this study that the

initial density perturbations are zero. We should note here,

however, that this is a major point since the presence of

initial density fluctuations can modify the behavior at short

times significantly. The investigation of the dependence of

the solution on the initial ratio of the TKE to the potential

energy is a future task. By setting ρ̂(0) = 0, the solutions

for the normal stress components become

R11

q2
0

=
1

3
−

(28η + 7Ri − 20)

210
β2 + O(β4)

R22

q2
0

=
1

3
+

2(7η − 14Ri− 2)

105
β2 + O(β4) (11)

R33

q2
0

=
1

3
−

(7Ri − 16)

210
β2 + O(β4)

where the dependence on both Ri and η is present, although

not through the combined parameter Z. After the summa-

tion of the above relations we find that the initial evolution

of the turbulent kinetic energy is mainly driven by the level

of the stratification, since it is described by

q2

q2
0

= 1−
(5Ri − 2)

15
β2 + O(β4) (12)

This result determines a critical value of Ri that charac-

terizes a strongly stable regime (inside the generally stable

cases for Z < 0), where the turbulent kinetic energy shows

a diminishing stable behavior from the initial times. More

specifically, for Ri > 0.4 the initially isotropic case starts

with a decreasing kinetic energy, while for Ri < 0.4, inde-

pendently on the value of η, the turbulent kinetic energy

shows an initial growth (unstable case). Continuing with

the shear stresses and the buoyancy term, we find that they

equal

R12

q2
0

=
−2

15
β +

(22η2 − 16η − 21ηRi + 14Ri)

315
β3 + O(β4)

(13)

g

ρ0SRi

ρu2

q2
0

=
1

3
β −

(7η2 − 28η + 56Ri + 12)

315
β3 + O(β4)

Coupling the above terms with the TKE evolution equation

dq2

dβ
= −2R12 − 2

g

ρ0S
ρu2 (14)

we find that the TKE evolves as

q2

q2
0

= 1 −
5Ri − 2

15
β2 −

(
η2(22− 7Ri)− η(16− 7Ri)

630

+
2Ri − 56Ri2

630

)
β4 + O(β5) (15)

As a result, we still notice that even though a secondary

dependence on η appears in (15), the main dependence still

is on the value of Ri, as described above. At the limit of

Ri = 0.4, however, the value of η determines the initial

destabilization through the sign of the term [η2(22− 7Ri)−
η(16 − 7Ri) + 2Ri − 56Ri2]. Thus, as shown in Fig. 2,

for values of −0.39 < η < 1.08, the TKE initially grows

(although Z is less than zero).

-4
-3
-2
-1
0
1
2
3
4

0 0.2 0.4 0.6 0.8β

10
3

x 
 lo

g
 (

 q
2

 / q
0

2
 )

Figure 2: Short time evolution of the TKE for the 3D ini-

tially isotropic case, with η = −0.5 and Ri = 0.15 (solid

line), η = 0.5 and Ri = 0.55 (long dashed), η = −0.5 and

Ri = 0.4 (short dashed), and η = −0.25 and Ri = 0.4 (dot-

ted dashed).

ANALYTICAL SOLUTION FOR k2(0) = 0

By setting k2 = 0 we introduce a 2D (but 3C) initializa-

tion, where the turbulence is initially independent of the x2

direction. In this case the turbulence establishes the de-

pendence on the third direction due to the formation of

k2 = −k1β, which dominates the solution for large times.

For this specific choice of k2(0) = 0, the 3D system (6) sim-

plifies to

dû1

dβ
=

(2− η)k2
1 − (1− η)k2

k2
û2 −

ηk2
1β

k2
û1 −

k2
1β

k2

gρ̂

Sρ0

dû2

dβ
=

(η − 2)k2
1β

k2
û2 − η

k2
1 + k2

3

k2
û1 −

k2
1 + k2

3

k2

gρ̂

Sρ0
(16)

dû3

dβ
=

(2− η)k1k3

k2
û2 −

ηk1k3β

k2
û1 −

k1k3β

k2

gρ̂

Sρ0

dρ̂

dβ
=

ρ0SRi

g
û2

where the magnitude of the wave number reduces to k2 =

k2
1(1 + β2) + k2

3 . Setting in cylindrical coordinates k1 =

k0 cos θ, k3 = k0 sin θ (where k0 =
√

k2
1 + k2

3), and as-

suming zero initial density fluctuations ρ̂0 = 0, we find the

homogenized form

(1 + β2 cos2 θ)
d2 û2

dβ2
= −4β cos2 θ

dû2

dβ

+ [Z − (η + 1)(2− η) cos2 θ]û2 (17)

dû2

dβ

∣∣∣∣
β=0

= −ηû0
1

where the superscript 0 denotes initial values. Clearly the

solution of (16-17) depends on the value of Z. As shown by

Kassinos et al. (2007) from their 2D analysis with k1 = 0,

1265



positive values of this parameter correspond to unstable

cases, resulting in an exponential turbulent kinetic energy

TKE growth, while negative values cause a stabilizing be-

havior. Regarding this stability criterion, a similar result

can also be correctly obtained using a simplified 1D pres-

sureless analysis with k1 = k2 = 0 (Speziale and Mac Giolla

Mhuiris, 1989, Kassinos et al., 2007). However in this study,

we obtain solutions which maintain the 3D character of the

turbulence and thus, they are more accurate, especially re-

garding the behavior of the turbulence at neutral and stable

cases (Z ≤ 0). Solving (16-17), we obtain the evolution of

the Fourier coefficients of the density and the velocity com-

ponents

û1 = β(1 + (2 − η) cos2 θ)

× F [3/4− α,3/4 + α; 3/2;−β2 cos2 θ]û0
2

+ (1 − β2η cos2 θF [5/4− a, 5/4 + a; 3/2;−β2 cos2 θ])û0
1

+ [3/4 + 8/3α2(−5 + 8α2)]β3 cos4 θ

×
F [7/4− α,7/4 + α; 5/2;−β2 cos2 θ]

−1 + 16α2
û0
2

+ 4(η − η2) tan2 θ

×
−1 + F [1/4− α,1/4 + α, 1/2,−β2 cos2 θ]

−1 + 16α2
û0
1

û2 = F [3/4− α, 3/4 + α; 1/2;−β2 cos2 θ]û2 (18)

− ηβF [5/4− α,5/4 + α; 3/2;−β2 cos2 θ]û1

û3 = cot θ(βû2 − û1)

g

Riρ0S
ρ̂ = βF [3/4− α, 3/4 + α; 3/2;−β2 cos2 θ]û2

− 4η sec2 θ
F [1/4− α,1/4 + α; 1/2;−β2 cos2 θ]

−1 + 16α2
û1

where F is the generalized hypergeometric function, with

the parameter α given by

α =

√
4Z sec2 θ + (2η − 1)2

4
(19)

From (19) it becomes clear that for positive values of Z

the parameter α is a real number, resulting in exponential

increase of the TKE, while when Z is negative α is a com-

plex number resulting in a stabilizing oscillatory behavior.

For the neutral cases when Z = 0 then α = 2η−1
4

, and

the Fourier components show algebraic behavior on β, de-

pending on the value of η. The limit of the above solutions

(18) when θ → π/2, is identical to the pressureless analysis

limit (d33 = 1), where the solutions become proportional

to exp(Zβ). However the contribution of the whole range

of θ must be taken into account. More specifically, as the

solution departs from the most energetic mode at π/2 the

values of the Fourier coefficients are distributed symmetri-

cally around π/2 towards θ = 0 or θ = 2π, where k3 = 0.

The solution there becomes independent of the rotation rate,

and depends only on Ri in agreement with the principle of

material indifference (Speziale, 1981) for 2D turbulence in-

dependent of the direction of the frame rotation (d33 = 0).

EVOLUTION OF THE STRUCTURE TENSORS AND THE

TKE

From equations (18) we calculate the evolution of the ve-

locity spectra Eij ∼ ûiûj and we integrate over all the wave

number space to find the stresses, the structure dimension-

ality tensor components, and the TKE. We make use of two

different initializations, namely a vortical and a jetal initial

velocity spectrum (Kassinos et al., 2001; Akylas et al. 2007).

More specifically, in the vortical case the componentality of

the initially 2D turbulence is isotropic in planes perpendicu-

lar to the axis of independence (x2 in our case). In this case,

the vortical 2D-2C spectrum is given by (see also Cambon

et al., 1997)

Evor
ij =

E(k,0)

2πk
δ(k2)

(
δij −

kikj

k2
− δi2δj2

)
(20)

In contrast, when the initial turbulence is completely jetal,

all the velocity fluctuations are in the direction of the axis of

independence. The corresponding initial 2D-1C jetal spec-

trum is

Ejet
ij =

E(k, 0)

2πk
δi2δj2 (21)

In the relations (20) and (21) the initial turbulent kinetic

energy spectrum satisfies

∫ ∞

k=0
E(k,0)dk =

q2
0

2
=

Rnn

2
(22)

Because of the linearity of the governing equations, the so-

lutions for the initially jetal 2D-1C and the vortical 2D-2C

cases can be superposed to produce Rij and Dij for vari-

ous 2D-3C initial fields, consisting of uncorrelated jets and

vortices (Kassinos et al., 2001; Akylas et al., 2007).

In Fig. 3 we present a comparison between the TKE evo-

lution calculated from the spectral solutions derived here,

for a (2/3− 1/3) weighted superposition between the vorti-

cal and the jetal initializations, and the numerical solution

of the 3D-3C initially isotropic case. The latter has been

calculated using the PRM (Kassinos and Reynolds, 1994,

1999), with large enough number of particles to ensure the

accuracy of the solution. As shown in Fig.3 the evolution

of the TKE from the initially 2D approach, coincides fairly

well with the 3D initially isotropic case. The 2D initializa-

tion explains accurately the type (algebraic or exponential)

of the TKE growth, identifying Z as the principal parameter

for the determination of the stability of the turbulent flow.

Starting with the unstable case with η = 0.2 and Ri = 0.08,

we notice the profound exponential evolution with time. An

increase of Ri to 0.16, resulting in Z = 0, causes a depar-

ture from exponential towards a polynomial growth, while

a further increase of Ri to 0.24 stabilizes the TKE. Also,

a combination of η = −0.1 (which tends to stabilize) and

Ri = −0.11 (which tends to destabilize the TKE) resulting

in Z = 0, again produces a neutral, polynomial growth of

the TKE with respect to time.

In Figs. 4-7 the evolution of the normalized stress com-

ponents rij is illustrated for all the above mentioned cases,

and compared with the respective 3D-PRM exact numerical

solutions. Besides differences at short times, which are due

to the different initialization, it is profound that the limiting

states reached by the analytical 2D solution are in excellent

agreement with the corresponding limiting states obtained

numerically (PRM) for initially 3D isotropic turbulence. Es-

pecially for the neutral and the stable cases, where the initial

3D behavior is crucial, this agreement was not observed in

the case of 2D turbulence independent of x1 (Kassinos et al.,

2007).

The same very good agreement in the limiting states is

obtained for dij as illustrated in Figs. 8-11. For the un-

stable regime (Z > 0), the d11 component tends quickly to

zero. For such cases the 3C-2D asymptotic states of the tur-

bulence have been explained by Kassinos et al. (2007), with

their simplified 2D solution with d11 = 0. However, for the
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Figure 3: Evolution of the TKE for the cases with η = 0.2

and for various values of Ri equal to: Ri=0.08 (unsta-

ble: thin continuous, solid circles), Ri=0.16 (neutral: short

dashed, open circles), Ri=0.24 (stable: short dashed, open

triangles), as well as the case with η = −0.1 and Ri = −0.11

(neutral: long dashed, solid triangles) calculated from the

3D initially isotropic exact PRM numerical solution (sym-

bols) and the initially 2D solution with k2(0) = 0 (lines).
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Figure 4: Evolution of the normalized stress components 11

(continuous, solid circles), 22 (short dashed, solid triangles),

33 (long dashed, open circles) and 12 (dotted dashed, open

triangles) calculated from the 3D initially isotropic exact

PRM numerical solution (symbols) and the 2D analytical

solution with k1 = 0 (lines) presented here, for the unstable

case with η = 0.2, Ri = 0.08 and Z = 0.08.
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Figure 5: As in figure 4, for the neutral case with η = 0.2,

Ri = 0.16 and Z = 0.

neutral and unstable cases, when Z ≤ 0, the initially 3D

character of the turbulence becomes more important. For

such cases that previous study did not find accurate results.

By comparison, the new 2D initialization introduced here

(with k2 = 0), provides a very good description of the evo-

lution of the initially isotropic case. The investigation of the

velocity spectra in order to derive analytical information on

the exact dependence of the stresses and the structure of the

turbulence at large values of total shear is a future task.

CONCLUSIONS

Analytical solutions have been derived for the evolution

of the turbulent spectra in the case of stratified sheared tur-
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0 10 20 30β
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Figure 6: As in figure 4, for the stable case with η = 0.2,

Ri = 0.24 and Z = −0.08.
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Figure 7: As in figure 4, for the neutral case with η = −0.1,

Ri = −0.11 and Z = 0.
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Figure 8: As in figure 4, but for the normalized structure

tensor components.
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Figure 9: As in figure 5, but for the normalized structure

tensor components.

bulence in a rotating frame. We have investigated the short

time behavior of the initially 3D isotropic field and we show

that it is mainly dependent on the value of the Ri number.

For Ri > 0.4 the initially isotropic case starts with a decreas-

ing kinetic energy, while for Ri < 0.4 the turbulent kinetic

energy shows immediate growth, independently of the value

of η.

In order to complete the picture, and describe the behav-

ior of turbulence at large times, we also derived solutions for

the case where the turbulence is initially independent of the

axis of the density gradient. Unlike a more simplified previ-

ous work, the new solutions recover the 3D dependence and
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Figure 10: As in figure 6, but for the normalized structure

tensor components.
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Figure 11: As in figure 7, but for the normalized structure

tensor components.

they show impressive agreement with the initially isotropic

case, especially in terms of the asymptotic states of the tur-

bulent fields. More specifically, it seems that for the unstable

cases the characteristics of the initially isotropic solution are

captured quite accurately when the initial turbulence is in-

dependent of the flow direction(x1). For the neutral and the

stable regime though, the initial dependence of the turbu-

lence on the axis of the mean flow (x1) is also crucial, since

the 3D-3C character of the turbulence at early times is im-

portant for the evolution of the kinetic energy, unlike in the

unstable cases.
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