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ABSTRACT 
This paper discusses phenomena resulting from the 

interaction of turbulent flow, chemical species transport and 
particle formation encountered in problems such as soot 
formation and precipitation from solution. Such problems 
must be described by a combination of Navier-Stokes 
equations, scalar transport and reaction, and population 
balance equations (PBE) for the polydispersed particle 
phase. The latter was originally studied in a homogeneous 
environment, and first attempts at simulating flow problems 
with it assumed a straightforward coupling accomplished 
through conventional turbulence models within CFD codes. 
It is shown that this coupling gives rise to complex non-
linear interactions resulting in terms that are unclosed under 
Reynolds averaging. Subsequently, a transported pdf 
formulation of the problem is proposed that overcomes 
these closure problems. 

 
INTRODUCTION 

The formation of a particulate phase through reaction in 
a gaseous or liquid environment is an important problem, 
both from the scientific and the applied point of view. 
Relevant industrial problems include the formation of soot 
particles in combustion engines (whose mitigation is an 
important environmental problem), of industrial 
nanoparticles via flame synthesis, and the precipitation of 
crystalline products in liquid-phase reactors. 

For polydispersed particulates, the particle size 
distribution (PSD) essentially enters the analysis, both 
because it is an important property of the final product and 
because it is an essential variable of the model, on which 
important processes such as the growth rate depend. The 
PSD is described by the number density, N(φ1,φ2,…φK,), 
where the φk variables describe the state of the particle (size, 
surface area etc. – in this work we shall use only particle 
volume, υ), and N is the number of particles lying within a 
differentially small increment of φk per unit of φk . 

Initially studies of polydispersed aerosols studied the 
PBE on its own; it was assumed that the hydrodynamic and 
chemical environment would be homogenised via intense 
turbulence. Most particulate processes, however, occur 
within a strongly heterogeneous environment. The coupling 
between the PBE and the equations of fluid dynamics and 
scalar advection has started to be explored relatively 
recently. 

 
Most computational studies so far have sought to 

combine the PBE with a commercial CFD code. Such 
approaches proceed through discretising the PBE in the 
particle size domain, and subsequently treat the resulting 
equations for the discretised variables as additional scalars 
in the CFD code. While this approach seems intuitive and is 
indeed correct in a laminar flow, in a turbulent flow the 
coupling of turbulence, scalar transport/reaction and particle 
formation gives rise to several unique problems, as will be 
demonstrated below. 

Early works (Drake, 1972; Friedlander, 2000) identified 
the need for closure in the PBE (or General Dynamic 
Equation, GDE, in the aerosol literature) in turbulent flows; 
however, no steps were taken at the time and it remained an 
unresolved problem. More recently, Baldyga and Orciuch 
(1997) employed a moment transformation of the PSD in 
conjunction with a presumed-shape pdf of the chemical 
species. Other researchers have pursued closure via 
transporting the joint species-moments pdf (Kollmann et al., 
1994); and the Direct Quadrature Method of Moments 
(McGraw, 1994). Methods of moments proceed by means 
of an integral transformation of the PSD and predict its 
moments, which correspond to physical properties such as 
total number and mass. 

In this work we attempt a full PDF closure of the 
equation. We do this introducing the joint pdf of both 
reactive scalars and particle number density and deriving a 
transport equation for it. It will be demonstrated that this 
approach overcomes the need for closure of the 
nucleation/growth terms, as well as being able to predict the 
full PSD. On the other hand, introduces a number of 
additional independent variables. However the problem is 
still tractable by means of a Monte-Carlo method. The 
objective of this paper is to formulate the pdf equations and 
demonstrate the existence and extent of the fluctuations 
induced. 

 
REYNOLDS AVERAGING OF THE POPULATION 
BALANCE EQUATION 

Let as assume that a turbulent flow is advecting several 
chemically reactive species, with potential to form a 
polydispersed aerosol. To view the problem in its simplest 
form we will assume incompressibility, no heat release 
(therefore no thermochemical coupling), uniform transport 
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properties and that the particles are small enough to follow 
the flow without differential drag force effects. Simplified 
though it may seem, this formulation can nevertheless 
describe practical problems such as the precipitation of solid 
particles in a liquid solution, a process used in the 
manufacture of crystalline products and pharmaceuticals. 
The basic equations are: 

0⋅ =∇ u  (1) 
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This is the species transport equation, where Yi denotes 
the chemical species’ mass fractions while the last term is 
the reaction source. Finally, we have the population balance 
equation (PBE), written as: 
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This is a transport equation for particle number density, 
N(υ;x,t). As the particles are polydispersed, a measure of 
particle size is required and here we are using the particle 
volume, υ; alternatively, mass can be also used, assuming 
uniform particle density. (Note that the use of a linear 
measure, such as diameter or radius, is not recommended 
for problems involving aggregation, which is a 
mass/volume conserving process, and while we will not 
study aggregation here, the approach to be developed 
anticipates application to aggregation processes). In a non-
homogeneous hydrodynamic environment, number density 
is also going to be a field variable of space and time. Thus 
all x, t and υ are dimensions of N, the first two denoting 
physical space/time, the last one phase space. Higher 
dimensional phase spaces have also been employed (to 
denote e.g. surface area or structure of particles) but for 
simplicity we will deal here with an 1-D phase space. 
Integration over the phase space yields the concentration of 
particles at any point in space/time (first moment): 

0

( , ) ( ; , )M t N t d
υ

υ υ
∞

= ∫x x  (5) 

For non-aggregating (or breaking) particles, the main 
processes affecting number density are: 
- Convection/diffusion in physical space. 
- Transport in phase space by means of growth or size 

reduction (e.g. particle growth via surface reactions, 
droplet condensation). This term is placed on the lhs of 
the PBE as it is of a convective nature (first-order 
derivative with respect to particle size). Growth rate is 
typically a function of the local composition, as the 
solution or vapour must be supersaturated to induce 
growth. It is also a function of the particle volume. 

- Nucleation, which contributes a source of particles at 
the nuclei size, υ0. Like growth it is expressed by a 

function of the local concentration/mass fractions; 
furthermore it is represented by a delta function 
because it contributes particles only at υ0. 

This equation has been studied extensively in the 
literature assuming a homogeneous environment, where 
N=N(υ;t), or, more recently, in laminar flows. In a turbulent 
flow, however, N(υ;x,t) is going to be a random variable, 
like everything else. If this randomness were due to the 
advection/diffusion processes alone, it could be treated by a 
straightforward extension of the techniques employed for 
scalar transport. More careful examination, however, 
reveals that it is not so. 

The Reynolds decomposition of the number density is: 

( , , ) ( , , ) '( , , )N t N t Nυ υ υ= +x x tx   (6) 

Let us now perform the Reynolds averaging on the PBE. 
Note that, in the interest of brevity, the spatial/temporal 
dependency of the number density will not be explicitly 
written from now on. 
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The first term needs no further treatment: 
NN

t t
∂∂

=
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  (8) 

The second term, representing advection in physical 
space, gives rise to non-zero correlations, as we see below: 
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Assuming that the particles are small and of zero inertia, 
this term can be treated in a manner similar to passive scalar 
advection, i.e. by the introduction of an eddy diffusivity: 

' pN ν⋅ = −∇ u' N∇  (10) 

The term representing particle diffusion can also be 
dealt with in a straightforward manner: 

2 2
p pD N D N=∇ ∇  (11) 

Coming to the growth term, if there is no dependency 
on the local species’ mass fractions then there is no closure 
problem, as can be readily seen: 
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Usually, however, growth depends on the local values 
of the reactive scalars. Two cases can now be identified: 

i) Size-independent growth with environment 
dependence. Size-independent growth can be physically 
possible when a linear measure of particle size is employed, 
under an assumption sometimes made in crystallization 
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processes known as McCabe’s rule. If particle volume is 
employed, it can be easily seen that linear size-independent 
growth is volume-dependent (as ). Assume only one 
reactive scalar for simplicity: 

3lv ≈
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The nature of the problem is similar to that encountered 
in turbulent reactive flows. Growth is usually a non-linear 
function of the scalars, so  

( ') ( ) (G Y Y G Y G Y+ ≠ + ')  (14) 

 Thus: 
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Both terms would require a closure hypothesis, as there 
is no straightforward way of computing ( )G Y , let alone 

the correlation ( ) 'G Y N⋅ . 

ii) Size-dependent growth with environmental 
dependence. This is the most complex case. Proceeding as 
before: 
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Once again, all terms require closure and there is no 

straightforward way of providing it.  
The nucleation rate, in general, depends on the 

environment. This term can be written as: 

0( ) ( ) ( ) ( )B Y B Y 0δ υ υ δ υ υ⋅ − = ⋅ −  (17) 

The nucleation rate is usually a strongly non-linear 
function of the local concentrations. Especially in soot 
modelling, nucleation rates can assume very complex 
functional forms. Clearly the term cannot be elaborated any 
further, as the term ( )B Y  needs closure. 

 
PDF FORMULATION 

The previous section has clearly demonstrated that 
application of Reynolds averaging to the equations of 
particle formation/coagulation in turbulent flow results in a 
multitude of unclosed terms, which there is no 
straightforward way to model. In this section we will derive 
a PDF formulation for turbulent reactive flow with particle 

formation, and show that these terms are naturally closed 
under this viewpoint.  

Suppose that a reactive mixture of species with mass 
fractions Ya and particles of various sizes – the measure of 
particle size used here is particle volume, υi - characterised 
by a number density N with values N(υi) at each υi, is 
present in a turbulent flow field. We would like to define 
the pdf of number density. To do this, it is necessary to 
determine whether the pdf will correspond to one or many 
values of the particle size. If only one-size pdfs were to be 
predicted, we would have no way of estimating the expected 
PSD at any point, for we would not know the correlation 
between number densities of different sizes. Therefore, we 
introduce the joint pdf of reactive scalars and particle 
number density at all sizes: 

1 2 1 2( , ) ( , , ) ( , ,..., , , ,..., ; , )i mY t N t f y y y n n n tυ →x x xn

 (18) 
The transport equation for the pdf will be derived by 

means of the fine-grained density, a concept introduced by 
Lundgren (1967): 
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The fine-grained density can be interpreted as the 
probability that, in a particular realisation of the flow, the 
scalars and number densities will assume values around ya 
and ni, respectively. The pdf is then obtained by ensemble 
averaging the fine-grained density: 

f F=   (20) 

The transport equation we seek can, therefore, be 
obtained by taking the time derivative of the fine-grained 
density and subsequently averaging. The first step yields:  
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To proceed, we need a number of differential equations 
of the form: 
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The first set are provided by the species transport 
equations (eqs. 3). The second must be provided for the 
PBE which is, however, a transport equation for a 
continuous function of particle volume. To circumvent this 
obstacle, we first discretise the PBE in the particle volume 
domain, thus converting it into a set of PDEs in terms of the 
values nodal values of the number density. Several 
discretisation schemes have been proposed in the literature 
for the solution of the homogeneous PBE and they can be 
adapted for our purpose. The scheme employed here is due 
to Rigopoulos and Jones (2003) and results in discretised 
equations of the form: 
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where: 
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We will now proceed to show that the new formulation 
overcomes all of the closure issues associated with RANS 
closures. Particles and species’ convection in physical space 
can be shown to yield: 
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and can therefore be treated with a gradient transport 
hypothesis. The diffusion term can be decomposed into a 
term representing diffusional transport of the pdf in physical 
space, usually negligible compared with turbulent transport, 
and micromixing. Modelling of micromixing in pdf 
methods is largely an unresolved problem, and several 
reviews have been devoted to it (e.g. Kollmann, 1995). It is 
likely that additional considerations may be required for 
particle transport; here, however, we will employ the 
simplest micromixing model, the Linear Mean Square 
Closure (LMSE). The chemical reaction term appears in 
closed form (O’Brien, 1980). 

It remains now to prove that the growth and nucleation 
terms are closed. The former can be written as: 
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The growth term is thus closed, regardless of the growth 

mechanism (i.e. the function G(Y,υ)), even if the latter 
depends on both the species’ concentrations and particle 
size. This is a major advantage of the new pdf formulation. 
For the nucleation, we have: 
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Like growth, this term is also closed and does not 

require further treatment. The joint size-species pdf 
transport equation is a PDE whose dimensions include: 
[number of size classes] + [number of species] + [space, 
time]. Clearly numerical solution with conventional 
methods (e.g. finite difference) must be excluded, as such 
methods scale exponentially with the dimensionality of the 
problem, and stochastic simulation (Monte-Carlo) methods 
must be pursued. Such methods have been devised for 

turbulent reactive flows and have been applied mainly to 
combustion problems (see e.g. Pope, 1985). It is anticipated 
that their extension will allow the computation of this this 
problem. In what follows, a stochastic method will be 
developed for solution of a simplified form of the pdf. 

 
PRECIPITATION IN A PARTIALLY STIRRED 
REACTOR 

To demonstrate the above, we will employ the concept 
of a partially-stirred reactor (PSR). This is a system where 
the mean values of the convected scalars are uniform 
throughout, but not necessarily mixed at the molecular 
level. Such a state could occur if the turbulence is intense 
enough to homogenize the mixture at the macro level, but 
the micromixing timescale is not too short compared with 
the residence time. Such a system is an ideal test-bed for the 
method, because it provides us with the opportunity to test 
the new elements of the PDF method and to focus on the 
concentration-particle formation coupling, isolating it from 
the flow field whose computation can be performed in the 
same way as with other PDF methods. 

The PDF transport equation describing the PSR can be 
derived from the full PDF transport equation by integrating 
over space (Chen, 1997). The final equation is shown 
below: 
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where τres is the mean residence time and fin the pdf of 
the input to the reactor. The only closure model required is a 
micromixing model, and here we will employ the simplest 
one, namely the Linear Mean Square Estimation (LMSE), 
(1975).  

The reaction/particle formation system selected for the 
test case is the formation of CaCO3 via reactive 
precipitation of Ca(OH)2 and CO2(aq). It is a good model 
system with simple kinetics that exhibits interesting 
behaviour. The kinetic data employed here is documented in 
Astarita (1967) and are summarised in table 1, together with 
the other parameters of the simulation. Ca(OH)2 is 
instantaneously dissocated into Ca++ and 2OH-. 
Subsequently, the following reactions occur: 
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The last step, corresponding to particle formation, is 
described kinetically by the nucleation and growth 
functions, which are: 

2
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where Gl is the increase in particle radius, from which 
the volumetric growth rate can be calculated, kg is a kinetic 
constant and Ksp is the solubility product. 

 
Table 1: Kinetic data and parameters of the simulation. 
 

Parameter Value 
Ki, Equilb. const. of reaction [i] (m3 mol-1) 6.1x104

Kii, Equilb. const. of reaction [ii] (m3 mol-1) 5.88 
ki, kinetic const. of reaction [i] (mol-1 m3 s-1) 5.0 
kii, kinetic const. of reaction [ii] (mol-1 m3 s-1) 1x104

Ksp, solubility product (mol2 m-6) 0.0047 
kg, growth constant (m/s) 6.2x10-11

kn, nucleation constant (s-1) 7.5x106

No. of nodes in particle size mesh 200 
No. of particles 2000 
τres, residence time (s) 1x10-3

dt, time step (s) 0.01x τres,

 
To demonstrate the effects of turbulence-chemistry 

interaction in particle formation, the following levels of 
closure will be investigated, in increasing level of 
complexity: 

• The joint pdf of species is calculated, but the 
particle formation terms are calculated on the basis 
of average number density. All correlations are 
thus neglected. 

• The joint pdf of species is calculated, and with its 
aid the mean nucleation and growth terms are 
being averaged. In this model, correlations due to 
nonlinearities in the nucleation and growth 
functions ( ( ) , ( )G Y B Y ) are accounted for. 

However, the growth – number density correlations 
( ( ) 'G Y N⋅ ) are neglected. 

• The full species-number density pdf that was 
derived here is calculated. 

The PSR is simulated by means of a Monte Carlo 
method. The statistics of the PSR are represented by an 
ensemble of stochastic particles. The PSR pdf equation is 
factorised into fractional steps for inflow/outflow, mixing, 
reaction and population balance. Inflow/outflow is 
simulated stochastically by removing a number of entities 
randomly selected, and inserting an equal number of entities 
featuring the input concentrations. 

The main factor that determines the effect of mixing on 
the PSD is the ratio of the mixing timescale to a 
characteristic fluid dynamic timescale which, for the PSR, is 
the residence time (Chen, 1997). If mixing is instantaneous 
compared to the residence time, the reactor will be nearly 
homogeneous and the species/particle concentrations will 

approach the average with all methods; otherwise, 
fluctuations are expected. Therefore a number of 
simulations were performed with varying ratios of 
mixing/residence time. 

Figs. 1-3 show the mean particle size for each mixing 
timescale computed with all three methods, for three 
different initial concentrations of reactants. In all cases, as 
expected, the three methods coincide when τmix/τres<< 1. At 
τmix/τres>0.1, however, significant deviations appear. When 
only the correlations resulting from the terms 

( ) , ( )G Y B Y  are accounted for, the deviations are often 

higher than when with the full method and in the opposite 
direction. In fig. 3 we see that, for the lower initial 
concentration, the first two methods coincide, but the full 
species-number density pdf method deviates, indicating that 
only the correlations ( ) 'G Y N⋅  are important here. 

Clearly the strong non-linear interactions between 
turbulence, reactive scalars and number density have a 
strong and unpredictable effect on the mean particle size 
that cannot be neglected unless mixing is too fast. Finally, 
fig. 4 shows a comparison of the mass density distribution - 
υN(υ) - where the deviations are much more pronounced, 
due to the heavier weighting of the larger particles. Such 
deviations have a profound impact both on the mean particle 
size and on the quality of the product. 

 
CONCLUSIONS 

In problems involving chemical reaction and particle 
formation in a turbulent flow significant correlations appear 
in the population balance equation if dealt with a 
straightforward RANS approach, due to the non-linearity of 
the nucleation and growth terms. A new method based on a 
transport equation for the joint species-number density pdf 
was developed and it was shown that the terms giving rise 
to these correlations are closed under that formulation. The 
method was demonstrated by means of a Partially Stirred 
Reactor (PSR) and it was shown that, when the mixing 
timescale is of a similar order to the characteristic fluid 
dynamic timescale, significant deviations can occur in the 
PSD if these correlations are not taken into account. 
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Figure 1: Comparison of the three methods, initial 
concentration is 1x103 mol/m3
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Figure 2: Comparison of the three methods, initial 

concentration is 5x102 mol/m3
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Figure 3: Comparison of the three methods, initial 

concentration is 5x101 mol/m3
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Figure 4: Comparison of the mass density distribution, 

initial concentration is 5x102 mol/m3, τmix=τres. 
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