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ABSTRACT

We analyze the evolution of a diffusion flame in a tur-

bulent mixing layer using large-eddy simulation. The large-

eddy simulation includes Leray regularization of the convec-

tive transport and approximate inverse filtering to represent

the chemical source terms. Attention is focused on the in-

teraction between turbulence and combustion. The Leray

model is compared to the more conventional dynamic mixed

model, concentrating on the kinetic energy decay, the spec-

trum and the mixing rate.

INTRODUCTION

In various combustion processes turbulent diffusion

flames arise. These are characterized by a thin, distorted and

lively evolving region where the conditions for combustion,

such as presence of chemical species at appropriate concen-

tration and temperature, are fulfilled (Peters, 2000). We

will consider combustion in a turbulent mixing layer with

stylized chemical reaction process (Geurts, 2005). This com-

putational model can be treated in full detail and provides

an impression of the dominant turbulence modulation that

arises from the coupling between the fluid-flow and the chem-

ical reaction equations.

It is the purpose of this paper to analyze the capabilities

of large-eddy simulation of diffusion flames. This requires a

proper capturing of the three central closure problems, i.e.,

for (i) the turbulent stresses, (ii) the velocity-species corre-

lations and (iii) the chemical source terms. We will focus

on a comparison between Leray regularization (Geurts and

Holm, 2003, 2006) and dynamic mixed modeling (Zang et

al., 1993 and Vreman et al., 1994) for the turbulent stresses.

These types of modeling may also be adopted to express the

velocity-species correlations. In addition, we will consider

an inverse modeling (Geurts, 1997, Kuerten et al. 1999) of

the chemical source terms. Specifically, the filtered nonlinear

source terms are formulated in ‘reconstructed’ flow variables.

This requires the application of an approximate inversion of

the spatial large-eddy filter.

Compared to the dynamic mixed modeling, the regular-

ization modeling of the turbulent stresses will be shown to

better retain the small-scale variability of a turbulent flow.

To illustrate this, the mixing-rate and the kinetic energy

spectrum are determined under combustion conditions. The

regularization and dynamic mixed models properly capture

the reduced mixing at high heat-release. The Leray model

predicts a significantly higher tail of the kinetic energy spec-

trum compared to the dynamic mixed model. This also

affects important global flame-properties such as the evolv-

ing surface-area and wrinkling of the flame.

DIFFUSION FLAME IN A MIXING LAYER

Mathematical model of simplified combustion

The computational model is composed of the compress-

ible flow equations for ideal gases, coupled to a system of

advection-diffusion-reaction equations (Pope, 2000, Geurts

2003). The dimensionless system of equations that is con-

sidered here can be expressed in three dimensions as

∂tρ + ∂j(ρuj) = 0 (1)

∂t(ρui) + ∂j(ρuiuj) + ∂ip − ∂jσij = 0 (2)

∂te + ∂j((e + p)uj) − ∂j(σijui) + ∂jqj − hkωk = 0 (3)

∂t(ρck) + ∂j(ρckuj) − ∂j(πkj) − ωk = 0 (4)

where ρ denotes the fluid mass-density, ui the velocity in the

xi direction, e the total energy density and ck the k-th chem-

ical species concentration. We consider Ns different species.

Partial derivatives with respect to time t and spatial coor-

dinate xi are denoted by ∂t and ∂i respectively. Summation

over repeated indices is implied. The continuity equation (1)

represents conservation of mass. The conservation principles

for momentum and energy are contained in (2) and (3). The

latter equation contains in addition contributions from heat

released by the chemical processes. Finally, the conservation

principle for the individual species is provided in (4).

In order to close this system of equations, additional con-

stitutive relations need to be provided. We follow the stan-

dard description given in Geurts (2003). The viscous fluxes

are specified by πkj = ∂jck/(Re Sc) and σij(u) = Sij/Re,

with rate of strain tensor given by

Sij = ∂iuj + ∂jui −
2

3
δij∂kuk (5)

The Reynolds (Re) and Schmidt (Sc) numbers characterize

the strength of the viscous fluxes relative to the nonlinear
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convective contributions in the momentum and species equa-

tions. Throughout we will adopt Sc = 10. The equation of

state for an ideal gas specifies the pressure p through

e =
p

γ − 1
+

1

2
ρuiui (6)

where the adiabatic constant γ ≈ 7/5. The heat flux vector

is given by

qj = − ∂jT

(γ − 1)RePrM2
(7)

where Pr is the Prandtl number, M the Mach number and

the temperature T follows from the ideal gas law ρT =

γM2p. Throughout we put Pr = 1 and M = 0.2. The

chemical reactions associated with the combustion are de-

scribed by source terms in the energy equation (3) and the

species equations (4). We turn to this part of the computa-

tional model next.

A large class of chemical reactions may be expressed in

terms of a multi-species, multi-step process (bastiaans et

al., 2001). In general, the Ns chemical species may be in-

volved in Nc chemical reactions. Let Mi denote the chemical

species and νr
i,l, νp

i,l the stoichiometric coefficients of the i-th

species, viewed as reactants (r) and products (p) in the l-th

reaction, respectively. The multi-species, multi-step chemi-

cal reaction involves transitions that may be expressed as:

νr
i,lMi → νp

i,lMi ; l = 1, . . . ,Nc (8)

This describes the l-th reaction in which νr
i,l ‘units’ of species

Mi, i = 1, . . . ,Ns give rise to νp
i,l units after the reaction.

We will consider only a single, very simple reaction in which

a fuel F reacts with an oxidizer O to yield a product P :

F + O → P (9)

This particular combustion model involves Ns = 3 species

in Nc = 1 reaction in which νr
F = νr

O = 1 units of fuel and

oxidizer combine into νp
P = 1 units of product. In this styl-

ized description fuel and oxidizer are lost after the reaction,

i.e., νp
F = νp

O = 0 while there was no product ahead of the

reaction, i.e., νr
P = 0. In the sequel we associate F with

species 1, O with species 2 and P with species 3.

The chemical reaction rate ωi is assumed to be deter-

mined by the Arrhenius law (Peters, 2000):

ωi

Wi
= (νp

i,l − νr
i,l)Dal exp(−Zel

T
)

NsY

k=1

„
ρck

Wk

«νr
k,l

(10)

where summation over l is implied and Wi is the molecular

weight of species Mi. Moreover, Dal and Zel denote the

Damköhler and Zeldovich numbers respectively of the l-th

reaction. For the particular reaction F + O → P we can

simplify the expressions for the reaction-rates further and

obtain:

ω1 = −(ρcF )(ρcO)
Da

WO
exp(−Ze

T
) (11)

ω2 = −(ρcF )(ρcO)
Da

WF
exp(−Ze

T
) (12)

ω3 = (ρcF )(ρcO)
DaWP

WF WO
exp(−Ze

T
) (13)

Since WP = WF + WO we may write

DaWP

WF WO
=

Da(WF + WO)

WF WO
= DaO(1 + α) (14)

where we introduced the ‘compensated’ Damköhler number

DaO = Da/WO and the weight-ratio α = WO/WF . Corre-

spondingly, we infer

ω2 = αω1 ; ω3 = −(1 + α)ω1 (15)

The source term in the energy equation can be expressed as

hjωj = h1ω1 + h2ω2 + h3ω3

= ω1(h1 + αh2 − (1 + α)h3) = Qω1 (16)

where the individual enthalpies are denoted by hj and Q will

be referred to as the effective standard enthalpy of formation.

In total the combustion model requires the evaluation of

ω1 and four additional parameters: DaO, Ze, Q and α.

Throughout we will adopt DaO = 1, Ze = 1 and α = 1 and

focus on effects arising from variations in Q. The validity of

these parameter-values in real combustion processes needs to

be investigated to improve the physical understanding of the

observed phenomena. This requires an extensive parameter-

study which is subject of ongoing research.

Numerical method for diffusion flame

We simulate the compressible three-dimensional tempo-

ral mixing layer and use a Reynolds number based on the up-

per stream velocity and half the initial vorticity thickness of

50 (Vreman et al., 1997). The governing equations are solved

in a cubic geometry of side ` which is set equal to four times

the wavelength of the most unstable mode according to lin-

ear stability theory, i.e., under the chosen conditions ` = 59.

Periodic boundary conditions are imposed in the streamwise

(x1) and spanwise (x3) direction, while in the normal (x2)

direction the boundaries are free-slip walls. The initial con-

dition is formed by mean profiles corresponding to constant

pressure p = 1/(γM2), u1 = tanh(x2) for the streamwise

velocity component, u2 = u3 = 0 and a temperature profile

given by the Busemann-Crocco law. Superimposed on the

mean profile are two- and three-dimensional perturbation

modes obtained from linear stability theory.

We use explicit time-integration with a second order,

compact storage, four-stage Runge-Kutta scheme. A fourth

order accurate spatial discretization method is adopted for

the convective fluxes while a second order central finite vol-

ume scheme is used for the viscous fluxes.

Visualization of the flow under conditions studied here

demonstrates the roll-up of the fundamental instability.

Four rollers with mainly negative spanwise vorticity develop.

These undergo two distinct pairings. After the first pairing

the flow has become highly three-dimensional. Another pair-

ing yields a single roller in which the flow exhibits a complex

structure, with many regions of positive spanwise vorticity.

The consequences of combustion for turbulence dynamics

may be investigated within the basic temporal mixing layer

configuration. In this paper we consider initially the upper

stream to contain fuel (cF = 1, cO = 0) and the lower stream

to contain oxidizer (cO = 1, cF = 0). The initial condition

is assumed to contain no ‘product’ (cP = 0).

LARGE-EDDY MODELING OF DIFFUSION FLAMES

Spatial filtering and subgrid closure

In the filtering approach to large-eddy simulation, a spa-

tial convolution filter is applied to the governing equations

given by (1)-(4). Specifically, we introduce the filtered field
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f associated with an unfiltered field f through

f(x, t) = L(f) =

Z ∞

−∞
G(x − ξ)u(ξ, t) dξ (17)

where the filter-kernel G has a width ∆ and we assume

G(z) = G1(z1)G2(z2)G3(z3), i.e., the product of three filter-

kernels associated with filtering in the x1, x2 and x3 direc-

tions respectively. We assume that the filter L is normalized.

Next to this basic filter, it is convenient to define the corre-

sponding Favre filter in which

ef =
ρf

ρ
=

L(ρf)

L(ρ)
= Lρ(f) (18)

in terms of the Favre operator Lρ.

Application of the spatial filter L to (1)-(4) results in the

following system of equations:

∂tρ + ∂j(ρeuj) = 0 (19)

∂t(ρeui) + ∂j(ρeuieuj) + ∂ip − ∂j σ̆ij =

−∂(ρτij) + ∂j(σij − σ̆ij) (20)

∂tĕ + ∂j((ĕ + p)euj) − ∂j(σ̆ij eui) + ∂j q̆j =

A + hkωk (21)

∂t(ρeck) + ∂j(ρeckeuj) − ∂j(π̆kj) =

−∂j(ρζjk) + ∂(πkj − π̆kj) + ωk (22)

in terms of the filtered variables ρ, euj , p and eck. In

these equations we denote the smoothed viscous flux by

σ̆ij = σij(eu) and obtain the smoothed energy and heat flux

through

ĕ =
p

(γ − 1)
+

1

2
euieui (23)

q̆j = − ∂j
eT

(γ − 1)RePrM2
(24)

in which eT = γM2p/ρ. Moreover, the smoothed vis-

cous fluxes in the species equations are given by π̆kj =

∂jeck/(ReSc). Apart from these contributions in terms of the

filtered variables a number of additional contributions arises

which constitute the combined closure problem. Filtering

the energy equation gives rise to a large number of subgrid

terms. These are summarized in the symbol A. At low Mach

number M the contributions of these closure terms can be

neglected (Vreman et al., 1995). We restrict to such cases in

the sequel, i.e., assume A ≈ 0. Terms such as σij − σ̆ij and

πkj − π̆kj arise from the difference between the Favre (Lρ)

and the basic filter (L). In case compressibility effects are

small these terms can be neglected. We will restrict to such

conditions here. The filtered source terms ωk in (22) and

the filtered heat-release term hkωk in (21) also need to be

accounted for in the smoothed compressible equations. We

discuss the modeling of these chemical source terms momen-

tarily and next turn to the closure of the filtered convective

terms, expressed by τij and ζjk.

A variety of subgrid models has been proposed for the

turbulent stress tensor and turbulent species fluxes, τij and

ζjk. In this paper we will compare dynamic mixed model-

ing (Vreman et al., 1994) with Leray regularization (Geurts

and Holm, 2003). For notational convenience we present

these models in their incompressible formulation. In actual

simulations the compressible implementation is adopted.

The mixed model combines Bardina’s similarity model

(Bardina, 1984) with Smagorinsky’s eddy-viscosity model

(Smagorinsky, 1963). A dynamic version is derived on the

basis of the application of Germano’s identity (Germano et

al., 1991, Germano, 1992) in which an explicit test filter is

introduced. Then a least squares formulation for the coef-

ficient according to Lilly (1992), is used, thereby assuming

the coefficient to be a scalar. For further details we refer to

Geurts (2003).

The mathematical regularization of the Navier-Stokes

equations which we pursue here involves a direct and ex-

plicit alteration of the nonlinear convective terms. In the

context of this paper, this provides a systematic framework

for deriving a subgrid model which is in sharp contrast with

traditional phenomenological subgrid modeling. Several ba-

sic regularization principles have been proposed, e.g., the

NS-α model based on maintaining a filtered Kelvin circu-

lation theorem (Geurts and Holm, 2003, 2006, Foias et al.,

2001), or the Leray formulation (Leray, 1934) to which we

will restrict in this paper.

In Leray regularization, one alters the convective fluxes

into uj∂jui, i.e., the solution u is convected with a smoothed

velocity u. Consequently, the nonlinear effects are reduced

by an amount governed by the smoothing properties of

the filter operation, L. The governing Leray equations are

(Leray, 1934)

∂juj = 0 ; ∂tui + uj∂jui + ∂ip − 1

Re
∆ui = 0 (25)

Leray solutions possess global existence and uniqueness with

proper smoothness and boundedness, whose demonstration

depends on the balance equation for
R
|u|2 d 3x. Based on the

Leray equations (25) we may eliminate u by assuming u =

L(u) and u = L−1(u). For convolution filters one has, e.g.,

∂tui = ∂t(L−1(ui)) = L−1(∂tui) and the nonlinear terms

can be written as uj∂j(ui) = ∂j(ujui) = ∂j(ujL−1(ui)).

Consequently, one may readily obtain:

L−1

„
∂tui + ∂j(ujui) + ∂ip − 1

Re
∆ui

«
=

−∂j

„
ujL−1(ui) − L−1(ujui)

«
(26)

This may be recast in terms of the LES template as:

∂tui + ∂j(ujui) + ∂ip − 1

Re
∆ui = −∂j

„
mL

ij

«
(27)

The implied asymmetric Leray model mL
ij involves both L

and its inverse and may be expressed as:

mL
ij = L

„
ujL−1(ui)

«
− ujui = ujui − ujui (28)

The reconstructed solution ui can in principle be found from

any formal or approximate inversion L−1. For this pur-

pose one may use a number of methods, e.g., polynomial

inversion (Geurts, 1997), geometric series expansions (Stolz

and Adams, 1999) or exact numerical inversion of Simpson

top-hat filtering (Kuerten et al., 1999) to which we return

momentarily.

Similar to the turbulent stress tensor, the velocity-species

stress tensor requires a closure model. Typically an eddy-

diffusivity type formulation is adopted in literature in which

ζkj ∼ ∂jck. Alternatively, the Leray regularization can be

adopted also for ζkj leading to

ζkj = L

„
ujL−1(ck)

«
− ujck = ujck − ujck (29)

An extension to compressible flow is quite straightforward

and will not be described further here. Rather, we turn to
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the filter inversion that is required for the Leray model. We

will also adopt this to determine an explicit closure model

for the chemical source terms.

Filter inversion and source-term modeling

The source term in the combustion model depends non-

linearly on the state-vector. Various models can be proposed

for the source-term in the large-eddy context. Here, we will

compare a model in terms of the filtered state vector with

a model in which a partial inversion of the filter is adopted.

For simplicity we focus on the stylized chemical reaction

F + O → P introduced in the previous section. In this case

only three species occur in a single chemical reaction and ef-

fectively only the filtered chemical source term ω1 needs to

be explicitly approximated. Once this source term is avail-

able we have ω2 = αω1, ω3 = −(1+α)ω1 and hkωk = Qω1.

The first model for the filtered source term uses an ap-

proximation in terms of the filtered state-vector:

ω1 = −DaO(ρcF )(ρcO) exp(−Ze

T
)

≈ −DaO(ρecF )(ρecO) exp(−Ze

eT
) (30)

This model can be expected to capture the main dynamic

contributions in cases where the filter-width ∆ is quite small.

Although this may not be the most challenging test for a

large-eddy modeling, it does constitute a valuable point of

reference.

The second model for ω1 arises by invoking an approxi-

mation of the inversion of the spatial filter. In this case we

arrive at a computational modeling in which

ω1 ≈ −DaO(ρ∗c+F )(ρ∗c+O) exp(− Ze

T+
) (31)

Here ρ∗ = L−1(ρ) and f+ = L−1
ρ ( ef) in which L−1

ρ denotes

the approximate inverse of the Favre filter associated with

L. The latter operator is applied to reconstruct some of

the fine-scale structure in cF , cO and the temperature T .

The evaluation of L−1
ρ can readily be expressed in terms

of L−1. In fact, by definition of the Favre filter we have

L(ρf) = L(ρ)Lρ(f). Application of L−1 to this definition

yields

L−1

„
L(ρf)

«
= ρf = L−1

„
ρ ef

«
(32)

From this relation we may isolate the unfiltered field f as

f =
ρf

ρ
=

L−1

„
ρ ef

«

L−1(ρ)
≡ L−1

ρ ( ef) (33)

which defines the inversion of the Favre filter. Given ef and

ρ the inversion L−1
ρ can be directly computed, provided the

approximate inverse L−1 is available. The inversion L−1
ρ can

be applied to determine c+
F , c+O and T+ that are required in

this second model for ω1.

There are various inversion procedures that may be

adopted to approximate the inverse L−1. A procedure that

may be applied to general graded filters such as the top-hat

or Gaussian filters arises from an expansion of L−1 in terms

of a geometric series (Stolz and Adams, 1999):

L−1(f) =

„
I − (I − L)

«−1

(f) =
∞X

n=0

(I − L)n(f)

≈
NX

n=0

(I − L)n(f) ≡ L−1
N (f) (34)

Approximating the geometric series with N + 1 terms we

find the following computational inversion procedures:

N = 0 : u∗ = L−1
0 (u) = u

N = 1 : u∗ = L−1
1 (u) = u + (I − L)u = 2u − u

N = 2 : u∗ = L−1
2 (u)

= u + (I − L)u + (I − L)(I − L)u

= 3u − 3u + u

(35)

This method of approximate filter-inversion requires several

applications of L, particularly in case of higher order inver-

sion. Convergence toward the exact inverse is fastest in case

the Fourier-transform of the filter-kernel is nowhere close to

0.

An alternative inversion procedure arises from the ex-

act inversion of a particular numerical filter (Kuerten et al.,

1999). In one dimension numerical convolution filtering cor-

responds to kernels

G(z) =
X

ajδ(z − zj) ; |zj | ≤ ∆/2 (36)

In particular, we consider three-point filters with a0 = 1−α,

a1 = a−1 = α/2 and z0 = 0, z1 = −z−1 = ∆/2. Here we

use α = 1/3 which corresponds to Simpson quadrature of

the top-hat filter. In actual simulations the resolved fields

are known only on a set of grid points {xm}N
m=0. The appli-

cation of L−1 to a general discrete solution {u(xm)} can be

specified using discrete Fourier transformation as in Kuerten

et al. (1999),

L−1(um) =
nX

j=−n

„
α − 1 +

√
1 − 2α

α

«|j| um+rj/2

(1 − 2α)1/2
(37)

where the subgrid resolution r = ∆/h is assumed to be even.

An accurate and efficient inversion can be obtained with only

a few terms, recovering the original signal to within machine

accuracy with n ≈ 10. The sensitivity of the results to the

inversion-accuracy was investigated and found not to be very

critical.

The large-eddy simulations have been started from a suit-

ably filtered initial condition as follows. In a first step a

2563 representation of an initial condition for direct numeri-

cal simulations was generated. To obtain an initial condition

for the large-eddy simulations, this field was filtered using

the three-point Simpson quadrature approximation to the

top-hat filter. The filter-width ∆ was chosen identical to the

filter-width that was selected for the subsequent large-eddy

simulation. Throughout, we will adopt ∆ = `/16 (Geurts

and Holm, 2006). In a second step the filtered data were

restricted to the numerical grid of step-size ∆x employed in

the large-eddy simulations. Typical resolutions of 323, 643

and 963 were used, thereby covering the filter-width ∆ by 2,

4 or 6 grid-cells respectively (Geurts and Fröhlich, 2002).

In the following section we investigate to what extent the

closures of the turbulent stress tensor and the approximate

closure of the chemical source terms contribute to accurate

large-eddy simulation of diffusion flames. Specifically, alter-

ations in the properties of the developing turbulent flow are

assessed.

COMBUSTION-MODULATED TURBULENCE

In this section we investigate three central flow-

properties associated with the combustion process in a tran-

sitional and turbulent temporal mixing layer. We will con-

sider the decay of the resolved kinetic energy E, the growth

of the momentum-thickness δ and the spectral distribution
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of the energy E(k) in the turbulent regime. Specifically, The

evolution of E illustrates the transitional flow and subse-

quent self-similar decay in the turbulent regime. It depends

primarily on the larger scales in the flow. Similarly, the mo-

mentum thickness is a large-scale quantity that can be used

as a measure for the progress of the mixing while the ki-

netic energy spectrum characterizes the prediction of both

the large and the small scales in the flow. We focus on the

influence of the heat-release parameter Q on the turbulent

flow.
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Figure 1: Decay of kinetic energy E (a), growth of momen-

tum thickness δ (b) and kinetic energy spectrum E at a

characteristic turbulent stage t = 100 (c). The resolution

is 323 at ∆ = `/16 displaying the effect of the heat-release

at Q = −1 (solid), Q = −10 (dashed), Q = −100 (dash-

dotted).

In figure 1 we collected predictions obtained with the

Leray regularization model for the turbulent stresses and

inverse modeling of the chemical source terms. We ob-

serve a close similarity between predictions at Q = −1 and

Q = −10, while a value Q = −100 leads to significant alter-

ations compared to the no-combustion case. The decay of

the kinetic energy is considerably reduced as the heat-release

of the chemical process is increased (Fig. 1(a)). Moreover,

a characteristic non-monotonous decay arises. We observe

a strongly reduced mixing-rate at Q = −100 (Fig. 1(b)),

as also reported in (bastiaans et al., 2001). This illustrates

a remarkable competition in which the combustion process

that actually requires mixing of fuel and oxidizer itself re-

stricts this mixing. The effect is particularly strong for the

small scales, as is clarified by the kinetic energy spectrum

in the turbulent regime (Fig. 1(c)). The intense heat-release

decreases the importance of the small scales which affects

flame-wrinkling.
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Figure 2: Comparison of Leray (thin lines) and dynamic

mixed model (thick lines) predictions. Decay of kinetic en-

ergy E (a), growth of momentum thickness δ (b) and kinetic

energy spectrum E at a characteristic turbulent stage t = 100

(c). The resolution is 323 at ∆ = `/16 displaying the effect

of the heat-release at Q = −1 (solid), Q = −10 (dashed),

Q = −100 (dash-dotted).

The results obtained by using the dynamic mixed sub-

grid model are compared with the Leray results in figure 2.

We observe that the decay of the kinetic energy is more pro-

nounced when use is made of the dynamic mixed model.

This difference has hardly any influence on the prediction

of the momentum thickness, while the small scales in the

large-eddy solution are strongly reduced in case the dynamic

mixed model is adopted. These differences in the large-eddy

predictions affect the prediction of properties of the combus-
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tion process. The use of inverse modeling for the chemical

source terms was found to yield modest effects compared to

the ‘mean-model’, at the parameters considered.

CONCLUDING REMARKS

In this paper, we introduced a simple combustion model

and studied a turbulent diffusion flame in a temporal mix-

ing layer. The coupling between the combustion and the

turbulent transport induces a significant modulation of the

turbulent flow properties, e.g., characterized by a strongly

reduced spreading rate of the mixing layer. The dynamic

mixed model was compared to the Leray regularization

model for the turbulent stress tensor in large-eddy simula-

tion. Moreover, a mean-flow parameterization of the filtered

chemical source terms was confronted with a formulation

based on approximate inversion. At the combustion - and

flow-conditions studied here, the dependence of the predic-

tions on the source-term modeling is quite limited. Likewise,

the influence of the subgrid model is not very pronounced,

which is all the more remarkable in view of the differences

between these models and the fact that a coarse-grid simula-

tion without any subgrid model yields significant differences.

Evidently, the dynamic effects of the small scales in the flow

are quite important and also well represented by either of

the subgrid models.

The findings of this paper indicate that large-eddy simu-

lation based on either the Leray or the dynamic mixed sub-

grid models yields qualitatively similar results. The Leray

model appears to retain more of the small-scale variability

in the flow which influences quantitatively a number of flow

and combustion characteristics. The dynamic mixed subgrid

model was found to be among the more accurate models de-

scribing turbulent mixing (Vreman et al., 1997). Here we

find largely comparable results based on the Leray model

(see also Geurts and Holm (2006)). However, compared to

the intuitive modeling of the dynamic mixed model, the reg-

ularization principle that underlies the Leray formulation is

much more transparent from a physics point of view. This

is a main advantage that arises by starting from ‘first princi-

ples’ and is essential in case extension toward more complex

situations is concerned. The regularization modeling that

arises from the Lagrangian averaged Navier-Stokes frame-

work (Foias et al., 2001) was found to be more accurate than

the Leray model for turbulent mixing without combustion.

Its extension to flows with combustion is subject of ongoing

research and will be published elsewhere.
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