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ABSTRACT

We study liquid-liquid dispersions in a turbulent Taylor–

Couette flow, produced between two counterrotating coaxial

cylinders. In pure Water and in counterrotation, Reynolds

numbers up to 1.4×105 are reached. The liquids we use are a

low-viscous Oil and pure Water or a Sodium Iodide solution

with a refractive index matched to that of Oil, in order to

get transparent dispersions. We first characterize the single-

phase flow, in terms of threshold for transition to turbulence,

scaling of the torque and measurements of the mean flow and

of the Reynolds stress by stereoscopic PIV. We then study

the increase of the dissipation in the two-phase flows and find

that the torque per unit mass can be twice the torque for a

single-phase flow. Long-time behaviours are also reported.

INTRODUCTION

Liquid-liquid dispersions are encountered for instance in

extraction or chemical engineering when contact between

two liquid phases is needed. Without surfactants, when two

immiscible fluids are mechanically agitated, a dispersed state

resulting from a dynamical equilibrium between break-up

and coalescence of drops can be reached. Their modelling in

turbulent flows is still limited (Portela and Oliemans, 2006).

Some open questions we address are first the potential

increase of turbulent dissipation due to the dispersion, the

modification of the turbulent transport inside the flow, and

the droplet size distribution, governed by the breakup and

coalescence rates. Finally, some concentrated liquid-liquid

flows are also known to experience hysteretic phase inversion

(Piela et al., 2006).

To answer these questions, we have chosen a model shear-

flow: a Taylor–Couette flow where the fluids are stirred in

the gap between two counterrotating coaxial cylinders. We

use low-viscous fluids and first check that the single-phase

flows are strongly turbulent. We measure the wall shear

stress, and use Refractive-Index matched fluids in order to

measure the phases repartition.

EXPERIMENTAL SETUP

The flow is produced between two coaxial cylinders. The

inner one is of radius ri = 110± 0.05mm, and the outer one

of radius ro = 120 ± 0.05mm, which gives a gap ratio η =

ri/ro = 0.917. The length of the cylinders is L = 220mm,

i.e. the axial aspect ratio is L/(ro − ri) = 22. The cylinders

axis is vertical in order to keep axisymmetric conditions.

The system is closed at both ends, with top and bottom lids

rotating with the outer cylinder. There is a gap of 1.5mm

between these lids and the flat ends of the inner cylinder.

The cylinders are driven by two independent Brushless DC

motors (Maxon, 250W), at a speed up to 10Hz. The torque

T exerted on the inner cylinder is measured with a HBM

rotating torquemeter (T20WN, 2N.m). A photograph of the

setup is presented in figure 1. The optical measurements

have been done with an outer glass cylinder, of radius 121±
0.25mm (η = 0.909).

For a newtonian fluid of kinematic viscosity ν, we use the

set of parameters defined by Dubrulle et al. (2005): a mean

Reynolds number Re = 2/(1 − η) |(ηroωod/ν) − (riωid/ν)|
based on the shear and on the gap d; and a “Rotation num-

ber” Ro which is zero in case of perfect counterrotation

(riωi = −roωo). At 10Hz in counterrotation, the typical

shear rate is around 1400s−1 and Re ' 1.4 × 105 for pure

Water.

The physical properties of the fluids we use are given

in table 1. The Oil is the Shell Macron EDM110; it is

a low-viscosity paraffinic hydrocarbons mix. Its refractive

index measured with an Abbe refractometer at 20oC is

1.4445. The interfacial tension between Oil and Water is

σ = 0.045N.m−1. To have a refractive index matched dis-

persion (Budwig, 1994), in addition to pure Water, we also

use a Sodium Iodide solution as acqueous phase (Narrow et

al., 2000). The concentration of NaI is 510g.L−1 , and traces
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Figure 1: Experimental setup, with the rotating torquemeter

(upper part of picture), the calibration grid displacement

device (on top of the upper plate), one of the two cameras

(left side) and the light sheet arrangement (right side). The

second camera is further to the right.

Table 1: Physical properties of the fluids at 20oC: density ρ

(kg.m−3), dynamic viscosity µ (Pa.s) and kinematic viscos-

ity ν (m2.s−1).

ρ µ ν

Water 1000 1.0 × 10−3 1.0 × 10−6

NaI solution 1500 2.0 × 10−3 1.3 × 10−6

Oil 800 3.0 × 10−3 3.8 × 10−6

of Na2S2O3 are added to avoid yellowish coloration. The

viscosity ratio is then close to unity and the density ratio is

close to 2. In the following, unless specified, dimensionless

quantities are deduced from ri as unit length, 1/ωi as unit

time, and ρr3
i as unit mass.

RESULTS

Single-phase flow

Torque scaling. We first study the turbulent Taylor-

Couette flow in exact counterrotation, and characterize its

turbulent state. Though the Taylor-Couette flow has been

widely studied, few experimental results and theories are

available for Ro = 0 (Dubrulle et al., 2005). We report

torque measurements on pure fluids in figure. 2. They have

been made in a first version of the experiment, with a free

surface and a space of 10mm between the cylinders bot-

tom ends. The torque due to the bottom part has been

removed by studying different filling levels. The range of

Reynolds numbers we cover is 2.0 × 103 . Re . 1.2 × 105.

In figure 2a, we plot the dimensional torque vs. speed for

the three pure fluids. The torques behave non-linearly with

speed, as expected for turbulent regimes, and the Oil and

Water are very close, the higher viscosity of Oil balancing its

lower density. We plot in figure 2b the dimensionless torque

G = T/(ρν2L) normalised by the laminar dimensionless

torque Glam = 2πη/(1 − η)2Re vs. Re. The experimen-

tal data fall on the same curve, which is consistent with

the formula proposed by Dubrulle and Hersant (2002) of

the form G = a Re2/(ln(b Re2))(3/2) . Here, a non-linear fit

gives a = 16.5 and b = 7 × 10−5. At the end of the range,

this is close to a power-law behaviour in G ∝ Re1.75 . This

scaling indicates that in counterrotation, a turbulent regime

is easily reached (let us remind that the scaling expected in

the Taylor-vortices regime is G ∝ Re1.5).

Moreover, Esser and Grossmann (1996) proposed a for-

mula for the first instability threshold. Here it gives

Rec(η, Ro) = 338. At first glance, this value seems to be

consistent with our results (see figure 2b). In forthcoming

experiments, we will use glycerol to lower the Reynolds num-

ber in order to check this prediction.
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Figure 2: (a): Torque vs. rotation frequency in exact

counterrotation for Oil (4), Water (◦) and NaI (?). (b):

Dimensionless torque G normalised by laminar torque Glam

vs. Re. Solid line is the fit proposed by Dubrulle and Her-

sant (2002). Rec is the expected value for the first instability

threshold, according to the theory of Esser and Grossmann

(1996).

Stereoscopic PIV measurements. We measure the three

components of the velocity in one plane by stereoscopic PIV.

The plane, illuminated by a double-pulsed Nd:YAg laser is

normal to the mean flow, i.e. vertical (see figure 1): the

in-plane components are the radial (u) and axial (v) ve-

locities, while the out-of-plane component is the azimuthal

component (w). It is imaged using two double-frame PCO-

cameras, mounted on Scheimpflug adaptors, located at each

side of the light sheet, with an angle of 60o in the air. The

flow is seeded with tracer particles (8 micrometer Sphericel).

The field of view measures 11mm × 22mm, corresponding

to a resolution of 300 × 1024 pixels.

Special care have been taken concerning the calibration

procedure on which the third azimuthal component rely. We

use a very thin transparent sheet with crosses printed on it,

with a weight at its bottom, and attached to a rotating and

translating micro-traverse (see figure 1). It is first put into

the light sheet and traversed perpendicularly to it. Typically
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five pictures are taken with steps of 0.5mm. The raw PIV-

images are processed with PivWare (Westerweel, 1993), with

a last interrogation area of 32× 32 pixels with 50% overlap,

and normalised median filtering as post-processing. Then

the vector mapping and the third component reconstruction

are made with Matlab. The mapping function is a third-

order polynomial, and interpolations are bilinear.
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Figure 3: Velocity profiles measured by stereoscopic PIV.

Outer cylinder is at rest, Re ' 90. Solid line: measured

mean azimuthal velocity. Dotted line: theoretical profile.

Dashed line: fit of the form w = ar + b/r. The radial com-

ponent u which should be zero is also shown.

In order to check the quality of the technique, we mea-

sured the basic laminar flow with the outer cylinder at rest,

for {Ro = (1 − η) ; Re ' 90}. The measurements are done

in 86% glycerol-water mixture. We plot in figure 3 the ve-

locity radial profiles, averaged over 100 recordings. The flow

is stationary and laminar. It is in good agreement with the

theoretical profile: w(r) = (η2/(η2 − 1))ωi r + (1/(1 −
η2))ωir

2
i 1/r, except near the inner and outer walls, where

some reflections disturb the measurement. The error in the

in-plane velocity is roughly constant, around 0.015.

We then measured the counterrotating flow, at Re =

1.4×104. The results are presented in figure 4. The measure-

ments are triggered on the outer cylinder position, and are

averaged over 500 images. In the counterrotating case, for

this large gap ratio and at this value of the Reynolds num-

ber, the instantaneous velocity field is really desorganised

and does not contain obvious structures like Taylor-vortices,

in contrast with other situations (Wang et al., 2005). No

peaks are present in the time spectra, and there is no axial-

dependency of the time-averaged velocity field. We thus

average in the axial direction the different radial profiles.

The azimuthal velocity w in the bulk is low, i.e. its mag-

nitude is below 0.1 between 112 . r . 120 that is 75% of

the gap width. The two other components are zero within

0.002.

The fluctuations of the velocity are not isotropic. They

are of the order of 0.05 for the radial and axial components,

and of the order of 0.1 for the azimuthal components. We

can also compute some terms in the angular momentum bal-

ance equation (Marié and Daviaud, 2004). According to the

torque measurements described in the previous paragraph,

the shear-stress at the inner wall is τi = T/(2πLr2
i ) '

1.49Pa, i.e. τi/(ρr2
i omega2

i ) = 3.1 × 10−3 in dimension-

less form. The dimensionless shear-stress at the outer wall

is 2.8 × 10−3. We report these two values in figure 4b,

together with the viscous shear-stress µr(∂ω/∂r) (dashed

line) and the turbulent shear stress ρ〈u′w′〉 (solid line). The

viscous shear-stress is negligible in the bulk, and is domi-
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Figure 4: Velocity measured by stereoscopic PIV for the

counterrotating case, at Re ' 1.4 × 104. (a): Dimension-

less mean velocity profiles u (dotted line), v (dashed line),

and w (solid line). The azimuthal profile is not measured

at the walls where its magnitude is 1. (b): Dimensionless

turbulent shear-stress 〈u′w′〉 (solid line) and dimensionless

viscous shear-stress computed from the mean velocity pro-

file. The dash-dotted line connects the two known values of

the shear-stress at the walls, deduced from torque measure-

ments.

nant at the walls, where it should ensure all the transport

of angular momentum. Though the boundary layer is very

badly resolved, the rough estimate of the viscous stress at

the walls —corresponding to the tails of the dashed line—

is consistent with the expected values. The measured tur-

bulent shear-stress is roughly constant in the bulk, and has

the good order of magnitude. The correlation coefficient be-

tween u and w, defined as 〈u′w′〉/
p

〈u′u′〉〈w′w′〉 is 0.4. The

turbulent shear-stress represents 85% of the expected shear-

stress. We conclude that this flow is dominated by turbulent

transport, which is also consistent with the high scaling of

the torque with Re (Remind that G ∝ Re1.75).

Two-phase flow

Qualitative pictures of the dispersion process. We now

use two immiscible fluids in the Taylor-Couette facility.

To look at the phases repartition, we perform visual-

isations with a Laser Induced Fluorescence technique. We

add a small amount of Rhodamine B in the Refractive-index

matched Sodium Iodide solution. The Rhodamine is sensi-

tive to the green light of the Nd:YAg Laser (532nm), and

emits a yellow fluorescent light. We use Melles-Griot low-

pass filters, with a cutoff wavelength of 550nm to only record

the fluorescent light. Examples of visualisations are given in

figure 5.
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Figure 5: LIF pictures of the dispersion in a counterrotating

flow at 2Hz. Dark region corresponds to the Oil, and bright

regions to the Sodium Iodide solution. The outer cylinder is

on the right side of each picture.

Starting from fluids at rest, the system is organised into

two layers. When the cylinders are rotating, there is a com-

petition between centrifugal forces and gravity. A Froude

number measuring the ratio of the centrifugal forces to buoy-

ancy can be estimated as Fr = ( ρu2

∆ρgri
)1/2 ' 0.9f . We

indeed observe that for f . 1Hz the fluids stay separated,

but that the interface is tilted, the heavier fluid being pushed

outwards. The interface is very weavy and non stationary.

The ratio of turbulent shear stress to buoyancy can be esti-

mated as Fr = (
ρu2

∗
∆ρgd

)1/2 ' 0.23f , with u∗ = 0.075 being

the typical rms velocity measured by PIV. A Weber num-

ber comparing the effects of turbulent stresses to interfacial

tension can be defined as We =
ρu2

∗d

σ
' 0.6f2. At a speed

of 1.5Hz, some Oil droplets start to be entrained into the

acqueous phase. Very few drops of acqueous phase into Oil

are present. Increasing further the speed, more and more

droplets of Oil are entraped into NaI, and there start to

be acqueous drops into the Oil, mainly visible as films, i.e.

drops into drops, as can be seen in figure 5. Then, there

seems to be three regions in the fluids, from top to bottom:

an Oil-continuous region with NaI drops, a foam of possibly

multiple droplets, and a Nai-continuous region with a lot

of Oil droplets. Finally, for f & 3.5Hz, the fluids are fully

dispersed.

Evolution of the torque for dispersed phases.

One of the open question we adress is whether the tur-

bulent dissipation is changed with respect to a monophasic

case, and in that case, how much is that change. There are

models for the effective viscosity of emulsions (Pal, 2001),

but what does happen in a turbulent dispersion where molec-

ular viscosity is usually negligible ?

We plot in figure 6a the torque vs. the frequency for a

Water and Oil system. The volumic fraction of Water is 33%.

The experiment have been automatised and we proceed as

follows for this experiment: starting from rest we record the

torque during 60s and then increase the speed by 0.2Hz,

record one minute and so forth until 4Hz, which is reached

after 20 minutes. We then decrease the speed until 0, by

steps of 0.2Hz.

The torque for the Water and Oil system (?) is at low

speed very close to the single-phase case (plotted in the same

figure for pure Oil (4)). This is consistent with a sum of two
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Figure 6: (a): Torque vs. rotation frequency for pure Oil

(4) and 33% Water in Oil (?). Speed is increased by steps

of 0.2Hz every 60s, up to 4Hz and then decreased back to

0. The points clouds are parametric plots from experiments

(b) and (c). (b): From a two-layer system at rest, the speed

is set to 3.5Hz. (c): From this speed, after 20 minutes, the

speed is decreased to 3Hz.

layers weakly interacting (small viscosity difference), which

basically give the same dimensionnal torque as discussed in

figure 2. Increasing the speed, the torque shows up a fast

increase around f = 3Hz (Fig. 6a), corresponding to the

point at which the liquids start to fully disperse. At the

speed of 4Hz, the torque per unit mass of fluid to stirr is

0.27N.m.kg−1 whereas it is 0.15N.m.kg−1 for pure Oil. This

corresponds to an increase of 70%.

When decreasing the speed, there seems to be hysteresis

in the system. The torques on the return path are slightly

higher than during the increase. The end of the hysteresis

loop seems to be at f ' 2Hz. Indeed, visual observation

confirms that the fluids are still dispersed, even below 2Hz.

Similar behaviours are present for other concentrations we

studied (see figure 7), with less hysteresis for the lowest oil

concentration. To better understand this hysteresis, we per-

formed the following long-time experiments. Starting from

a two-layer system at rest, we increase quickly the rotation

up to f = 3.5Hz and record then the torque (figure 6b). The

torque gradualy increase during the 600s of the experiments.

The final stationary state is not reached before the end of

these 600s. We plot also this experiment in figure 6a as a

parametric points cloud with time as parameter. One can

notice that the torque at the beginning is the one for Oil,

and gradually reaches the upper branch.

The complementary experiment (figure 6c) consists of

lowering the speed to 2.8Hz after 20 minutes. It shows a

slow decrease and the final state is not on the lower branch

(figure 6a): the two-layers system is not the one stable above

2.8Hz. The time scales involved in the dispersion and sep-

aration processes are thus very long, the latter being even
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Figure 7: Massic torque at 4Hz, normalised by the pure Oil

case vs. volume fraction of Water (◦) and NaI (?).

longer (figure 6b-c). Complicated behaviours including peri-

odic oscillations (with a period of 20 min) have been observed

in between and requires further investigation.

We report in figure 7 the evolution with the volume frac-

tion of the acqueous phase of the torque per unit mass of

fluid to stirr at 4Hz. The data have been normalised by

that of pure Oil (0.15N.m.kg−1). This quantity is maxi-

mum for a volume fraction of the acqueous phase around

33% and reaches a factor 2. Similar behaviours have been

evidenced recently in liquid-liquid turbulent pipe flow exper-

iments (Piela et al., 2006).

CONCLUSION AND PERSPECTIVES

We have built a facility with well-controlled parameters

to study liquid-liquid dispersions in a turbulent flow. In

a first step, the single-phase flow has been characterized

in terms of scaling of the dissipation, and also in terms of

velocity and Reynolds stress profiles. We measured the tur-

bulent fluctuations intensity who are a key feature for the

dispersion mechanisms. Further investigations on the scal-

ing and threshold for first instability for the counterrotating

monophasic flow will be performed, on a wider Reynolds

number range, using glycerol.

A global measurement such as in-line torque measure-

ment is able to characterize the state of the system in terms

of whether it is dispersed or not. Data presented here for

the torques in the dispersions were still limited by old motors

with low power. Further work have to be done to explore

the scaling of the torque for turbulent dispersions. We plot

in figure 8 a first result obtained for 50% Water in Oil. The

torque in the dispersed state seems to follow a nice scaling

at higher velocities. In order to check the idea of a proper

”effective molecular viscosity”, we try the one proposed by

Pal (2001): for viscosity ratio 3 (oil drops in water) and

for fraction 0.5, the effective viscosity is 5.9 × 10−6m2.s−1.

It seems then possible to collapse the points onto a single

curve when one uses this effective viscosity to compute the

Reynolds number and to normalise the torque in the dis-

persed state (figure 8b). Notice that in fact we do not have

enough points at low values of Reynolds numbers for newto-

nian fluids to really compare this rescaling with consistent

data.

In order to understand the interaction between the differ-

ent scales, we are now working on edge detection algorithm

to study the drop size distribution with the LIF images.
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Figure 8: (a): Torque vs. rotation frequency for pure Water

(◦) and 50% Water in Oil (?). (b): Dimensionless Torque

G vs. Re, molecular value for pure Water (◦), and effective

values proposed by Pal (2001) for 50% Water in Oil (?).
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