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ABSTRACT

The work reported below is an analysis of small scale

properties of turbulent flow without strong mean shear

in a homogeneous Newtonian fluid in proximity of the

turbulent/non-turbulent interface. The main tools used are

a three-dimensional particle tracking system (3D-PTV) al-

lowing to measure and follow in a Lagrangian manner the

field of velocity derivatives and direct numerical simulations

(DNS). The study is based on the statistical analysis of flow

tracers crossing the turbulent/non-turbulent interface. The

analysis of flow properties in the proximity of the interface

allows for direct observation of the key physical processes un-

derlying the entrainment phenomenon. We found that both,

viscous and inertial processes are important for the increase

of enstrophy at the turbulent/non-turbulent interface.

INTRODUCTION

Turbulent entrainment is the process of transition of

fluid from laminar to turbulent state through the bound-

ary between the two (Tsinober, 2001) and it occurs in

so-called ’partly turbulent’ flows, such as free shear flows

(jets, plumes, wakes, mixing layers), penetrative convection

in the atmosphere and in the ocean, gravity currents and

avalanches. One essential and physically qualitative distinc-

tion between turbulent and non-turbulent regions is that

turbulent regions are rotational, whereas the non-turbulent

ones are (practically) irrotational (Corrsin and Kistler, 1954,

1955). In particular, the two regions are separated by a

sharp interface, called ’viscous sublayer’ by Corrsin and

Kistler (1954, 1955), as viscous diffusion of vorticity is be-

lieved to be dominant across this interface. However, at large

Reynolds numbers, the entrainment rate and the propaga-

tion velocity of the interface relative to the fluid are known

to be independent of viscosity (e.g., Townsend, 1976, Tsi-

nober, 2001, and references therein). Therefore, the slow

process of diffusion into the ambient fluid must be acceler-

ated by interaction of velocity fields of eddies of all sizes,

from viscous eddies to the energy-containing eddies so that

the overall rate of entrainment is set by large-scale parame-

ters of the flow (Tsinober, 2001). However, it is not known

exactly how the slow process of diffusion into the ambient

fluid is accelerated by interaction of eddies of all sizes. Un-

til recently it was difficult to address these questions, as

it requires information on small scale vorticity and strain,

which experimentally was not accessible. This is why very

little is known about the processes at small scales and in the

proximity of the interface. While in previous studies the en-
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Figure 1: Schematic of the experimental setup. A time sam-

ple of the grid velocity obtained from the encoder signal is

shown in the upper right corner.

trainment process was mostly examined in free shear flows

(e.g., Bisset et al., 2002, Corrsin and Kistler, 1954, 1955,

Mathew and Basu, 2002, Townsend, 1976, Westerweel et al.,

2005) and boundary layers (e.g., Corrsin and Kistler, 1954,

1955), the focus here is on some simple, but basic aspects.

A turbulent front is induced by the action of planar forcing,

such that the resulting turbulent flow is quasi-homogeneous

in plane and the turbulent interface spreads on average along

one dimension. The present study is part of an ongoing re-

search project with previous results published in Holzner et

al. (2006, 2007). We report a comparison between three-

dimensional flow measurements obtained through scanning

particle tracking velocimetry (SPTV) and direct numerical

simulation (DNS).

METHOD

Experimentally, a turbulent/non-turbulent interface was

realized by using the oscillating planar grid described in

Holzner et al. (2006). A schematic of the experimental setup

is shown in Figure 1. The grid is a fine woven screen installed

near the upper edge of a water filled glass tank and it os-

cillates at a frequency of 6 Hz and an amplitude of 4 mm.

The scanning method of 3D particle tracking velocimetry

used for the measurements is described in detail in Hoyer et

al. (2005). 3D-SPTV is a flexible flow measurement tech-

nique based on the processing of stereoscopic images of flow

tracer particles. As in Holzner et al. (2007), the derivatives

of velocity, ∂ui/∂xj , and Lagrangian acceleration, ∂ai/∂xj ,

were calulated along particle trajectories and subsequently

interpolated on an Eulerian grid. The Laplacian of vorticity,

∇2ω, is obtained from the local balance equation of vortic-

ity in the form ∇×a = ν∇2ω by evaluating the term ∇×a

from the Lagrangian tracking data. The experimental error

associated with measurements of derivatives of acceleration

is significant. Erroneous values of ν∇2ω are filtered using

the following criterion based on the enstrophy balance equa-

tion:

δv =
| D
Dt

ω2

2
− ωiωjsij − νωi∇

2ωi|

| D
Dt

ω2

2
| + |ωiωjsij | + |νωi∇2ωi|

≤ 0.2. (1)

The available data is decreased substantially by the filtering

as only 20% survives. This is one of the reasons why the
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Figure 2: Vorticity iso-surface snapshot obtained from DNS.

results are compared to DNS. The number of tracked parti-

cles per frame is about 6·103 in a volume of 2×2×1.5 cm3

about 2 cm away from the grid and the mean interparticle

distance is about 1 mm, which is slightly above the esti-

mated Kolmogorov length scale, η=0.6 mm. We estimated

η using η = (ν3/ε)1/4, where ν is the kinematic viscosity of

the fluid, ε = 2ν〈s2〉 is the measured dissipation (s2 = sijsij

is the rate of strain and sij are the components of the rate

of strain tensor). The Taylor microscale, λ, is about 7 mm.

The spacing of the Eulerian grid was taken equal to the in-

terparticle distance. The estimated Kolmogorov time scale

is τη=0.3 s, which is about 7 times the time-interval between

two volume-scans, ∆t=0.02 s. In both experiment and sim-

ulation, the Taylor microscale Reynolds number is Reλ=50.

Direct numerical simulation (DNS) was performed in a

box (side-length 5L1, 5L2, 3L3) of initially still fluid. Ran-

dom (in space and time) velocity perturbations are applied

at the boundary x2=0. The procedure of generating the

boundary conditions is as follows. For a fixed time and in

the discrete set of points, x1 = k∆l, x3 = l∆l (k, l - inte-

gers), each velocity component, ui (i = 1, 2, 3), is calculated

as ui = Viξ, where ξ is a random number within the interval

[−1, 1] and Vi is a given velocity amplitude. For other times

and spatial points (x1, x3) boundary velocities are obtained

by cubic interpolation in time and bilinear interpolation in

space. At each time the three boundary velocity compo-

nents yield zero average value over the boundary plane. The

method of boundary velocity assignment determines the ve-

locity scale, V = max(Vi) and the length scale ∆l. The

corresponding time scale is defined as ∆t = ∆l/V . Together

with the viscosity of a fluid, ν, these parameters define the

Reynolds number Re = V ∆l/ν = 1000 of the simulation.

The Navier-Stokes equations are solved with periodic bound-

ary conditions for the directions x1 and x3, with periods

L1 and L3, respectively. The computational domain is fi-

nite in the x2 direction, as x2 ≤ 3L2. Shear-free conditions

∂u1/∂x2 = ∂u3/∂x2 = u2 = 0 are imposed at the boundary

x2 = L2. A mixed spectral-finite-difference method is used

for the spatial discretization and the time advancement is

computed by a semi-implicit Runge-Kutta method (Nikitin,

1994, 1996). The resolution is 192×192 Fourier modes in x1

and x3 directions and 192 grid points in x2 direction. The

analysis is done for times when the turbulent/non-turbulent

interface is about half a box size away from the source. The

local Kolmogorov length scale is twice the grid spacing. The
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Figure 3: Single trajectory plotted in real space. The symbol

‘�’ indicates the initial position.

paths of 4000 fluid particles have been calculated using

Dx

Dt
= u(x, t), (2)

where x is the position of the fluid particle at time t. For

the time integration of the particle position a 3rd order ex-

plicit Runge-Kutta scheme was used. The velocity and other

quantities of interest were interpolated to the trajectory

point using a bilinear interpolation in space. The fluid parti-

cles were released at t/∆t=5 and integrated until t/∆t=10.

Their initial positions are regularly distributed in a subre-

gion of the computational domain (2.5 < x1/L1 < 3.5, 1.2

< x2/L2 < 2.2 and 2.5 < x3/L3 < 3.5), in proximity of the

vorticity surface shown in Figure 2. The characteristic prop-

erties of the experiment and the simulation are summarized

in Table 1.

∆xk ∆t Reλ

3D-SPTV 1 mm 0.02 s 50

DNS 8 · 10−3∆l 2 · 10−3∆l/V 50

τη/∆t η/∆xk λ/∆xk

3D-SPTV 15 0.6 7

DNS 300 2.0 28

Table 1: Characteristic properties of the flow for the exper-

iment and the simulation.

RESULTS

In both experiment and simulation, turbulence is gener-

ated at the plane x2=0 and propagates mainly along x2 >0.

In the previous study of Holzner et al. (2007) the main fo-

cus was on the relation of small scale quantities with the

distance to the interface. The present investigation con-

centrates on the evolution of some of these properties in

a Lagrangian frame of reference, that is, fluid tracers cross-

ing the turbulent/non-turbulent interface are analyzed. For

each particle trajectory, the point in time, t∗, when the in-

terface is crossed was identified using a fixed threshold of

enstrophy, ω2 = ωiωi, for details see Holzner et al. (2006,

2007) and references therein. Particular attention is on

terms in the balance equation of enstrophy, which reads

D

Dt

ω2

2
= ωiωjsij + νωi∇

2ωi (3)

and on some terms in the analogous equation for the rate of

strain, written as

D

Dt

s2

2
= −sijsjkski −

1

4
ωiωjsij − sij

∂2p

∂xi∂xj

+ νsij∇
2sij .

(4)

Figure 3 shows a representative particle trajectory in real

space with initial position in the non-turbulent region mea-

sured through 3D-SPTV. To obtain a first impression of the

entrainment process in a Lagrangian frame, time series of

several quantities along this trajectory are plotted in Fig-

ure 4. The time axis is centered at the point t∗, i.e. t̂ = t−t∗,

and normalized by τη . Figure 4a shows the evolution of ω2,

2s2 and the second invariant of the velocity gradient tensor,

Q = 1/4(ω2 − 2s2). We observe that ω2 is initially very

low and increases attaining values close to the intensity of

strain. In contrast to enstrophy, strain is already signifi-

cantly high in the non-turbulent region and increases more

gradually. This difference in magnitudes between ω2 and 2s2

is an important feature of the process, since in fully devel-

oped turbulence enstrophy and strain are ‘equal partners’

(e.g., Tsinober, 2001). Notably, the invariant Q reaches

a local minimum in correspondence of t̂=0. Figure 4b il-

lustrates the evolution production terms of enstrophy and

strain together with the third invariant of the velocity gra-

dient tensor, R = −1/3(sijsjkski + 3/4ωiωjsij). Similar

to ω2 and s2, ωiωjsij is low in the non-turbulent region,

while -sijsjkski is not small. With time, they both grow

in magnitude and become of comparable intensity. Similar

to Q before, the third invariant R shows a local maximum

close to the origin. Since the mean values of Q and R vanish

identically for homogeneous turbulence, their nonzero val-

ues indicate that the particle path traverses regions with

some degree of inhomogeneity. Next, the evolution of the

terms of Eq. 3 are shown in Figure 4c. It turns out that

both, ωiωjsij and νωi∇
2ωi are positive and contribute to

the growth of D
Dt

ω2

2
. Compared to νωi∇

2ωi, the produc-

tion term, ωiωjsij , is initially smaller in magnitude, but

grows quickly and becomes the major responsible term for

the growth of D
Dt

ω2

2
, while the viscous term reaches a lo-

cal maximum before it becomes negative. For the statistical

analysis, the measured and simulated particle trajectories

are averaged defining an ensemble of events, similar to the

procedure described in Holzner et al. (2006, 2007). All

trajectories with initial position in the non-turbulent region

are centered at the point t∗ introduced above and subse-

quently they are ensemble averaged. For the experiment,

about 3·103 with an average length of 4τη were processed

in this way. The number of points considered for the statis-

tics is 2·105. In the simulation, out of the 4·103 trajectories

about 300 could be processed with a total number of 5·105

data points. The value of the threshold was set to 5% of the

mean value of ω2 in the turbulent region. This parameter

was varied between 1-25% (numerically, this is equivalent to

0.1-2.5 s2) and it was verified that, at least on the qualitative

level, all the results remained valid.

As discussed above for the individual trajectory (more

examples are shown in Figure 5), we note that the vis-

cous term νωi∇
2ωi exhibits a remarkable behavior showing

a distinct maximum during the crossing of the interface.

Therefore, we use the maximum of the viscous term as the

exact location of the interface, defined in a physically more

appealing way than the threshold-dependent time moment

t∗. For the further analysis we define three physically dis-

tinct regions of the interface with respect to the maximum

of νωi∇
2ωi (marked in Figure 5): (A) the turbulent region,

in which the behavior of the viscous term is ‘normal’, i.e. it
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is mainly negative like in fully developed stationary turbu-

lence, where the term is negative in the mean (e.g., Tsinober,

2001), (B) the interval between the peak and the point where

νωi∇
2ωi=0 is termed intermediate region (with the ‘abnor-

mal’ viscous production) and, (C) the non-turbulent region

from the peak to t̂/τη=-3. It is instructive to look at the

properties of the inertial and viscous terms of Eq. 3 in the

three regions, separately. We represent enstrophy produc-

tion as a scalar product of the vorticity vector and the vortex

stretching vector, Wi = ωjsij , as ωiωjsij= ω·W. In analogy

we can write the viscous term as νωi∇
2ωi = νω· ∇2ω.

For a closer inspection of the nature of enstrophy pro-

duction in the region of the interface we show PDF’s of the

cosine between vorticity, ω, and the vortex stretching vector,
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0
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1
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P
d
f

�1 �0.5 0 0.5 1
0

0.5

1

1.5

2

cos(ω ∇2ω)

P
d
f

a)

b)

,

,
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Figure 6: PDF’s of the cosine between vorticity, ω, and

the vortex stretching vector, W (a) and the cosine between

vorticity, ω, and the Laplacian of vorticity, ∇2ω (b), for the

three regions.

W, as obtained from PTV and DNS in Figure 6a. The phys-

ical interpretation of the geometrical invariant cos(ω,W)

is straight-forward. It is positive when the projection of

the vortex stretching vector, W, on ω points in the same

direction as vorticity and thus, vortex stretching actually

occurs. If cos(ω,W) is zero it will only attempt to tilt

the direction of ω and if it is negative then vorticity is

compressed. We see that in region A the PDF is clearly

positively skewed. The positive skewness of this PDF is

a well known genuine property of turbulence and one of

the main reasons for the positiveness of the mean enstro-

phy production, 〈ωiωjsij〉 >0 (see Tsinober, 2001, Lüthi et

al., 2005, and references therein). Interestingly, the positive

skewness is slightly increased in region B, while in region C it

is again comparable to region A. Figure 6b shows the cosine

of the angle between vorticity and its Laplacian, ∇2ω, which

exhibits significant changes across the regions A,B and C.

The observed transition from positive (alignment, region C)

to negative (anti-alignment, region A) values is in agree-

ment with the qualitatively different behavior of νωi∇
2ωi

in these regions observed from the individual trajectories

shown before. The results indicate that an interpretation

of the viscous term νωi∇
2ωi as interaction between strain

and vorticity due to viscosity (i.e. due to the curl of the

viscous force originating from the divergence of the strain

tensor) is physically more appealing than ‘simple’ diffusion

of vorticity due to viscosity. We emphasize that νωi∇
2ωi is
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intermediate eigenvector of the rate of strain tensor, λ2, for
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the interaction of vorticity and strain since (e.g., Batchelor,

2000) ν∇2ω= 1/ρ ∇× F
s, where F s

i = 2ν∂/∂xk{sik} and

ρ is the fluid density.

It is also instructive to invoke another useful geometri-

cal interpretation related to the enstrophy production term,

namely, we write

ωiωjsij = ω2Λicos2(ω, λi), (5)

where λi denotes the eigenvectors of the rate of strain tensor

and Λi its eigenvalues. From Eq. 5 we see that the effective-

ness of ωiωjsij is related to the orientation of ω relative to

the eigenframe of the rate of strain tensor, cos(ω,λi). The

preferential alignment of ω with the intermediate eigenvec-

tor, λ2, is a well known characteristic property of turbulence

(Siggia, 1981, Ashurst et al., 1987, Tsinober, 2001, Lüthi et

al., 2005). The PDF’s of the cosine between ω and λ2 are

plotted in Figure 7 for the three regions, from PTV (a) and

DNS (b). We confirm the predominant alignment of ω and

λ2 visible in region A. The probability of this alignment is

decreased in region B and region C is characterized by a

strong suppression of the preferential (ω,λ2) alignment.

Figure 8 shows PDF’s of the eigenvalues of the rate of

strain tensor, as obtained from PTV (a) and DNS (b). The

positively skewed PDF of the intermediate eigenvalue, Λ2,

comprises another genuine property of turbulence (Tsinober,

2001). We see that this property is preserved throughout
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Figure 8: PDF’s of the eigenvalues of the rate of strain ten-

sor, Λi, for the three regions from PTV (a) and DNS (b).

the three regions. Also the ratio Λ1:Λ2:-Λ3=5:1:6 remains

roughly constant and is consistent with the ratios previously

reported by others (e.g., Lüthi et al., 2005, Tsinober, 2001,

and references therein).

CONCLUSIONS

In summary, we analyzed small scale enstrophy and

strain dynamics in proximity of a turbulent/non-turbulent

interface without strong mean shear by using 3D-PTV and

DNS. The experimental results are in good agreement with

the simulation, at least on a qualitative level, which is

considered as a clear indication for the reliability of both

methods. We found that both ωiωjsij and νωi∇
2ωi are

responsible for the increase of ω2 at the interface and sub-

stantiate the physical interpretation of the term νωi∇
2ωi

as viscous interaction, in analogy to ωiωjsij , commonly re-

ferred to as the inviscid interaction of vorticity and strain.

Furthermore, we found that the properties of enstrophy pro-

duction, ωiωjsij , are different in such regions. In particular,

vorticity is somewhat more aligned with the vortex stretch-

ing vector in the intermediate region B, as compared to

regions A and C. In addition, region C is characterized

by suppression of the preferential (ω,λ2) alignment.
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