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ABSTRACT

Flows through stationary, square grids are examined nu-

merically at moderate Reynolds numbers using direct nu-

merical simulation with a standard lattice BGK method.

Beside turbulent energy decay, the anisotropy and cross-flow

inhomogenity of Reynolds stress components is studied. It is

found that near the grid region the levels of the latter quanti-

ties are high, in the adjacent intermediate region they decay,

and in a region of final decay of turbulence, inhomogen-

ity increases again while anisotropy continues to decay, well

described by power laws with exponents −1/6 and +1/4

respectively. In all regions, both quantities have compara-

ble magnitudes; for dimensionless downstream distribution

x/M > 5, they are small (< 5%).

INTRODUCTION

Grid-generated turbulence (GGT) is an extensively stud-

ied area of basic turbulence research. While a large number

of experimental studies exists on the subject, very few nu-

merical studies are known so far. For the experimental

studies, see e.g. Grant and Nisbet (1957), Comte-Bellot and

Corrsin (1966,1971), Gence and Mathieu (1979,1980), Han

(1988), Jovanovic et al. (2003). A direct investigations

of GGT (as opposed to homogeneous decaying turbulence)

like the one by Djenidi (2006) are rare. In all those stud-

ies, the main focus is on the presumably existent universal

spatial decay law for turbulent kinetic energy. In some

studies, return to isotropy rates and the influence of con-

tractions on anisotropy are issues of interest. Here, we focus

on another characteristic of GGT, comparing two impor-

tant nondimensional descriptors of GGT - the anisotropy of

Reynolds stresses (ARS) and the inhomogenities of Reynolds

stresses, normal to the mean flow (NIRS). Although each of

these plays an important role in GGT, there is no published

study, where their magnitudes are discussed in the same

context. The streamwise inhomogenity, complementary to

NIRS, is closely related to spatial decay of kinetic energy,

for which our detailed data suggest — despite the relatively

low Reynolds numbers simulated — a clear-cut power law

exponent. But the main finding to be presented here is that

both ARS and NIRS have quite comparable levels in GGT.

NUMERICAL SET-UP

Two independent series of direct numerical simulations

were carried out, using a lattice Boltzmann method with

standard BGK relaxation and the D3Q19 lattice model

— see Frisch et al. (1986), Qian et al. (1992), He and

Luo (1997), Gladrow (2000), Bouzidi and d’Humirés (2001),

Lallemand and Luo (2000), Zou et al. (2005). An MPI ver-

sion of a code based on this method was applied, which has

been described in Lammers et al. (2004).

In both simulations, referred to as Run 1 and Run 2, the

same computational domain and geometry of the turbulence-

generating grid were used: The uniform computational mesh

had 2400 points in the streamwise and 160 points in the

normal and in the spanwise direction. The grid consisted of

identical rods with square cross section, a stride of M = 40

in mesh step units, and rod side length d chosed such that

d/M = 0.15, which resulted in a blockage ratio of σ = 0.28.

Periodic boundary conditions were applied in each of the

three main spatial coordinate directions. The grid was

placed orthogonally to the main flow direction, as defined

by a constant spatial driving force vector. The only dif-

ference between the two simulations was the magnitude of

that driving “pressure drop,” resulting in Reynolds numbers

Rem = 1400 and Rem = 2000 based on the time and space-

averaged mean velocity and the mesh stride M .

In preliminary simulations, the length of the flow domain

was iteratively adjusted to assure that a sufficient decay of

turbulent energy (over four orders of magnitude) took place

along the flow domain, so that the reentring flow result-

ing from the periodic boundary condition in the mean flow

direction had the physical signifficance of an infinitesimal

perturbation only. In addition, a region of artificial, linear

damping of deviations from the mean flow velocity direciton

and magnitude was introduced in the spatial region ahead

of the grid, where the turbulence magnitudes had their min-

imum anyway. It was verified that this measure not only

reduced turbulence levels but also destroyed the natural flow

structure and correlations of “outflowing” GGT and that it

did not influence the quality of flow simulation in the region

of interest, especially at and in the near downstream vicinity

of the grid.

RESULTS

It is well known, already since Batchelor’s theoreti-

cal treatment and the early experimental measurements in

GGT, that all its one-point statistics are componentally

axiymmetric with respect to the mean flow direction. Our

simulation data confirmed this, as well, to a precision well

below the statistical noise level, for all statistics calculated.

In particular, all off-diagonal components of Reynolds stress

tensor are vanishingly small and the two components nor-

mal to the mean flow direction x are essentially equal. (A

discussion of higher-order statistics is not of interest here.)

Figure 1 compares the time-averaged Reynolds stress com-

ponents (v′2 and w′2, in the y and z direction, respectively)

obtained from both simulations. We may this restrict the

discussion to the anisotropy and the inhomogenity of u′2

and v′2.

Turbulent energy decay

1197



0.5 1 5 10
x/M

0.001

0.002

0.005

0.01

0.02

0.05

0.1

(
v’

2
,w

’2
)
/

U
m

2

Figure 1: Comparison of longitudinal evolutions of time-

averaged Reynolds stress components v′2 and w′2 for Run1

and Run2; diamonds: v′2 and starts: w′2 in Run 1, squares:

v′2 and triangles: w′2 in Run 2.

An untrivial indication by Figure 1 is that GGT may

obey a universal power law decay of turbulent kinetic en-

ergy for x/M > 5. This is strongly supported by further

observations from our data, the beginning of the universal

decay region being somewhat dependent on the statistic in-

vestigated, but always in the range 5 < x/M < 10.

These and other data (at other Reynolds numbers or grid

strides, to be summarized elsewhere) suggest a universal ex-

ponent of -5/3 for this power law to within statistical error.

That is, the turbulent kinetic energy k appears to decay as

k ≈ A(x/M)−5/3 with a prefactor depending on Rem, grid

stride M , rod geometry, inflow turbulence level and struc-

ture, etc. It can be argumented theoretically (the details are

presented in a separate publication) that this exponent is

uniquely determined by a small set of physical assumptions,

similar in nature to, but still clearly distinct from those pro-

posed by Kolmogorov in his famous derivation of the energy

cascade law for statistically steady homogeneous isotropic

turbulence. In the present case, there is no homogeneity

and the law applies only for low-level, “final decay” turbu-

lence sufficiently far away from the generating grid. This

is an analogy to the requirement of scale separation from

the energy-containing range in isotropic turbulence. The

power law presenting here, however, concerns not the intrin-

sic length scale of turbulence (eddy wave number), but an

external, global scale (distance from the grid). The analog

of “Kolmogorov scale” would be a (very large) distance after

the grid, beyond which an exponential decay, as suggested

by the well known theory of the “final period of decay” in

homogeneous turbulence, sets in. We have not had the re-

sources and intention to search for such a regime.

Spatial evolution of anisotropy

The anisotropies of Reynolds stress components studied,

are defined as usual by

a11 =
u′2

2k
− 1

3
, a22 =

v′2

2k
− 1

3
, (1)

where k is calculated from same the time-averaged Reynolds

stresses and a22 = −a11/2 < 0. Figure 2 shows the abso-

lute values of a22. Anisotopies decrease continously after

turbulence leaves the grid, even in the “final decay” region

discernible in our data at x/M > 20, where perhaps the

recirculating boundary condition rather than an approach

to an exponential decay region corresponding to the “final

period of decay” in homogeneous turbulence is havin a dom-

inant influence.

Comparison between the two runs shows only a small

influence by the Reynolds number, more pronounced for the

“vertical” component v′. Although there is a difference in

magnitude between different components of the anisotropy

tensor, their decay obeys the same law and for x/M > 15 this

can be approximated by a clear power law whose exponent

is approximately 1/6.
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Figure 2: Longitudinal evolution of anisotropy tensor:

squares: a11 and diamonds: |a22| in Run 1, triangles: a11

and stars: |a22| in Run 2.

An equally acceptable fit is given by an alternative loga-

rithmic decay law (not shown). The situation is reminiscent

of the still ongoing dispute whether developed turbulence

along a flat wall obeys the classical log-law or a Reynolds-

number-dependent power-law. Our opinion on the latter

issue has been stated elsewhere and it would be imprudent

to carry the debate over to the present case of GGT before

the other observations that can be made from our data and

are brought forward here have been independently verified

and accepted.

Inhomogenity

Following a suggestion for a measure of cross-sectional

inhomogenities forwarded by Ertunc and Lienhart (2006)

and Ertunc (2007), we calculate the spatial distributions of

the following indicator fields:

u′2(x, y) =
1

N

N∑
j=1

∫ T

0

dt

T

〈
u′2(x, y, zj , t)

〉
,

NIu(x, y) =

(
u′2(x, y)

1
N

∑N

i=1
u′2(x, yi)

− 1

)
100%, (2)

where i and j are any point in streamwise and normal direc-

tions respectively and N = 160. Similar equations can be

derived for overlinev′2(x, y) and NIv(x, y).

Figure 3 and 4 show that, as expected, the highest niveau

of inhomogenity is observed immediately after the grid. It

reaches approximately the level of 5% in both runs (and of

course, for both inhomogenity components).

Anticipating a universal behaviour in the “final decay

region” as identified in the previous section, it is of specific

interest to follow the spatial evolotion of the inhomogenity

indicators in that region of GGT. To that end, the values

shown in Figure 3 and Figure 4 are averaged in the “vertical

direction” y, at a fixed x/M position, to obtain the val-

ues which depend on the streamwise location only, i11(x) =
1
N

∑N

j=1
NIu(x, j) and i22(x) = 1

N

∑N

j=1
NIv(x, j). The

result is shown in Figure 5, for both components and both
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Figure 3: Distribution of NIu(x, y) %: a) Run 1, b) Run 2.

runs. After the grid, both components start to decay im-

mediately. This decrease goes on until x/M ≈ 15 for the

streamwise component, in both runs. But for x/M > 15,

an — at first sight surprising — increase rather than a

saturation of inhomogenity is observed. For the “vertical”

component of Reynolds stress tensor, this increase of the

inhomogenity starts at an earlier point, x/M > 8.

This observed increase of inhomogenity in the “final de-

cay region” of the GGT is not truly surprising, however, in

view of the expected growth, in mean flow streamwise direc-

tion, of all spatial scales of the large mean flow structures

found in the “later stages” of GGT. Such growth can indeed

be seen in Figure 6(b). There, the time-averaged streamwise

mean velocity is plotted on the mean-flow cross-sectional

y− z plane at x/M = 30. The difference between the struc-

ture of this later stage and the near grid structure is clear,

cf. Figure 6(a).

In an attempt to quantify this increase in cross-stream in-

homogenity, a power law has been found to give a rather ac-

ceptable prediction, when its exponent is approximately 1/4

— for both components and for both investigated Reynolds

numbers. The coefficient of the power law is of course

different for the different components, but for a specific com-

ponent, it is found to be approximately the same for different
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Figure 4: Distribution of NIv(x, y) %: a) Run 1, b) Run 2.

Reynolds numbers.

Comparison between anisotropy and inhomogenity

The magnitudes of the anisotropies and the inhomogeni-

ties of both components of the Reynolds stress tensor are

comparable at any given position x/M , as illustrated by

Figure 7. Here, only the quantities for Run 1 are shown,

but the trend is the same for Run 2.

Figure 7(a) compares the two quantities for the stream-

wise component and Figure 7(b) compares them for the ver-

tical component. The highest anisotropy and inhomogenity

levels are found in the region directly after the grid, as ex-

pected. Both components follow an almost constant line

until x/M ≈ 2. For the streamwise component, the high-

est level for anisotropy is around 10% in this region and for

inhomogenity about 20%. This value for streamwise compo-

nent is very close to the one observed for normal component.

The difference in the componental behaviour with respect to

anisotropies is larger, it is 6% for the vertical component. As

seen clearly by this study, the inhomogenity starts from a

higher niveau than the anisotropy level for both components.

Hovewer, i11(x) starts to fluctuate more or less in the same

region with a11 for x/M > 5. In the “final decay region,”

there is still a clear level difference between i22(x) and a22.
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Figure 5: Longitudinal evolution of i11(x) and i22(x);

squares: i11(x) and diamonds: i22(x) for Run 1, triangles:

i11(x) and stars: i22(x) for Run 2.

But, they are in comparable orders: 1.5% for a22 and 3%

for i22(x).

CONCLUSIONS AND OUTLOOK

Grid-generated turbulence (GGT) was examined with re-

spect to componental anisotropy of Reynolds stresses (ARS)

and to cross-flow spatial inhomogeneity (NIRS) at two mod-

erate Reynolds numbers. It was found that, at a given

downstream position, the magnitudes of both dimensiona-

less characteristics are of the same order at both Reynolds

numbers. It was suggested that the decay of ARS in the

“final decay region” of GGT could be well described by a

power law with an exponent of 1/6. The same type of law

could also be applied for the increase of NIRS in the same

region with an exponent of 1/4 for both components and at

both Reynolds numbers.

In future work, the observed increase in the “final period”

could be addressed in detail, by extending the computational

domain in both directions normal to the mean flow direction,

in the expectation of the existence of a region of exponential

decay of turbulent energy at nearly preserved anisotropy.

Such a study would require a domain of the size 2400 ×
400× 400.
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Ertunc Ö., 2007, “Experimental and numerical inves-

tigations of axisymmetric turbulence”, PhD thesis, LSTM

erlangen.

Frisch U., d’Humirés D., and Pomeau Y., 1986, ”Lattice-

Gas automata for the Navier-Stokes equation”, Phy. Rev.

Lett., Vol. 56, pp. 1505-1508.

Gence J. N., and Mathieu J., 1979, ”On the applica-

tion of succesive plain strains to grid-generated turbulence”,

Journal of Fluid Mechanics, Vol. 93, pp. 501-513.

Gence J. N., and Mathieu J., 1980, ”The Return to

Isotropy of a homogeneous turbulence having being sub-

mitted to two succesive plane strains”, Journal of Fluid

Mechanics, Vol. 101, pp. 556-566.

Gladrow D. A. W., 2000, ”Lattice-Gas cellular automata

and lattice Boltzmann Models”, Springer-Verlag, Berlin.

Grant H. L., and Nisbet I. C. T., 1957, ”The inhomogen-

ity of grid turbulence”, Journal of Fluid Mechanics, Vol. 2,

1200



0.5 1 5 10 50
x/M

1

2

5

10

20

50

a 1
1
-

i 1
1

(a)

0.5 1 5 10 50
x/M

1

2

5

10

20

50

a 2
2
-

i 2
2

(b)

Figure 7: Comparison between Reynolds stress anisotropies

and inhomogenities for Run 1. a) open squares: a11, closed

squares: Inh(u′2(x), b) open diamonds: a22, closed dia-

monds: Inh(v′2(x).

pp. 263-272.

Han Y. O., 1988, “The Effect of contraction on grid gen-

erated turbulence”, PhD thesis,State university of New York

at Buffalo.

He X., and Luo L. S., 1997, ”Theory of the lattice Boltz-

mann method: From the Boltzmann equation to the lattice

Boltzmann equation”, Phys. Rev. E, Vol. 56, pp. 6811.

Jovanovic J., Otic L., and Bradshaw P., 2003, ”On the

anisotropy of axisymmetric strained turbulence in the dissi-

pation range”, Journal of Fluids Engineering, pp. 401-413.

Lallemand P., and Luo L. S., 2000, ”Theory of the lat-

tice Boltzmann method: Dispersion, dissipation, isotropy,

Galilean invariance, and stability”, Phys. Rev. E, Vol. 61-

6, pp. 6546-6562.

Lammers P., 2004, “Direkte numerische Simulationen

wandgebundener Stroemungen kleiner Reynoldszahlen mit

dem lattice Boltzmann Verfahren”, PhD thesis, LSTM er-

langen.

Qian Y. H., d’Humirés D., and Lallemand P., 1992, ”Lat-

tice BGK models for Navier-Stokes equation”, Europhys.

Lett., Vol. 17, pp. 479.

Zou Q., Hou S., and Doolen G. D., 1995, ”Analitycal

solutions of the lattice Boltzmann BGK model”, J. Stat.

Phys., Vol. 81, pp. 319-334.

1201


	Volume3_part2
	Part1
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Part2
	TSFP5 Author indexA4.pdf
	Sheet1




