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ABSTRACT

Direct numerical simulations (DNSs) of turbulent mix-

ing layer with non-reactive and reactive scalar transports

have been conducted to investigate the mixing transition

mechanism and fractal geometry of scalar surfaces in tur-

bulence. DNS of non-reactive scalar up to Re!;0 = 1900

with moderate Schmidt number (Sc) show that fractal di-

mension of scalar surfaces in the fully-developed turbulent

state is independent to Reynolds number and coincides with

the theoretical expectation of Mandelbrot (1975) (� 2:5).

The inner cuto� is 8 times Kolmogorov length both in the

transitional and fully-developed state, and coincides with

the most expected diameter of coherent �ne scale eddy in

turbulence. The mixing transition is characterized by the

drastic increase of di�erence between the outer and inner

cuto�s (Re� � 100). DNS of reactive scalars show that

fractal dimension decreases to 2:40 � 2:45 due to the chemi-

cal reaction. The inner cuto� is not a�ected by the chemical

reaction and agrees with that of non-reactive scalars with

moderate Sc number. To investigate Schmidt number ef-

fects, DNS of non-reactive scalar up to Sc = 6:0 has been

conducted for moderate Reynolds number. For high Sc, two

fractal dimensions can be de�ned. The �rst fractal dimen-

sion coincides with that of moderate Sc, whereas the second

one shows larger values around 2:7. The inner cuto� of the

second fractal reaches to about 8 times of Batchelor length

scale for high Sc.

INTRODUCTION

The mixing transition in turbulent free shear ows is very

important phenomenon in many engineering applications

such as chemical process and combustion. This phenomenon

can be observed after the turbulence transition of the ow

�eld and enhances scalar mixing signi�cantly (Konrad, 1974;

Dimotakis, 2000). However, detailed mechanism of the mix-

ing transition has not been clari�ed yet. In our previous

studies on �ne scale structure of turbulence (Tanahashi et

al., 1997; 2001; 2004), the existence of universal �ne scale

structure (coherent �ne scale structure), which is indepen-

dent on Reynolds number and type of ow �eld, have been

revealed. The diameter and the maximum azimuthal veloc-

ity of coherent �ne scale eddies can be scaled by Kolmogorov

length (�) and Kolmogorov velocity (uk), respectively. Ex-

cept for near-wall turbulence (Tanahashi et al., 2004), the

most expected diameter and maximum azimuthal velocity

are 8� and 1:2uk. It should be noted that the azimuthal ve-

locity of intense �ne scale eddies reaches to 3 � 4u0

rms and

are closely related to the intermittency of energy dissipation

rate. Since the coherent �ne scale structure is a dissipative

structure of turbulence and the smallest vortical structure,

they would have very important roles on the mixing of heat

and mass in turbulence.

In turbulent combustion research, fractal geometry of

ame surfaces is very important because the area of ame

surface is frequently represented by the ratio of the inner

to outer cuto� scale raised to the 2 � D power (Gouldin

et al., 1989) where D is fractal dimension of the ame sur-

face. The fractal dimension and the inner cuto� of the ame

surface has been investigated by many experimental stud-

ies (Yoshida et al., 1994; Smallwood et al., 1995; G�ulder et

al., 2000). However, G�ulder et al. (2000) and G�ulder and

Smallwood (1995) have suggested that the fractal dimen-

sion and inner cuto� strongly depend on the measurement

and do not agree with expressions proposed by many stud-

ies (Peters, 1986; Gouldin, 1987; G�ulder, 1990; Poinsot et

al., 1990). Therefore, detailed information about the inner

cuto� and fractal dimension are necessary to construct the

high accuracy turbulent combustion model.

In this study, direct numerical simulations (DNS) of tur-

bulent mixing layer with non-reactive and reactive scalar

transports have been conducted to investigate the mixing

transition mechanism and fractal geometry of scalar surface

in turbulence. The e�ects of Reynolds number, chemical re-

action and Schmidt number are discussed by applying fractal

analyses for scalar surfaces obtained from DNS.

DIRECT NUMERICAL SIMULATION OF TURBULENT

MIXING LAYER

DNS of temporally developing turbulent mixing layer

with di�erent Reynolds number, reaction rate and Schmidt

number were conducted by solving following continuity equa-

tion, incompressible Navier-Stokes equations and mass con-

servation equations;

r � u = 0; (1)

@u

@t
+ ! � u = �rP +

1

Re!;0
r2
u; (2)

@YA

@t
+ u � rYA =

1

ReSc
r2YA � RcYAYB ; (3)

@YB

@t
+ u � rYB =

1

ReSc
r2YB � RcYAYB ; (4)

where u, !, P and Yi denote velocity vector, vorticity vector,

total pressure (P = p+ uu=2) and mass fraction of species

i, respectively. These equations are non-dimensionalized by
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Figure 1: Distributions of scalar mass fraction in fully-developed turbulent state for Rc = 0 and Sc = 0:6. (a):Re!;0 = 500,

(b):Re!;0 = 1300 and (c):Re!;0 = 1900.

Table 1: Numerical parameters for DNS of temporally-

developing turbulent mixing layer with non-reactive passive

scalar(Sc = 0:6, Rc = 0).

Run ID Re!;0 Nx �Ny �Nz Re�
TMLPS1 500 216� 325� 144 74:6

TMLPS2 900 324� 487� 216 104:2

TMLPS3 1300 384� 577� 256 137:5

TMLPS4 1500 432� 649� 288 147:2

TMLPS5 1900 480� 721� 320 153:9

a mean velocity di�erence (�U), an initial vorticity thick-

ness (Æ!;0 = �U=(@�u=@y)max) and mass concentration in

the free stream (Yi;0). Dimensionless groups in above equa-

tions are Reynolds number(Re!;0), Schmidt number (Sc)

and non-dimensional reaction rate (Rc).

The initial mean velocity distribution was given by a

hyperbolic tangent velocity pro�le: u(y) = 0:5tanh(2y).

Three dimensional random perturbation which has the same

turbulent intensity pro�le with the experimental results

(Wygnanski and Fielder, 1970) and banded white noise

jkij < 21 was superposed on the mean velocity (Tanahashi

et al., 2001). As for the initial concentration pro�le of pas-

sive scalars are also assumed to be hyperbolic tangent one;

YA(y) = 0:5+0:5tanh(2y), YB(y) = 0:5�0:5tanh(2y). Com-

putational domain was selected to be 4��6��8=3�, where

� is the most unstable wave length for the initial mean

velocity pro�le. All variables are expanded by Fourier se-

ries in streamwise (x) and spanwise (z) directions and by

sine/cosine series in transverse (y) direction. The bound-

ary condition is periodic in the streamwise and spanwise

directions and free-slip in the transverse direction. In the

spanwise direction, the size of the computational domain is

selected due to the 3/2 instability of the two-dimensional

roller (Pierrehumbert and Widnall, 1982). In the transverse

direction, that is selected to be enough to avoid mirror vor-

tex e�ects caused by the free slip boundary condition.

DNS were conducted up to Re!;0 = 1900, where Re!;0
denotes Reynolds number based on the initial vorticity thick-

ness and the mean velocity di�erence, and reaction rate is

changed for Rc = 0:0, 1:0 and 10 by assuming a single

step reaction: A + B = 2P. To investigate Schmidt num-

ber e�ect, DNS are conducted for Sc = 0:6, 3:0 and 6:0 for

Re!;0 = 500. The largest DNS are performed in 480 � 721

� 320 grid points. Aliasing errors from nonlinear terms in

the governing equations are fully removed by 3/2 rule and

time integration is conducted by the low-storage version of

3rd order Runge-Kutta scheme. Computations were carried

out until after the saturation of the subharmonic mode (t =

150) for all cases.
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Figure 2: Contour lines of mass fraction of (Y = 0:5) on a

typical x�y plane (a) and NL�L plots for 0:5 contour line

of passive scalar on x� y planes (b) for Re!;0 = 1900.

FRACTAL GEOMETRY OF SCALAR SURFACES

Mixing Transition

In Table 1, DNSs of non-reactive scalar are summarized.

Schmidt number of these DNS is 0:6 and the maximum

Reynolds number based Taylor microscale is 153:9 in fully-

developed turbulent state (t = 150) at the center of shear

layer. Figure 1 shows distribution of mass fraction on a x�y

plane in fully-developed turbulent state at t = 150. With

the increase of Reynolds number, the distribution of mass

fraction become complex and the mixing transition seems

to occur between Re!;0 = 500 and Re!;0 = 1300. To in-

vestigate characteristics of the scalar mixing quantitatively,

fractal analyses are introduced. As for contour lines on two-

dimensional cross sections or contour surfaces of scalar, a

two-dimensional (2D) or three-dimensional (3D) box count-

ing methods are applied. In the 2D box counting method,

contour lines on each x�y or y�z plane such as in Fig. 2(a)

are analyzed, and one fractal plot (NL�L plot) is obtained

by averaging counting results on all planes as shown in Fig.

2(b). Here, L is the measure and NL is length of contour

lines. From the NL� L plot, an inner cuto� (lI:C:) and an

outer cuto� (lO:C:) can be de�ned clearly. From a slope of

the NL � L plot, fractal dimension (D) is estimated using

an additive law. As a result, inner cuto�, outer cuto� and

fractal dimension are determined at a given time. As for the

3D box counting method, a fractal plot is obtained directly.

The accuracy of the box counting method has been shown

by our previous study (Miyauchi et al., 1994).
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Figure 3: Developments of fractal dimension for non-reactive

scalars(a) and Reynolds number dependence of the ratio of

outer cuto� to inner cuto�(b).

Figure 3 shows temporal developments of the fractal di-

mension obtained from scalar distribution on x�y and y�z

planes by a 2D box counting method. Both of fractal di-

mensions increase between t=30 and t=60. Higher Reynolds

number case shows earlier increase of the fractal dimension.

In this period, the turbulence transition of ow �eld oc-

curs and lots of coherent �ne scale structures are created

(Tanahashi et al., 2001). In this transitional stage, the de-

velopment of the fractal dimension reects the transition

process of velocity �eld and depends on the direction. In

general, fractal dimensions of x�y plane is lesser than those

of y � z planes. In the x � y planes, roll-up of large scale

organized structure (Kelvin-Helmholtz roller) induces scalar

uctuation and causes the increase of the fractal dimension.

On the other hand, in the y � z planes, streamwise vortices

due to strong shear of the mean ow enhance the scalar

mixing and increase the fractal dimension.

In the fully-developed turbulent state (t > 60), how-

ever, the directional dependence of the fractal dimension

decreases. Furthermore, the fractal dimension in the fully-

developed state does not depend on Reynolds number, and

is about 2.5 even for the lowest Reynolds number case. This

fractal dimension coincides with theoretical expectation by

Mandelbrot (1975). In Fig. 4, fractal dimensions obtained

from two-dimensional cross-section and three-dimensional

surfaces are compared for Re!;0 = 1900. Fractal dimension

from 3D surfaces coincides with that from y � z planes in

the transitional stage, and with that from x�y planes in the

fully-developed state. Hence, the additive law might be cor-

rect. The fractal dimension obtained from the present DNS

is slightly larger than those by the experiments (Sreenivasan

et al., 1989; Sreenivasan, 1991). In most of experiments,

since fractal analyses have been conducted for concentration

images including transitional region of the free shear ows,

fractal dimension becomes to smaller value. The fact that

fractal dimension in fully-developed state is independent to

Reynolds number show that the mixing transition can not

be characterized by the fractal dimension.
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Figure 4: Comparison of fractal dimensions from two-

dimensional cross-section and three-dimensional surfaces for

Re!;0 = 1900.

Table 2: Inner and outer cuto�s of non-reactive scalar sur-

faces and their relations with the turbulence characteristic

length scale.

Re!;0 lO:C: lI:C: � lO:C:=� lI:C:=�

500 20:1 0:49 0:058 2:84 8:46

900 14:4 0:31 0:039 2:04 7:82

1300 14:1 0:24 0:029 2:00 8:18

1500 14:7 0:24 0:027 2:08 8:81

1900 18:5 0:20 0:022 2:60 8:89
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Figure 5: Reynolds number dependence of the ratio of outer

cuto� to inner cuto�.

In Table 2, inner and outer cuto�s are compared with

characteristic length scales of turbulent ow. The inner cut-

o� is about 8� for all cases and coincides with the most

expected diameter of the coherent �ne scale eddy (Tana-

hashi et al., 2001). The outer cuto� seems to be scaled by

the large length scale which corresponds the size of the large

scale coherent structure (Kelvin-Helmholtz roller). These

results suggest that the inner cuto� also do not represent

the mixing transition.

In Fig. 5, Reynolds number dependence of the ratio of

the outer cuto� to the inner cuto� is shown for non-reactive

scalars. The outer cuto� shows directional dependence

even for fully-developed state. These ratios increase with

the increase of Reynolds number nonlinearly. Dimotakis

(2000) has reported that the mixing transition occurs if the

Reynolds number based on the large scale (unstable wave

length of shear layer, �), which is denoted as Re� in this

study, exceeds about 104. As shown in Fig. 5, Re� � 104

corresponds to the drastic increase of di�erence between

lO:C: and lI:C:. Therefore, visual observations by human

beings shows a phenomenological jump and this jump is de-

�ned as the mixing transition. In the theory of isotropic

turbulence, scale separation between integral length (lE) and
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Figure 6: Contour lines of mass fraction (YA = 0:5) on a

typical x�y planes. (a):Rc = 0:0, (b):Rc = 1:0 and (c):Rc =

10 for Re!;0 = 1500 and Sc = 0:6.

Table 3: Numerical parameters for DNS of temporally-

developing turbulent mixing layer with reactive scalar(Sc =

0:6).

Run ID Re!;0 Rc Nx �Ny �Nz

TMLRS1 500 1 216� 325� 144

TMLRS2 500 10 216� 325� 144

TMLRS3 900 1 324� 487� 216

TMLRS4 900 10 324� 487� 216

TMLRS5 1500 1 432� 649� 288

TMLRS6 1500 10 432� 649� 288

Kolmogorov length can be expressed as follows;

l=� � Re�
3=4 �

Re�
3=2

153=4
: (5)

If unstable wave length of shear layer was of the order of the

integral length (Rel � Re�), the di�erence between lO:C:
(� l) and lI:C: (� 8�) exceeds one decade at Re� � 100.

E�ects of Chemical Reaction

Experimental observations in turbulent reactive ows

(G�ulder and Smallwood, 1995; G�ulder et al., 2000) have

suggested that fractal dimension of surfaces with chemical

reaction such as ame is smaller than that of non-reactive

surfaces (Sreenivasan et al., 1989; 1991). To investigate ef-

fects of chemical reaction on the fractal geometry, DNS of

turbulent reacting mixing layer were conducted for di�erent

reaction rate and Reynolds number as listed in Table 3. Note

that �t for the temporal integration was carefully selected

for high Rc cases.

Figure 6 shows contour lines of mass fraction (YA = 0:5)

for di�erent reaction rate cases in the fully-developed tur-

bulent state. As for the reactive cases, distribution of mass

fraction depend on Rc for small Rc (not shown here). How-

ever, for large Rc, distribution of mass fraction scarcely

depend on Rc because the reaction is limited by the turbu-

lent mixing. In Fig. 7, fractal dimension obtained by the 3D
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Figure 7: Developments of fractal dimension for reactive

scalars.
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Figure 8: Development of ratio of the inner cuto� to Kol-

mogorov length scale for reactive scalars.

Table 4: Numerical parameters for DNS of temporally-

developing turbulent mixing layer with passive scalar with

high Sc (Rc = 0).

Run ID Re!;0 Sc Nx �Ny �Nz

TMLPSH1 500 3.0 480� 721� 320

TMLPSH2 500 6.0 480� 721� 320

box counting method is shown for reactive cases. For com-

parison, fractal dimensions of non-reactive cases (Rc=0) are

shown. For reactive cases, the increase of fractal dimension

in the transitional stage delays signi�cantly and the fractal

dimension in the fully-developed state is smaller than that

of non-reactive scalars. This is caused by the smoothing

of the contour surfaces due to the consumption of reactant.

Although the chemical reaction works to decrease of the frac-

tal dimension, the decreasing rate is relatively small. In

the fully-developed state, the fractal dimension keeps high

values around 2.40 � 2.45. These fractal dimensions seem

to be asymptotic value for turbulent ows with di�usion-

controlled reactions.

Figure 8 shows ratio of the inner cuto� to Kolmogorov

length scale for reactive cases. The inner cuto� is about 8�

in spite of reaction rate and Reynolds number, and coincides

with those of non-reactive scalars. These results suggest that

the coherent �ne scale eddy dominates �ne scale mixing in

turbulence and controls local reaction rate for Sc � 1.

E�ects of Schmidt Number

As for turbulent ows with transport of passive scalar

with high Sc number, it is well-known that Batchelor length

scale (�B) becomes smaller than Kolmogorov length signi�-

cantly because it is expressed by

�B = �=Sc1=2: (6)

Numerical parameters for DNS with relatively high Sc are

shown in Table 3. As the resolution of scalar uctuation
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Figure 9: Contour lines of passive scalar (YA = 0:5) on

a typical x � y planes. (a):Sc = 0:6, (b):Sc = 3:0 and

(c):Sc = 6:0 for Re!;0 = 500 and Rc = 0.
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Figure 10: NL� L plots for Sc = 0:6 and Sc = 6:0.

is more severe for high Sc, number of computational grids

increases to Nx �Ny �Nz = 480� 721� 320.

Contour lines of passive scalar (YA = 0:5) on a x � y

plane are shown for di�erent Sc cases in Fig. 9. Distribution

of mass fraction becomes more complex for high Sc. There-

fore, contour lines of scalar include small scale wrinkling. It

should be noted that global pattern is similar even for di�er-

ent Sc because the turbulence structure is exactly same for

these cases. The complexity of the contour lines is caused

by local engulfment of scalar due to �ne scale motion of tur-

bulence. Figure 10 shows fractal plots(NL � L plots) for

Sc = 0:6 and Sc = 6:0. As shown in above, only one fractal

dimension (D) can be de�ned for moderate Sc, which repre-

sents the inertial subrange of turbulent velocity uctuation

and self-aÆnity of scalar surfaces. On the other hand, for

high Sc number cases, two fractal dimensions (D1 and D2

in Fig. 10) can be de�ned. The �rst fractal dimension D1

can be observed in relatively large scales and coincides with

that of moderate Sc number case (D). The second frac-

tal dimension D2 can be de�ned in small scales and shows

larger values around 2.7 and denotes self-similarity of scalar

surfaces smaller than the Kolmogorov length. Temporal de-

velopments of these fractal dimensions are shown in Fig. 11.

Compared with the low Sc case, the �rst fractal dimension is

always small and the second one does large. However, di�er-
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Figure 11: Development of fractal dimension of passive

scalar with high Sc.

Table 5: Inner cuto� of the second fractal and its relation to

dissipation length scales of velocity and scalar uctuations

Sc � �B �B=� lI:C:=�B
0.6 0:0577 0:0745 1:29 6:2958

3.0 0:0577 0:0333 0:58 7:4119

6.0 0:0577 0:0235 0:41 8:4105

ence between Sc = 3:0 and Sc = 6:0 is not signi�cant. This

result suggests that an asymptotic fractal dimension may

exist for higher Sc. As discussed in above, the observation

that the contour lines for Sc = 6:0 is more complex than

that for Sc = 3:0 is mainly caused by the scale separation

between � and �B .

In Table 5, inner cuto� of the second fractal is compared

with dissipation length scales of velocity and scalar uctu-

ations. As is expected theoretically, Batchelor length scale

becomes smaller than Kolmogorov length scale. The inner

cuto� of the second fractal is scaled by the Batchelor length

scale and reaches to about 8�B . The self-similar fractal in

small scales is induced by �ne scale stirring of scalar by the

coherent �ne scale eddy of turbulence.

CONCLUSIONS

In this study, direct numerical simulations (DNSs) of tur-

bulent mixing layer with non-reactive and reactive scalar

transports have been conducted to investigate the mix-

ing transition mechanism. DNS of non-reactive scalar up

to Re!;0 = 1900 with moderate Schmidt number (Sc)

show that fractal dimension of scalar surfaces in the fully-

developed turbulent state is independent to Reynolds num-

ber and coincide with the theoretical expectation of Man-

delbrot (1975) (� 2:5). The inner cuto� is 8 times Kol-

mogorov length and agrees with the most expected diame-

ter of coherent �ne scale eddy in turbulence. The mixing

transition is characterized by the drastic increase of di�er-

ence between the outer and inner cuto�s which occurs at

Re� � 100. Due to this drastic increase, the observation

of human beings gives a phenomenological jump. The di-

rectional dependence of the fractal dimension obtained from

two-dimensional cross sections implies a possibility that the

fractal dimension might be estimated incorrectly in the ex-

periments.

DNS of reactive scalars show that the fractal dimension

decreases to 2:40 � 2:45 due to the chemical reaction, and

that these fractal dimension are an asymptotic value for reac-

tive scalar with fast chemistry. The fact that the inner cuto�

for the reactive cases coincides with that of non-reactive

cases shows that the coherent �ne scale structure of tur-

bulence dominates the mixing and reaction in small scales.

To investigate Schmidt number e�ects, DNS of non-
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reactive scalar up to Sc = 6:0 has been conducted for

moderate Reynolds number. For high Sc, two fractal dimen-

sions can be de�ned. The �rst fractal dimension coincides

with that of moderate Sc, whereas the second one shows

larger values around 2:7. The inner cuto� of the second

fractal reaches to about 8 times of Batchelor length scale for

high Sc.
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