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ABSTRACT

The proper orthogonal decomposition (POD) method is

applied to analyze the database obtained from the direct

numerical simulation (DNS) of supersonic plane mixing lay-

ers. The effect of different forms of the inner products in

the POD method is investigated. It is observed that the

mean flow contributes to a predominant part of the total

flow energy, and the energy spectrum of the turbulence fluc-

tuations covers a wide range of POD modes. The patterns

of leading (high energy) POD modes reveal that the flow

structures exhibit spanwise counter rotating rolls, as well as

oblique vortices. These flow patterns are insensitive to the

velocity of the observer. As the convective Mach number

increases, the energy spectrum becomes wider, the leading

POD modes contain more complicated structures, and the

flow becomes more chaotic.

INTRODUCTION

Turbulent flows are believed to be dominated by some

large-scale coherent structures. For active control of tur-

bulent flows of particular interest in many industrial appli-

cations, its important to describe the characteristics of the

coherent structures correctly and to predict their evolution

using the most simplistic procedure possible. Among many

methods to investigate turbulent flow, proper orthogonal de-

composition (POD) provides important insight. It extracts

a certain number of mode functions, representative of the

dominant structures, from a database of flow fields. It pro-

vides an optimal representation of a given set of flow field

data and as such may be used to derive low-dimensional

models.

Ever since the introduction of the POD method to fluid

mechanics by Lumley (1967), it has been applied to many

types of flows, especially shear-layer flows, such as boundary

layers (Aubry et al., 1988), wakes (Ma et al., 2002), Couette

flows (Meohlis at al., 2002), natural convections (He at al.,

2003). and low-speed mixing layer (Deleville at al., 1999).

In these studies, the flows have been mostly incompress-

ible. It was found in these studies that a large percentage of

the flow fields energy was captured by the first few leading

modes. For an incompressible flow, velocities are the only

dynamically important quantities. Using the POD method

to decompose the velocity field leads to an induced norm

of kinetic energy. However, for a compressible flow, both

kinetic and thermodynamic variables are important, and

should be included in certain forms of the inner product.

Lumley et al. (1997) introduced a form of inner product,
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which added normalized velocity and density fluctuations in

an optimal way, which we will be henceforth referring to as

a normalized inner product. This form of the inner prod-

uct is appropriate for homogeneous turbulence. Rowley et

al. (2004) introduced a family of inner products that cou-

pled the primitive variables in the isentropic Navier-Stokes

equations, where the induced norm of that inner product

has a physical interpretation of entropy. This family of in-

ner products is applicable to moderately compressible flows.

The differences between these two families of inner products

are compared for the POD method of analysis as applied to

supersonic mixing layers.

The supersonic mixing layer is a flow of great fundamen-

tal and practical importance. Good understanding of the

flow behaviour is essential to the prediction of compressible

turbulence and to the control of the mixing in supersonic

flows. Ever since Brown and Roshko (1974) observed obvi-

ous large-scale spanwise rolls in plane mixing layers at low

speeds (1974), it has been verified that mixing layers are

dominated by these so-called Brown-Roshko vortices. Even

in flows at moderately high Mach numbers, it is believed that

the flow structures are dominated by compressibility rather

than by viscosity (Clements et al., 1995). As compressibil-

ity increases, the mixing layer contains structures that are

more three-dimensional and obliquely oriented (Leep et al.,

1993), and the typical Brown-Roshko rolls seem to merge

with the rest of the flow. In the fully developed turbulent

region, our knowledge of the large-scale coherent structures

is still rather limited. This study attempts to identify these

flow structures in a compressible, fully developed turbulent

mixing layer by applying the POD method to a comprehen-

sive DNS database from the work of Li et al. (2002) (See

also Fu et al., 2006).

PROPER ORTHOGONAL DECOMPOSITION

POD Method basics

The central idea of the POD method is to determine a set

of basis functions {φi|i = 1, . . . ,∞} that optimally span the

data ensemble qk ∈ L2(Ω)|k = 1, . . . , M}, in the sense that

the error of the projection onto be basis set is minimized.

This objective is equivalent the following optimization prob-

lem,

max
φ∈L2(Ω)

〈|(q, φ)|2〉
‖φ‖2

, (1)

where L2(Ω) is an L2 space of functions on some spatial do-

main Ω with the inner product (·, ·), ‖·‖ is the induced norm

on L2(Ω), and 〈·, ·〉 denotes the ensemble average over k. The

1175



data {qk} could be thought of as a data ensemble of different

experiments, or of snapshots at different times. Solving this

optimization problem using the variational method leads to

an eigenvalue problem,

<φ = λφ, (2)

where < : L2(Ω) → L2(Ω) is a linear integral operator given

by

<φ =

∫
Ω

〈qk ⊗ qk∗〉φdx. (3)

Here the symbol ∗ denotes the complex conjugate, and

⊗ is the usual tensor product. It follows from the definition

shown in (3) that < is self-adjoint and non-negative definite,

therefore it’s eigenfunction φ is indeed orthonormal. The set

{φi} is complete in the sense that {qk} can be represented

as a series expansion of the orthonormal basis,

qk =

∞∑
i=1

ai
kφi, (4)

where ai
k = (qk, φi).

The non-negative definition of the operator < also en-

sures that all eigenvalues λi are non-negative. Furthermore,

it can be seen that the inner product between {qk} and φi

is

λi = 〈|(qk, φi)|2〉. (5)

Here, the eigenvalue λi is the average ”energy” in the

projection of the ensemble {qk} onto φi. By realigning φi

in decreasing order of the corresponding eigenvalues λ1 >

λ2 > · · · > λn, the ratio λi over the sum
∑

i
λi can be

written as

Ei =
λi∑
i
λi

, (6)

which reflects the fraction of the totally energy contained in

the ith mode.

Thus, if the subspace is expanded with the eigenfunc-

tions {φi|i = 1, · · · , N} corresponding to the large-to-small

eigenvalues, then the representation

q̂k =

N∑
i=1

ai
kφi (7)

contains a percentage of the total energy given by
∑N

i=1
Ei,

representing the most ”energetic” reduced-order form of the

original dataset. the eigenfunctions φi are called eigenmodes

or POD modes. The POD method literally reflects the math-

ematics of this equation. For more detailed discussion on the

POD method one can refer to Lumley et al. (1996).

It is worth noting that the order of the eigenvalue prob-

lem (1) can be very high. As we know, a high resolution

experimental database or DNS dataset usually contains in-

formation for a large number of elements. Assuming q is a

J component vector field on a domain with K elements and

the eigenvalue problem (1) is directly solved, then < turns

out to be of the order J × K. For the 3D DNS dataset in-

vestigated here, the number of elements K ≈ 400, 000, thus

it is impractical to work with such a large eigensystem. In

order to circumvent this difficulty, a snapshot method was

adopted.

Snapshots Method

The snapshot method introduced by Sirovich (1987) pro-

vides an alternative way to implement the POD method.

The key step of the snapshot method is to represent the

POD modes by a linear combination of the flow field data

qk, where k represents an independent series of time steps

which can be seen as snapshots of the flow field. This can al-

ways be achieved since the range of < is contained within the

span of the ensemble {qk ∈ L2(Ω)|k = 1, · · · , M}. Following

this idea, any eigenfunction φi can be written as

φi =

M∑
k=1

Ai
kqk, (8)

where M is the number of snapshots. Substituting (4) into

(1), and defining 〈·〉 as an average over k, we obtain the

algebraic eigenvalue equation

CA = λA, (9)

where Cij = (qiqj)/Mand Ai = (Ai
1, Ai

2, · · ·Ai
M ) is the

eigenvector corresponding to the ith eigenvalue λi. Here i

and j increase as i, j = 1, 2, · · · , M . Thus, one can obtain the

POD eigenmodes by solving an eigenvalue equation of order

M . Typically, M is not a large number in comparison to the

grid size of the domain. In our DNS database, the snapshot

number is of O(102), which is much smaller than the value

J×K mentioned in the previous section. Therefore, in order

to solve the eigenvalue problem more efficiently, the snapshot

method was adopted to obtain the POD modes in the present

study.

The POD Vector and Inner Product

When applying the basic theory described above to a

flow problem, the normed space on which the POD method

is applied should be chosen to best suit the problem, namely,

the vector field q, and the inner product on the field. In the

following discussion, we will refer to these as a POD vector

and an inner product.

For an incompressible flow, where velocity is the only

dynamically important quantity, the natural choice for the

POD vector field is

qk(x) = (u(x, kτ), v(x, kτ), w(x, kτ)) ,x ∈ Ω, (10)

where u, v and w are the streawise, transverse and spanwise

components of the velocity, respectively. The spatial coor-

dinate vector is denoted by x and the time step between

two consecutive snapshots is given by τ . Thus the standard

inner product is written as:

(q1,q2) =

∫
Ω

(u1u2 + v1v2 + w1w2)dx, (11)

where the optimization criterion for the POD method (Eq.

(1)) becomes kinetic energy. In this way, the POD method

extracts the flow information containing the most kinetic

energy in a time-averaged sense.

If the vorticity vector q = (ωx, ωy , ωz) is adopted as a

POD vector, and the inner product is chosen in the standard

way (such a choice may be suitable for some flows, see Kostas

et al. 2005), the leading POD modes represent flow struc-

tures that contain the most enstrophy in a time-averaged

sense.

In a supersonic flow, compressibility plays a crucial role

and, as such, all the kinetic and thermodynamic variables

should be included in the normed space for the POD anal-

ysis. The choice of inner product is no longer trivial. For

1176



instance, if the POD vector q = (ρ, u, v, w) is employed, with

ρ representing the density, then the standard inner product

would lead to an induced norm without any physical mean-

ing, since one cannot add velocity and density together.

One can, of course, process all variables of interest sep-

arately, which means several variables are not bundled to-

gether in a vector-valued space, but rather put into several

scalar-valued fields on which the POD method is performed

separately. This is applicable when we are interested in a

single variable, which can describe a particular flow pattern

sufficiently. For instance, we can define q = p , with p rep-

resenting the pressure, which is the descriptive quantity for

some compressible flows, so that the leading POD modes

demonstrate the main pattern of pressure distributions. In

this way, the lack of physical interpretation of the induced

norm is obvious, and no dynamical interaction between dif-

ferent quantities can be included.

Rowley et al. (2004) introduced a family of inner prod-

ucts, which couple all the primary variables in the isentropic

Navier-Stokes equations, while also providing a direct physi-

cal interpretation for the induced norm. In Rowleys method,

assuming isentropic flow conditions, the continuum equation

is reduced to an equation used to solve for the local sound

speed c. Thus, the POD vector is defined by q = (u, v, w, c)

with inner product of the form

(q1,q2) =

∫
Ω

(u1u2 + v1v2 + w1w2 +
2

γ − 1
c1c2)dx. (12)

The induced norm takes the form of twice the total en-

thalpy h = 1
2
(u2 + v2 + w2) + c2

γ−1
. This physical mean-

ing of the induced norm assures us that the leading POD

modes can be related to the structure that contains the

largest portion of total enthalpy. Because this inner product

couples all the primary variables in the isentropic Navier-

Stokes equations, it becomes straightforward to deduce a

low-dimensional dynamical system from the obtained POD

modes. An energy-based inner product is preferred because

it retains the stable equilibrium points at the origin in the

low-dimensional model. Applying this method to flows at

moderately high Mach numbers has generated satisfactory

results (Mereno et al., 2004). Equations (11) and (12) will be

referred to as energy-based inner products in the following

discussion.

Lumley et al. (1997) suggested a way of coupling velocity

and pressure together through nondimensionalization. The

velocity and density is nondimensionallized and weighted op-

timally in the sense that the eigenvalue λ is largest for a given

choice of eigenmodes φ. The nondimensionalized POD vec-

tor is as

q =

(
ρ′

〈ρ′2〉
1
2

,
u′

〈v′2〉
1
2

,
v′

〈v′2〉
1
2

,
w′

〈v′2〉
1
2

)
. (13)

Here, the symbol ′ denotes the fluctuating component of a

variable, and 〈·〉 denotes the average over time and space.

Now the standard inner product takes the form

(qq1,q2) =

∫
Ω

(
ρ′1ρ′2

〈ρ′2〉
+

u′1u′2 + v′1v′2 + w′
1w′

2

〈v′2〉

)
dx, (14)

Similarly, if the fluctuating temperature T ′ is also included

in the POD vector, one can obtain

(q1,q2) =∫
Ω

[
α
2

(
ρ′1ρ′2

〈ρ′2〉
+

u′
1u′

2+v′1v′2+w′
1w′

2

〈v′2〉

)
+ (1− α)

T ′
1T ′

2

〈T ′2〉

]
dx,

(15)

Table 1: Basic Parameters for DNS Dataset.

Case No Mac Ma1 Ma2 Rec M

3D-1 0.4 1.9 1.1 375 300

3D-2 0.8 2.9 1.3 525 300

3D-3 1.2 3.9 1.5 575 300

where 0 < α < 1, which is a constant parameter that ad-

justs the weighting ratio between temperature and other

variables. This form of inner product works well with homo-

geneous turbulence, providing a set of POD basis to deduce

low-dimensional dynamic systems from fully compressible

Navier-Stokes equations, by coupling the primary variables.

Equations (14) and (15) will be referred to as weighted inner

products in the following discussion.

IMPLEMENTATION OF POD

DNS Database

The investigation is based on several sets of flow data

obtained from DNS of the fully compressible Navier-Stokes

equations (Li et al. 2002; Fu et al. 2006). Included in

these sets are a 2D simulation with convective Mach num-

ber Mac = 0.4 and 3D simulations with Mac = 0.4, 0.8,

and1.2. The parameters used in these 4 simulations are

listed in Table 1, where subscripts 1 and 2 denote the pa-

rameters of the high-speed and low-speed parts of the mixing

layer, respectively. The convective Mach number is given by

Mac = (U1−U2)/(c1+c2) where U and c are the velocity and

sound speed of the mean flow and Rec = (U1 + U2)δm/(2ν)

is the convective Reynolds number with δm representing the

momentum thickness and ν the kinetic viscosity.

All of the variables are nondimensionalized by the ini-

tial vorticity thickness δω(0), the free stream density ρ∞ =

ρ1 = ρ2, and the free stream sound speed c∞ = c1 = c2.

The snapshots are taken at evenly spaced points in time

after the initial transients have decayed, encompassing the

span of time over which a disturbance travels through the

computational domain.

Effects of Inner Products

In this section we compare the results for several different

choices of normed spaces discussed above to the case 3D-1,

with the aim of determining an appropriate way of extract-

ing structures that contain the most energy of a supersonic

mixing layer. The results obtained for different choices of

inner products in POD are shown in Figs. 1 and 2. Both

figures shows distinct differences between the results pro-

duced by the weighted inner products Eqs. (14) and (15),

and the energy-based inner products Eqs. (11) and (12).

The weighted inner products produce higher energy concen-

tration and less integrated and organized structures in the

leading modes than those generated by the energy-based in-

ner products. However, differences of results generated by

inner products belonging to the same category are subtile.

This suggests there is actually no best way to determine

a configuration space for the POD method. The choice of

configuration space is dependent upon the desired method of

filtering, with the aim of obtaining the leading POD modes

representative of the large-scale structures in the flow field.

Mean Flow Effect
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(a) (b)

Figure 1: ”Energy” distribution obtained from inner products
Eq. (11), (12), (14) and (15): (a) in each POD mode; (b) in a
number of leading modes.

(a) (b)

(c) (d)

Figure 2: Fluctuation streamwise velocity iso-surfaces for the 1st
order POD modes obtained from inner products (a) Eq. (11),
(b) Eq. (12), (c) Eq. (14) and (d) Eq. (15).

(a) case 1 Uf = (U1 + U2)/2

(b) case 2 Uf (x) = 〈uk(x)〉

(b) case 3 Uf = 0

Figure 3: Fluctuation streamwise velocity contour/iso-surfaces
for the POD modes of 1st order (left), and the 2nd order (right)
obtained from inner products (a) Eq. (11), (b) Eq. (12), (c) Eq.
(14) and (d) Eq. (15).

The coherent structures, depicted by the velocity field,

often change their shape with respect to the velocity of the

observer. In order to examine how much the POD modes

change according to the reference velocity, the DNS data

was subtracted by different reference flow Uf . The results

showed that when Uf = (U1 +U2)/2 (case 1), the first POD

mode captures about 84% of the total energy, when Uf (x) =

〈uk(x)〉 (case 2), where 〈·〉 stands for average over snapshots

k, the first POD modes captures only about 2.3% of the

total energy, while for the original data, the first POD mode

captures more than 99% of the total energy (case 3). For

the 3 cases, the energy convergences after the 1st order mode

are all quite slow, with a dropping of magnitude of O(10−1)

over more than 100 modes. Figure 3 shows the first 2 POD

modes for each of the three cases. This results suggest that

the first POD modes in case 1 and 2 are basically the mean

flow, which contains most of the energy in the mixing layer.

And the shape of POD modes for the fluctuations is not

quite sensitive to the choice of the reference flow. so the

focus of this study is on the field of fluctuations.

POD ANALYSIS OF FLOW STRUCTURES

In the following analyses, the inner product of Eq. (15)

for the fluctuation field is applied. The most significant dif-

ference among the three cases lies in their compressibility,

which is denoted by the convective Mach numbers Mac. The

convective Mach numbers of the flows relate directly to the

characteristics of their coherent structures.

Figure 4 shows that the energy spectrums of the 3 cases

of 3D mixing layers cover a wide range of POD modes. For

case 3D-1(Mac = 0.4) and 3D-2(Mac = 0.8), the leading

50 modes take less than 60% of the total fluctuation energy,

while for case 3D-3(Mac = 1.2), the first 50 modes take

less than 50% of the total fluctuation energy. This is an

indication that these flows are all highly turbulent.

Figure 5 shows the coefficients of several POD modes.

These coefficients represent the transient energy extracted

by their corresponding POD modes (see Eq. (7)). They also

graph how the structures associated with each POD mode

evolve over time. In Fig. 5, the coefficients of low order

modes form pairs, showing good regularity, quasi-periodicity

and hence, coherence of large scale structures; while the co-

efficients of high order modes behave rather randomly.

(a) (b)

Figure 4: ”Energy” distribution of case 3D-1, 3D-2 and 3D-3
obtained from inner products Eq. (15): (a) in each POD mode;
(b) in a number of leading modes.

Comparison among the three cases reveals that, as Mac

goes up, the period of the evolution of the coefficients be-

comes longer, indicating a growing time scale of the move-

ment of the large-scale structures with increased level of

compressibility. Additionally, as Mac increases, the time

evolution of high-order mode coefficients also increases in

their regularity. In fact, Fig. 4 provides a very good indica-

tion that the coherent structures exist in supersonic mixing

layers though the structure scale may be much smaller than

those in incompressible cases.

Figures 5, 6 and 7 show the POD modes of the 1st, 2nd,

15th and 60th order of the three 3D cases respectively. In

these figures, the two leading modes occur in pairs, shifted by

a phase of roughly 90◦. The density iso-surfaces of leading

modes show the form of propagating waves. The stream-

lines of leading modes form a streamwise array of spanwise

counter rotating rolls similar to the Brown-Roshko vortices.
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(a) Case 3D-1

(b) Case 3D-2

(c) Case 3D-3

Figure 5: Time evolution of instantaneous ”energy” projected
on the 1st, 2nd, 15th and 60th POD mode in three 3D cases.

(a) (b)

(c) (d)

Figure 6: Iso-sufaces of fluctuation density (upper plots) and
streamlines (lower plots) viewed from the spanwise direction for
(a) the 1st, (b) 2nd, (c) 15th and (d) 60th POD modes obtained
by inner product Eq.(15) from case 3D-1.

However, it is obvious that these structures do not play a

dominant role in the flow. As seen from the previous discus-

sion, the leading modes of the fluctuation field capture only a

small portion of the total energy. As the order of POD modes

increases, the structures of spanwise rolls break down grad-

ually becoming more and more oblique in the streamwise

direction. This can be interpreted as a significant amount of

streamwise flow pattern being contained in the small-scale

structures, although they are basically convoluted.

Comparison of Figs. 5, 6 and 7 shows the effect of flow

compressibility on the pattern of POD modes. It is observed

that as the Mac goes up, the scale of the length of the struc-

ture for each mode increases, which is obviously shown by

lower order POD modes. This trend suggests that the mix-

ing layer becomes energized with increased compressibility.

The coherent flow structures depicted in the previous

figures can be further demonstrated by applying POD to

the vorticity field. Figure 9 shows the spanwise and stream-

wise components of vorticity for POD mode of the 1st order.

The 1st order POD mode of streamwise voticity, which cor-

responds to spanwise rolls shown by streamlines in Fig.

6, indicates a large scale of alternating positive and nega-

tive vorticity patterns. Within these alternating patterns,

streamwise structures play a dominant role. The complex

alternating and streamwise structures are also evident in

the POD mode of streamwise vorticity ωx. The streamwise

(a) (b)

(c) (d)

Figure 7: Iso-surfaces of fluctuation density (upper plots) and
streamlines (lower plots) viewed from the spanwise direction for
(a) the 1st, (b) 2nd, (c) 15th and (d) 60th POD modes obtained
by inner product Eq.(15) from case 3D-2.

(a) (b)

(c) (d)

Figure 8: Iso-surfaces of fluctuation density (upper plots) and
streamlines (lower plots) viewed from the spanwise direction for
(a) the 1st, (b) 2nd, (c) 15th and (d) 60th POD modes obtained
by inner product Eq.(15) from case 3D-3.

structures are smoother while the alternating patterns are

less clear than those in the spanwise voticity. As pointed out

earlier, the alternating patterns reflect the 2-D rolling struc-

tures shown in the density contours in Figs. 6-8, hence, they

are mainly spanwise in orientation and better represented by

the spanwise vorticity ωz . Meanwhile, the streamwise vortic-

ity ωx is also an appropriate candidate for the representation

of the flow structures.

(a) ωz (b) ωx

Figure 9: Iso-surfaces of the 1st order POD mode of spanwise
and streamwise vorticity for case 3D-1.
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CONCLUSION

Supersonic mixing layers with moderately high Mac

values in the fully developed turbulent region, where self-

similarity is preserved, have been known to exhibit highly

random and three-dimensional flow structures. It was not

clear if there were any large-scale coherent structures in the

high-speed cases similar to the Brown-Roshko roller type

existing in low-speed mixing layers. The present study was

aimed at investigating the flow structures from DNS data for

supersonic mixing layers with the aid of the POD method.

The effect of the inner products on the POD method

analysis was examined first. Although there has been discus-

sion in literature concerning appropriate forms for the inner

products in the POD method, it was shown in this work that

the inner product does not significantly affect the result-

ing POD mode patterns nor energy distributions. However,

the energy-based inner products generate less concentrated

energy distributions and clearer low-order mode shapes in

comparison to the weighted inner products.

This POD analysis shows coherent structures exist in

supersonic mixing layers for each of the three convective

Mach number cases studied. A few leading POD modes ex-

hibit similar structures and spanwise counter-rotating rolls

behaviours as those in the incompressible mixing layer but

on a much smaller scale as compared to the remaining tur-

bulence. The main difference between the incompressible

and compressible mixing layers lies in the energy spectrum

of the POD modes. In the former case the leading POD

modes represent most of the turbulence energy while in the

latter the first 10 POD modes account for less than 18% of

the total energy. Therefore it would be difficult to recon-

struct the flow field using only the first few modes, as is

done in low-dimensional modelling. Furthermore, the span-

wise rolling structures were observed to contain streamwise

flow patterns.

As the convective Mach number increases, the flow be-

comes more complex, causing the energy spectrum over the

POD modes to become wider and less concentrated in low

order modes. The coherent structures also become more

and more oblique in the streamwise direction, indicating en-

hanced streamwise structures. It should be mentioned that

the POD modes representative of the large-scale structures

in the fluctuations of the supersonic mixing layer do not

change much according to the velocity of an observer, or

whether or not the mean flow is included in the analysis.
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