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ABSTRACT

Strongly stratified turbulent flows have been analysed

and simulated. Scaling analysis has been applied to the gov-

erning equations and suggests the existence of two regimes

with different dynamics. The determing parameter is R =

ReF 2

h , where Re and Fh are the Reynolds number and hor-

izontal Froude number, respectively. If R À 1, viscous

effects are unimportant and three-dimensional but strongly

anisotropic turbulence with a forward energy cascade can

develop. The vertical length scale lv scales in this case as

lv ∼ U/N (U is a horizontal velocity scale and N is the

Brunt-Väisälä frequency). If R ¿ 1, the dynamics of the

flow is determined by a balance between vertical viscous

shearing and horizontal inertial forces. The vertical length

scales behaves as lv ∼ lhRe−1/2 and is thus independent

of the stratification strength. Direct numerical simulations

with various values of Re and Fh have been carried and are

consistent with the results of the scaling analysis. Horizon-

tal one-dimensional spectra have been computed and show

an approximate k
−5/3

h
range when R À 1 and very steep

slopes when R ¿ 1. A more comprehensive discussion of

the scaling analysis and a large series of DNS of stratified

turbulent flows are presented in Brethouwer et al. (2007).

INTRODUCTION

Measurements of the horizontal kinetic and potential en-

ergy spectra in the strongly stratified middle atmosphere

show a k
−5/3

h
range, where kh is the horizontal wave num-

ber. Since this range is observed for wave lengths between 1

and 500 km it is clear that these spectra are not the result

of classical Kolmogorov turbulence. In the past decades two

possible explanations for the spectra have been given and

broadly discussed. One explanation is that the spectra are

owing to two-dimensional turbulence producing an inverse

energy cascade, the other explanation is that they are ow-

ing to internal waves producing a forward energy cascade.

Recently, Lindborg (2006) presented an alternative hypoth-

esis saying that the spectra are a result of a process called

stratified turbulence. The basic idea is that large vertically

oriented vortices split up into thin layers which in their turn

split up into even thinner layers. In this process the vertical

length scale of the structures become smaller and the verti-

cal gradients steeper. As a result, instabilities appear which

break down the large structures into smaller ones. This

process causes a nonlinear and strongly anisotropic cascade

of energy from large to small scales. This idea was sup-

ported by numerical simulations of strongly stratified fluids

in elongated boxes (Lindborg, 2006). Moreover, the simu-

lations produced horizontal k
−5/3

h
-spectra. The conclusion

was therefore that stratified turbulence might play a role in

the middle atmosphere.

Direct numerical simulations of decaying stratified turbu-

lent flows by Riley and deBruynKops (2003) were consistent

with Lindborg’s results. However, some other experiments

and numerical simulations delivered different results, al-

though in general they agree on the layer formation in strat-

ified fluids. Smith and Waleffe (2002), Waite and Bartello

(2004) and Praud et al. (2005) for example did not observe

a k
−5/3

h
-spectrum or a clear forward energy cascade. This

leads to the question what the causes are of the differences.

A possible answer is that they are due to different Reynolds

and Froude numbers used in the experiments and simula-

tions. The aim of our research is study the influence of the

Reynolds number and Froude number on the dynamics of

stratified flows.

SCALING ANALYSIS

We assume that the Boussinesq approximation is valid.

To get some insight into the dynamics of strongly stratified

fluids, we scale the governing equations. A more elaborate

discussion of the scaling analysis is presented in Billant and

Chomaz (2001) and Brethouwer et al. (2007). Here we re-

strict ourselves to the main results.

First, we introduce a characteristic horizontal velocity

scale U and a horizontal and vertical length scale lh and lv
respectively. The nondimensional parameters we obtain are

the Reynolds number Re = Ulh/ν, the horizontal Froude

number Fh = U/Nlh (N is the Brunt-Väisälä frequency),

the Schmidt number Sc = ν/κ (ν and κ are the viscosity

and diffusivity respectively) and the aspect ratio α = lv/lh.

Assuming a high Reynolds number and strong stratification,

i.e. Re À 1 and Fh → 0, we obtain the following nondimen-

1151



sional governing equations (Billant and Chomaz, 2001)

∂uh

∂t
+ uh·∇huh +

F 2

h

α2
uz

∂uh

∂z

= −∇hp +
1

Re α2

∂2
uh

∂z2
(1)

0 = −
∂p

∂z
− ρ (2)

∇h·uh +
F 2

h

α2

∂uz

∂z
= 0 (3)

∂ρ

∂t
+ uh·∇hρ +

F 2

h

α2
uz

∂ρ

∂z
= uz +

1

ReSc α2

∂2ρ

∂z2
, (4)

where uh and uz are the horizontal and vertical velocity re-

spectively, ρ is the density perturbation, z is the vertical

coordinate and ∇h is the horizontal gradient, all in nondi-

mensional form.

The commonly made assumption is that the vertical

Froude number Fv = U/Nlv ¿ 1, i.e. α À Fh. In that case,

the advection terms with vertical derivatives in (1) and (4)

can be neglected as well as the last term on the left-hand-

side of (3). The momentum equation for uh contains then

only the horizontal velocity which led to the hypothesis that

a strongly stratified turbulent flow is dynamicly similar to

two-dimensional turbulence.

In our study (see also Billant and Chomaz 2001, Lind-

borg 2006 and Brethouwer et al. 2007) we assume that lv
and thus α are not predetermined but determined by the

dynamics of the flow. The ratio of the last terms on the

left-hand-side and the right-hand-side of (1) is then given

by the parameter R = ReF 2

h . Depending on the value of R,

we can distinguish two regimes.

R À 1: the stratified turbulence regime.

The influence of the viscous and diffusion term in (1) and

(4) can be neglected if R À 1. Billant and Chomaz (2001)

suggested the scaling lv ∼ U/N because then the govern-

ing are self-similar with respect to z′N/U , where z′ is the

dimensional vertical coordinate. Such a scaling has been ob-

served in numerical simulations (Waite and Bartello, 2004).

The scaling lv ∼ U/N implies α ∼ Fh and Fv ∼ 1, i.e. the

advection terms in (1) and in (4) are of the same order. Con-

sequently, the vertical advection terms are of importance for

the dynamics of the flow which leads to the hypothesis that

stratified turbulence with R À 1 is essentially governed by

three-dimensional dynamics with a forward energy cascade,

albeit strongly anisotropic. Lindborg (2006) argued that

lh ∼ U3/ε, where ε is the kinetic energy dissipation. Using

this estimate, we obtain

R =
ε

νN2
. (5)

If R À 1 an inertial range can develop in stratified turbu-

lence. Using scaling arguments, Lindborg showed that the

horizontal kinetic and potential energy spectra have a k
−5/3

h
dependence in this range.

It is illustrative to write (5) in terms of the Ozmidov

length scale lO = ε1/2/N3/2 and the Kolmogorov length

scale η which gives R = (lO/η)4/3. Hence, stratified tur-

bulence is to be expected in strongly stratified and high

Reynolds number flows when lO À η.

R ¿ 1: the viscosity affected stratified flow regime.

When R ¿ 1 we expect fundamentally different dynam-

ics. In this case the vertical advection term in (1) is much

smaller than the horizontal advection term and can be ne-

glected. A balance between the horizontal advection term

Table 1: Overview of the numerical and physical parameters

used in the simulations. Lh and Lv are the horizontal and

vertical dimension of the box respectively, and Nh, Nv are

the number of nodes in the horizontal and vertical direction,

respectively. R is computed using (5).

run Fh (×10−2) R Lh/Lv Nh × Nv

A0.06 0.23 0.058 4 256 × 64

A0.2 0.53 0.21 4 256 × 64

A0.8 1.2 0.75 4 256 × 64

A1.8 1.5 1.75 4 256 × 80

A2.8 2.3 2.84 4 256 × 64

A9.3 4.2 9.3 2.9 256 × 96

B0.1 0.23 0.11 6 512 × 96

B0.4 0.45 0.40 6 512 × 96

B1.1 0.81 1.09 6 512 × 96

B3.0 1.5 2.97 5 512 × 128

B9.3 2.7 9.3 4 512 × 144

and the vertical viscous term in (1) is possible if

lv ∼ lhRe−1/2 , (6)

as argued by Godoy-Diana et al. (2004). We adopt this idea

which implies that lv is independent of the stratification

strength. The dominant dynamics is then governed by a bal-

ance between horizontal inertial forces and vertical shearing

between the layers. Hence, no clear forward energy cascade

or inertial range will be seen.

DIRECT NUMERICAL SIMULATIONS

To study strongly stratified fluids and to validate the

ideas presented in the previous section, we carried out a se-

ries of direct numerical simulations (DNS) with different Re

and Fh and Sc = 0.7. A standard pseudospectral method

with periodic boundary conditions was used to solve the

Boussinesq equations to simulate homogeneous turbulence

with a uniform stratification. The horizontal dimension of

the computational domain is larger than the vertical di-

mension because the flow is anisotropic. A constant rate

of energy is injected at the large horizontal velocity scales

to obtain a statistically stationary state. Only the vortical

motions are thereby forced. For more details about the forc-

ing technique we refer to Lindborg and Brethouwer (2007).

Some of the numerical and physical parameters are listed

in table 1. The physical parameters are extracted from the

DNS after the flow reached statistical stationarity. The table

shows that the DNS cover both regimes, R > 1 and R < 1.

A more extensive set of DNS is presented in Brethouwer

et al. (2007).

RESULTS

The simulations approach rather quickly a statistically

stationary state whereby the constant energy input by the

forcing is balanced on average by the dissipation of kinetic

and potential energy, and the kinetic and potential energy

stay approximately constant. This latter point is demon-

strated in figure 1. The statistics and visualisations to be

presented hereafter have been extracted from the simulations

while the flow was statistically stationary.

Illustrative are visualisations of the flow field. Figure 2

presents snapshots of the fluctuating density field on a ver-

tical plane extracted from two simulations, one with R < 1

and one with R > 1. It is clear that the structure of the
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Figure 1: The time evolution of the total energy

Etot/(PLh)2/3, where P is the power input by the forcing.

(——–), B9.3; (− − −), B3.0; (· · · · ·), B1.1; (− · · − · · −),

B0.4; (——–, gray line), B0.1.

Figure 2: Snapshots of the density fluctuations in a vertical

plane. R < 1 (run B0.4) in the top figure and R > 1 (run

B9.3) in the bottom figure.
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Figure 3: The anisotropy S of the dissipation defined by (7)

as a function of R. Circles, runs A; triangles, runs B.

flow field is quite different in the two cases. Layer forma-

tion can be seen in both visualisations but the density field

is mostly smooth with only a few local disturbances when

R < 1 whereas small-scale turbulent-like disturbances are

dominant when R > 1. This suggests that energy dissi-

pation by vertical shearing of the layers is important when

R < 1. On the other hand, when R > 1 more isotropic

dissipation as a consequence of the turbulent-like motions

is expected. These expectations are confirmed by figure 3

showing the anisotropy as a function of R. The dissipation
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Figure 4: The scaled vertical length scale (top figure)

lvRe1/2/lh and (bottom figure) lvN/U as a function of R.

Circles, runs A; triangles, runs B.

anisotropy is defined as

S =
ν〈

( ∂u′

x

∂z′

)2

+
( ∂u′

y

∂z′

)2

〉

ε
(7)

and is nearly equal to one implying almost purely vertical

shearing if R < 1 whereas the dissipation becomes more

isotropic for R > 1.

The scaling behaviour of lv constitutes an important test

of the scaling analysis presented here before. Figure 4 shows

lv scaled by lhRe−1/2 and scaled by U/N as a function

of R. The computation of lv is explained in Brethouwer

et al. (2007). The figure shows the results of several DNS

with a fairly wide range of Fh and Re. The results of the

DNS support the scaling lv ∼ lhRe−1/2 for R < 1 and the

scaling lv ∼ U/N for R > 1, which is in agreement with the

scaling analysis.

Figure 5 shows compensated horizontal one-dimensional

kinetic and potential energy spectra for several values of

R. Lindborg (2006) and Lindborg and Brethouwer (2007)

observed in their simulations with hyperviscosity that the

computed compensated kinetic and potential energy spectra

have a clear inertial range and a constant value of approx-

imately 0.5. This line is also plotted in figure 5. In none

of the present DNS we see such a clear inertial range be-

cause viscous effects, i.e. R, are not small enough in the

inertial range. The spectra obtained from the runs B3.0

and B9.3 with R > 1 have, nevertheless, a wave number
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Figure 5: The compensated horizontal one-dimensional ki-

netic energy spectra EK(kh)k
5/3

h
/ε2/3 (top figure) and po-

tential energy spectra EP (kh)k
5/3

h
ε1/3/εP (bottom figure),

where εP is the potential energy dissipation.. The horizon-

tal wavenumber kh is scaled by the Ozmidov length scale

lO. (——–), B9.3; (−−−), B3.0; (· · · · ·), B1.1; (−· ·− · ·−),

B0.4; (——–, gray line), B0.1.

range that approaches the straight line and thus approaches

the k
−5/3

h
-dependence. The spectra obtained from the other

runs with R < 1 do not reveal such an approximate inertial

range but are instead very steep. This implies that the small

scales contain very little energy. The study by Brethouwer

et al. (2007) shows that energy flux from large to small scales

is very weak or virtually nonexistent when R < 1 whereas

there is a clear energy flux when R > 1.

CONCLUSIONS

Figure 6 summarises some of the results of our study in a

diagram. The different regimes and how these are related to

Re and Fh according to the scaling analysis and the DNS are

displayed in the figure. Stratified turbulence with a forward

energy cascade and an approximate inertial range with a

k
−5/3

h
-dependence is observed when R = ReF 2

h > 1 and for

Fh < 0.02, see Brethouwer et al. (2007). For larger values of

Fh the flow is weakly stratified. If R = ReF 2

h < 1 the flow

is strongly affected by vertical viscous shearing between the

layers as suggested by the scaling analysis and confirmed by

the DNS. The spectra are very steep in this case.

In the middle atmosphere and the ocean in general

R À 1 and therefore stratified turbulence seems to be most
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Figure 6: The different regimes in stably stratified fluids.

The conditions under which the our DNS are carried out are

represented by the symbols.

relevant. However, in laboratory experiments and numerical

simulations it is difficult to create the condition R À 1 since

it requires very high Re when the stratification is strong.

This is illustrated by figure 6 where the present DNS are

represented by symbols. It shows that some of these DNS

have just met the conditions R > 1 and Fh < 0.02. Much

larger computations are required to really satisfy the condi-

tion R À 1 and reveal a clear inertial range without viscous

effects.
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