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ABSTRACT

Turbulencemodels for passive scalar transport are known

to have difficulties in complex flows involving strong rota-

tion or MHD effects. Here, we consider the transport of

a passive scalar in homogeneous turbulence examined in

rotating frames. We first examine the effects of system rota-

tion in the case of decaying hydrodynamic turbulence using

Rapid Distortion Theory (RDT) as a guide. It is shown

that the evolution of the scalar flux is strongly influenced

by the structure dimensionality of the flow, and this sug-

gests that scalar flux models must be made structure aware.

Then, using Direct Numerical Simulations (DNS), we pro-

ceed to examine the case of passive scalar transport under

the influence of homogeneous MHD turbulence in a con-

ducting fluid that is undergoing mean shear in fixed and

rotating frames. It is shown that in all the cases consid-

ered here, the evolution of the scalar flux coefficients can

be explained in terms of the structural information provided

by the one-point structure tensors. These results provide

strong support for the formulation of structure-based mod-

els for passive scalar transport.

INTRODUCTION

The transport and dispersionof scalars in turbulentflows

is important in many engineeringapplications, such as pollu-

tant dispersion and heat transfer in turbomachinery. Many

magnetohydrodynamic (MHD) shear flows of engineering or

scientific interest also involve the transport and dispersion

of passive scalars. For example, liquid metal flows in fusion

reactor blankets are complicated by the intricacies of the ge-

ometry and the presence of thermal gradients and curvature.

There are also important examples, where scalar transport

takes place in an MHD fluid that is being sheared in a rotat-

ing system. For example, the transport of internal energy

is important in the workings of the Earth’s dynamo, and

plays a key role in stellar accretion disks, in the interstellar

medium, and other astrophysical settings as well.

There is clearly a need for turbulence models that can

provide robust and reliable predictions of scalar transport in

the presence of complex dynamical effects, such as system

rotation or magnetic fields. The transport of a passive scalar

in homogeneous shear flow offers a simplified setting where

new modeling ideas can be developed and tested.

A recent DNS study of homogeneous shear in a rotating

frame by Brethouwer (2005) has provided valuable insight

into the modifications that system rotation induces on scalar

transport. Both the scalar transport rate and the direction

of the scalar flux were shown to depend strongly on the ratio

of the frame rotation rate to the mean shear rate. In another

recent study, Kassinos et al. (2006) examined the evolution

of homogeneous MHD turbulence that was being sheared in

fixed and rotating frames. They found that the structure of

the evolving turbulence fields was strongly dependent on the

various ratios of the characteristic time scales of the mean

shear, the frame rotation and the magnetic field. Kassinos et

al. (2007) used DNS to examine passive scalar transport in

a conducting liquid being sheared in a rotating frame while

being exposed to a uniform external magnetic field. In the

case when the time scale of the mean shear was 20 times

larger than the Joule time scale of the magnetic field, they

found that the scalar transport was closely linked to the

structure of the turbulence field.

Here we first use Rapid Distortion Theory (RDT) to

examine passive scalar transport in hydrodynamic homoge-

neous turbulence that is decaying in a rotating frame. Then,

we use DNS to establish the connection between the turbu-

lence structure and scalar transport in a conducting fluid

that is exposed to a uniform external magnetic field while

being sheared in fixed and rotating frames. In the MHD

case, we take the time scale of the mean shear to be compa-

rable to the magnetic Joule time scale, because this leads to

a rich interplay of dynamical effects (Kassinos et al., 2006).

THE ONE-POINT TURBULENCE STRUCTURE TENSORS

The Reynolds stress tensor

Rij =< uiuj > q2 = 2κ = Rii rij = Rij/q2 (1)

where and κ is the turbulent kinetic energy, describes the

componentalityof the turbulence, giving information on how

energetic the velocity fluctuations are in different directions.
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It does not, however, provide information on how these fluc-

tuations are organized in structures. The diagnostic tool

used for determining the structural morphology of the tur-

bulence fields are the one-point structure-tensors introduced

by Kassinos et al. (2001). In homogeneous turbulence, the

structure dimensionality tensor is

Dij =

∫
Enn(k)

kikj

k2
d3k, dij = Dij/Dkk, Dkk = q2 (2)

where Eij(k) ∼< ûiû
∗
j > is the velocity spectrum tensor,

ki are the components of the wavenumber vector. One can

show (Kassinos and Reynolds, 1995) that, in the limit of

RDT, mean rotation has only a kinematic effect on Dij.

Hence, in the case of decaying turbulence in a rapidly rotat-

ing frame (no mean deformation), Dij remains unaffected

by the frame rotation, as is the case with the turbulent

kinetic energy. Note that each diagonal component of dij

can attain values only between 0 and 1, and that in an

isotropic field all three diagonal components are equal to

each other (d11 = d22 = d33 = 1
3
). For turbulence in which

the energy-containing structures are elongated in the xα di-

rection, dαα → 0, while dαα → 1 corresponds to structures

that are narrow and have strong gradients in the xα direc-

tion. We also use the structure circulicity tensor

Fij =

∫
Wij(k)

k2
d3k, fij = Fij/Fkk, Fkk = q2 (3)

where Wij ∼< ω̂iω̂∗
j > is the vorticity spectrum tensor. Fij

describes the large-scale circulation in the field. For exam-

ple, when all of the large-scale circulation is concentrated,

let’s say, around the x1 axis, f11 = F11/Fii → 1. In ho-

mogeneous turbulence, the Reynolds stress, dimensionality

and circulicity tensors are related through the constitutive

equation

Rij + Dij + Fij = q2δij or rij + dij + fij = δij (4)

where in writing the second equation in (4), we have used the

fact that in homogeneous turbulence Rii = Dii = Fii = q2.

LINEAR ANALYSIS OF A HYDRODYNAMIC CASE

The inviscid RDT transport equations for the fluctuating

velocity components ui, in the case of turbulence decaying

without deformation in a frame rotating about the x3 axis,

become

u̇i = −p,i/ρ0 + 2εij3Ω
f uj (5)

where Ωf is the frame rotation rate. Hereafter, we are using

index notation, where a subscript following a comma denotes

spatial differentiation. The Fourier transformed variables

(denoted with ˆ ) evolve according to

dûi/dτ = ip̂ki/ρ0 + 2εij3Ωf ûj (6)

Applying the Fourier transformed continuity equation,

kiûi = 0, in (2), we can solve for the pressure

ik2 p̂/ρ0 = −2Ωf k1û2 + 2Ωf k2 û1 (7)

and by substituting into the system (2), this simplifies to

dûi/dβ = εnm3(kikn/k2 − δin)ûm (8)

where ki are the components of the wavenumber vector,

k2 = k2
1 +k2

2 +k2
3 , and β = 2Ωf is the total rotation applied.

The solutionof the above system takes totally different forms

depending on the dimensionality of the turbulence. For ex-

ample, for the initially isotropic 3D-3C case it has been

shown that the Reynolds stresses remain constant (but not

the instantaneous velocities). However this behavior may

change significantly for different initializations, depending

on the dimensionality tensor (Reynolds, 1989; Kassinos et

al., 2001). Below we show an example for two-dimensional

(2D) turbulence where the axis of independence is aligned

either with the axis of rotation x3, and thus d33 = 0, or with

the axis x1 normal to the rotation axis, and thus d11 = 0.

Using linear analysis, we show that the scalar fluctuations

θ of a passive scalar Θ, with a constant mean gradient

Γi = Θ,i , follow a significantly different evolution history

depending on the dimensionality of the turbulence.

The evolution of the Fourier transformed scalar fluctua-

tions for our case is governed by

dθ̂/dβ = −γm ûm (9)

where γm = Γm/(2Ωf ). In order to calculate and integrate

the 2D spectra for the derivation of the Reynolds stresses

and the scalar fluxes, we make use of two different initializa-

tions, namely a vortical and a jetal initial velocity spectrum

(Kassinos et al., 2001; Akylas et al., 2007). More specifi-

cally, in the vortical case the componentality of the initially

2D turbulence is isotropic in planes perpendicular to the

axis of independence xα. In this case, the vortical 2D-2C

(see also Cambon et al., 1997) spectrum is given by

Evor
ij =

E(k, 0)

2πk
δ(kα)(δij −

kikj

k2
) (10)

with i and j allowed to take all the values 1,2,3, apart from

the value of α. In contrast, when the initial turbulence is

completely jetal, all the velocity fluctuations are in the di-

rection of the axis of independence xα. The initial 2D-1C

jetal spectrum corresponding to this condition is

E
jet
ij =

E(k,0)

2πk
δiαδjα (11)

with i and j taking only the value of α (no summation implied

for repeated Greek indices). In the relations (6) and (7) the

initial turbulent kinetic energy spectrum satisfies

∫ ∞

k=0
E(k,0)dk =

q2
0

2
=

Rnn

2
(12)

Because of the linearity of the governing equations, the so-

lutions for the initially jetal 2D-1C and the initially vortical

2D-2C cases can be superposed to produce the turbulence

statistics for various 2D-3C initial fields, consisting of un-

correlated jets and vortices.

2D Case with k1 = 0

In this case the turbulence is independent of the x1-axis

and consists of very long axisymmetric structures (d22 =

d33 = 0.5) aligned with the x1 direction. The solution of (4)

for the Fourier transformed velocity components becomes

û1 = û0
1 cos(β sin φ) + û0

2 cscφ sin(β sinφ)

û2 = û0
2 cos(β sin φ)− û0

1 sinφ sin(β sinφ) (13)

û3 = û0
3 cos(β sin φ) + û0

1 cosφ sin(β sin φ)

In the above we have set k2 = k cosφ,k3 = k sinφ in cylin-

drical coordinates. In the case of a passive scalar with a

constant mean gradient in x2 direction Θ = Γ2x2, the inte-

gration of (5) for zero initial scalar fluctuations gives

θ̂ = −γ2 û0
1(cos(β sin φ)− 1) − γ2û0

2 cscφ sin(β sin φ) (14)
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Forming the 2D-3C spectra, superposing 2/3 of (6) and 1/3

of (7), and integrating over k2 and k3 , we calculate the

Reynolds stresses

R11

q2
0

=
3 − 2J0(2β)

6

R22

q2
0

=
3 + 2J0(2β)− J1(2β)/β

12
(15)

R33

q2
0

=
3 + J1(2β)/β

12

where Jn are Bessel functionsof the first kind. Unlike the 3D

initially isotropic case, where the turbulent stresses remain

isotropic, for this 2D case the stresses evolve, showing an

oscillatory behavior around the values r11 = 1/2, r22 =

r33 = 1/4, as it is illustrated in Fig. 1.
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Figure 1: Evolution of the Reynolds stresses for the 2D case

with independence of x1-axis (d11 = 0): 11 (solid), 22 (short

dashed), 33(long dashed) and 12 (dot-dashed).

Similarly, the integrations for the passive scalar fluxes

yield

u1θ

γ2q2
0

=
−3 + J0(2β) + 2J0(β)

6

u2θ

γ2q2
0

=
J1(2β)− 2J1(β)

6
(16)

u3θ

γ2q2
0

= 0
θ2

γ2
2 q2

0

=
5− J0(2β)− 4J0(β)

6

Following the notation of Brethouwer (2005) and Rogers et

al. (1989), the scalar-velocity correlation coefficient is de-

fined by

ζα
β = uβθα/u′

βθ′α (17)

where u′
β =

√
Rββ and θ′α =

√
θ2 are the rms velocity

and scalar fluctuations, the index α denotes the direction of

the mean scalar gradient, the index β the direction of the

velocity component, and where no summation is implied for

repeated Greek indices. Thus, ζ2
1 characterizes the turbulent

flux in the flow direction (x1) of a scalar with an imposed

mean scalar gradient in the transverse (cross flow) direction

(x2), and consequently, the correlation coefficients for the

scalar fluxes become

ζ2
2 =

√
2(J1(2β)− 2J1(β))√

(5− J0(2β)− 4J0(β))(3 + 2J0(2β)− J1(2β)/β)

ζ2
1 =

−3 + J0(2β) + 2J0(β)√
(5− J0(2β)− 4J0(β))(3− 2J0(2β))

(18)

ζ3
3 = 0

2D Case with k3 = 0

In this case, the 2D turbulence is independent of the axis

of the frame rotation and the Reynolds stresses do not de-

pend on the frame rotation, in agreement with the principle

of material indifference (Speziale, 1981). The system (4)

yields constant velocity components

ûi = û0
i (19)

Thus, the Reynolds stresses do not evolve (as in the 3D

isotropic case) and the stresses remain fixed to the value

r11 = r22 = r33 = 1/3. However, through equation (5), the

passive scalar fluctuations evolve linearly with time

θ̂ = −γ2βû0
2 (20)

The integrations over k1 and k2 for the calculation of the

scalar fluxes show that for this 2D-3C case

u1θ

γ2q2
0

= 0,
u2θ

γ2q2
0

= −
β

3
,

u3θ

γ2q2
0

= 0,
θ2

γ2
2q2

0

=
β2

3
(21)

The correlation coefficients for the scalar fluxes in this case

are zero apart from the scalar flax in the x2 direction

ζ2
1 = 0 ζ2

2 = −1 ζ2
3 = 0 (22)

In Fig. 2 we show a comparison between the correlation

coefficients for the scalar fluxes corresponding to the 3D-3C

isotropic case, and the 2D-3C cases with d11 = 0 and with

d22 = 0. The results for the 3D-3C isotropic case have been

calculated using the PRM (Kassinos and Reynolds, 1999).
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Figure 2: Evolution of correlation coefficients for the scalar

fluxes uiθ for the initially 3D-3C isotropic case (bold lines:

i=1, solid, and i=2, dashed), the 2D case with independence

of x1-axis (d11 = 0) (thin lines: i=1, solid, and i=2, dashed)

and the 2D case with independence of x3-axis (d33 = 0)

(thin line: i=2, long-dashed).

From the comparisons it is clear that for the isotropic

case the correlations gradually vanish. For the two 2D cases

a strong correlation survives at large β. In the case with
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Figure 3: Flow configuration

d11 = 0 the surviving correlation is u1θ, while in the case

with d33 = 0 is u2θ.

This simple linear analysis has shown that the structure

dimensionality of the turbulence has a strong effect on pas-

sive scalar transport. Next, we use DNS to examine the

relation between the dimensionality of the turbulence struc-

ture and passive scalar transport in complex flows.

DIRECT NUMERICAL SIMULATIONS OF MHD CASES

Here we discuss only the case where both the frame ro-

tation and the imposed magnetic field are aligned with the

spanwise direction (normal to the plane of the mean shear)

as shown in Fig. 3. A uniform mean passive scalar gradient

is imposed in the transverse direction (normal to the stream-

wise within the plane of the mean shear). The hydrodynamic

configuration is relevant to several engineering applications,

including turbomachinery and geophysical flows, while the

MHD configuration is relevant to accretion disks. We take

the mean deformation tensor, the frame rotation, imposed

magnetic field, and mean scalar gradient vectors to be

Gij ≡ Ui,j = Sδi1δj2 Ωf
i = Ωf δi3

Bi = Bδi3 Γi ≡ Θ,i = Γδi2 (23)

where Ui and Θ are the mean velocity and the mean scalar.

Dimensionless parameters

The effects of a uniform magnetic field applied to un-

strained homogeneous turbulence in an electrically conduc-

tive fluid are characterized by three dimensionless parame-

ters. The first of these is the magnetic Reynolds number

Rm =
v′L

η
= (

v′

L
)(

L2

η
) (24)

where L is the integral length scale, v′ =
√

Rii/3 is the rms

velocity and η is the magnetic diffusivity

η = 1/(σµ∗) (25)

Here σ is the electric conductivity of the fluid, and µ∗ is the

fluid magnetic permeability (here we use µ∗ for the magnetic

permeability and reserve µ for the dynamic viscosity). Thus

the magnetic Reynolds number represents the ratio of the

characteristic time scale for diffusion of the magnetic field

(L2/η) to the time scale of the turbulence (L/v).

The second parameter is the magnetic Prandtl number

representing the ratio of Rm to the hydrodynamic Reynolds

number ReL

Pm ≡
ν

η
=

Rm

ReL
, ReL =

v′L

ν
(26)

Similarly, we can define the scalar Prandtl number Ps ≡
ν/κ, where κ is the scalar diffusivity. Here we assume Ps =

1.

The magnetic-interaction number is

N ≡
σB2L

ρv′
=

(Bext)2

η

L

v′
=

τ

τm
(27)

where B is the magnitude of the magnetic field, Bext =

B/
√

µ∗ρ is the magnetic field expressed in Alfven units, and

ρ is the fluid density. N represents the ratio of the turbu-

lence time scale τ = L/v′ to the Joule time τm = η/(Bext)2,

i.e. the characteristic time scale for dissipation of turbu-

lent kinetic energy by the action of the Lorentz force. N

parametrizes the abilityof an imposed magnetic field to drive

the turbulence to a two-dimensional three-component state.

In the presence of mean shear and frame rotation, two

additional parameters become important. The first of these

is the ratio of the time scale of the mean shear τshear ≡ 1/S

to the Joule time τm,

M ≡
(Bext)2

ηS
=

τshear

τm
(28)

where S is the mean shear rate. The second is the ratio of

the frame rotation rate Ωf to shear rate S,

λ ≡
2Ωf

S
(29)

where Ωf = −Ω
f
12 so that positive values of λ correspond

to a frame counter-rotating relative to the sense of rotation

associated with the mean shear (see Fig. 1). With this def-

inition, λ = 1 corresponds to a frame that counter-rotates

at a rate that exactly matches the intrinsic rotation rate

associated with mean shear, and λ = 0.5 to the most unsta-

ble case where the turbulent kinetic energy growth rate is

maximized.

Finally, the dimensionless shear parameter, which repre-

sents the ratio of the turbulence time scale τturb ≡ q2/ε to

the mean shear time scale τshear ≡ 1/S,

S∗ ≡
Sq2

ε
= 2

Sk

ε
=

3S(v′)2

ε
=

τturb

τshear
(30)

provides a measure of the rapidity of the mean deformation.

Governing equations

Passive scalar transport in homogeneous MHD shear flow

is described by the incompressible MHD equations with the

addition of the passive scalar transport equation. Here, the

governing equations are transformed into a rotating frame,

where they are explicitly decomposed into a mean and a

fluctuating part. Within the rotating frame, we solve the re-

sulting governing equations for the fluctuation velocity field

vi, the fluctuation magnetic field bi and the passive scalar

fluctuation θ in a coordinate system that deforms with the

mean flow, so that Fourier decomposition methods can be

employed. In this deforming coordinate system, the trans-

formed equations become

∂tvi + Gikvk +
∂vi

∂xm
vkAmk + 2Ω

f
ikvk = −

1

ρ

∂p

∂xm
Ami

+
∂Bext

i

∂xm
bkAmk +

∂bi

∂xm
Bext

k Amk (31)

+
∂bi

∂xm
bkAmk + ν

∂2vi

∂xk∂xz
AzpAkp
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∂tbi − Gikbk = −vk
∂Bext

i

∂xm
Amk − vk

∂bi

∂xm
Amk

+Bext
k

∂vi

∂xm
Amk + bk

∂vi

∂xm
Amk + η

∂2bi

∂xk∂xz
AzpAkp (32)

and

∂tθ +
∂θ

∂xm
Amkvk + ΓmAmkvk = κ

∂2θ

∂xk∂xz
AzpAkp (33)

Here, p is the total pressure including a magnetic contribu-

tion, Bi are the components of the imposed mean magnetic

field, xi are deforming coordinates, Gij = Ui,j is the mean

velocity gradient tensor, and Aij is the (Rogallo) trans-

formation matrix (see for example Kassinos and Reynolds,

1995). Γi ≡ Θ,i = Γδi2 is the mean scalar gradient vector,

which is taken to be uniform in space and constant in time.

Numerical code and initial conditions

We have used a pseudo-spectral code with the ability to

simulate the full MHD equations (31) through (33). The

numerical method used to solve the governing equations for

homogeneous shear flows is similar to that introducedby Ro-

gallo (1981). In the deforming coordinates, Fourier pseudo-

spectral methods, with periodic boundary conditions, are

used for the representation of the spatial variation of the

flow variables. Time advance is accomplished by a third-

order Runge-Kutta method. Since the mean imposed shear

skews the computational grid with time, periodic remesh-

ing of the grid is needed in order to allow the simulation to

progress to large total shear, where a self-preserving regime

might be expected to prevail. The periodic remeshing in-

troduces aliasing errors that are removed by a de-aliasing

procedure (Rogallo, 1981) included in the code.

All the runs presented here have a resolution of 2563

Fourier modes in a (2π)3 computational domain. The ini-

tial conditions were created starting with a pulse of energy

at low wave numbers in Fourier space and a random distri-

bution of phases for the Fourier modes. In order to let the

higher-order statistics develop, the flow was evolved in the

absence of either mean shear or frame rotation, and without

a mean magnetic field or mean scalar gradient, while forc-

ing was being applied to the low wave number region of the

spectrum. This initial phase was continued until an equilib-

rium state was reached and the skewness acquired its peak

value. At that time, hereafter referred to as t0, the external

magnetic field, mean scalar gradient, mean shear and frame

rotation were switched on, while the artificial forcing was

eliminated. The characteristics of the initial field at time t0
are summarized in Table 1. In all runs, the scalar fluctu-

ation field was initialized to zero at t = t0 and allowed to

evolve as result of the interaction with the velocity fluctu-

ations. Thus our initial conditions for the scalar field are

the same as those adopted by Brethouwer (2005). Similarly,

in the MHD runs, an initial condition for bi has to be cho-

sen at t = t0. Here we have made the choice bi(t0) = 0.

In other words, our simulations describe the response of an

initially non-magnetized turbulent conductive fluid to the

application of a mean magnetic field.

For a given initial hydrodynamicfield, not all of these pa-

rameters can be independently specified. For example, spec-

ification of M and N0 determines the ratio of the turbulence

time scale to the mean shear time scale S∗
0 = (3S(v′)2/ε)0

as well. Here, we have chosen to set Rm = 1, M = 2

and N0 = 15 (or N0 = 0 in the hydrodynamic case). The

resulting value of S∗
0 = 35.85 matches closely the condi-

tions consideredby Brethouwer (2005), and thus results from

Table 1: Turbulence characteristics of the initial velocity

field. All quantities are in MKS units.

Resolution 2563

Box size (`x × `y × `z) 2π × 2π × 2π

Rms velocity (v′) 1.447

Viscosity 0.006

Integral length-scale (L)

(3π/4× (
∫

k−1E(k)dk/
∫

E(k)dk)) 0.357

Re = vL/ν 86

Dissipation (ε) 5.334

Dissipation length scale (γ = (ν3/ε)(1/4)) 0.0142

kmaxγ 1.82

Microscale Reynolds number

(Reλ =
√

15/(νε)v2) 45.35

Eddy turnover time (τ = (3/2)v2/ε) 0.589

the hydrodynamic runs in this group of simulations can be

compared directly with the results of Brethouwer, offering

a valuable validation of the current simulations. M = 2

means that the time scale of the mean shear is comparable

to the Joule time, and based on the results of Kassinos et

al. (2006), one would expect a rich interplay between the

effect of the mean shear and the magnetic field. Finally,

it should be noted that for the MHD runs, specification of

Rm and N completely determines η and Bext through equa-

tions (24) and (27). In all cases, the mean scalar gradient

Γi is taken to be uniform and aligned with the transverse

direction x2. Through a proper non-dimensionalization of

the scalar transport equation (33), it can be shown that the

magnitude of Γi is irrelevant, and is thus taken to be unity.

Results

For the MHD cases consideredhere it is convenient to de-

fine equivalent structure dimensionality tensors for the mag-

netic and passive scalar fluctuations fields. When the trace

of the velocity spectrum tensor Enn(k) in (2) is replaced

by the trace of the magnetic spectrum tensor Eb
nn(k) ∼<

b̂n b̂∗n >, one obtains an equivalent tensor Dm
ij describing the

structure of the fluctuating magnetic field. We will use Dm
ij

as a diagnostic of structure alignment in the magnetic field.

In a similar fashion, we define

Ds
ij =

∫
Es(k)

kikj

k2
d3k, dij = Ds

ij/Ds
kk, Ds

kk =< θθ >

(34)

and use this as a diagnostic of the structure of the passive

scalar field. Here Es(k) =< θ̂θ̂∗ >.

In most cases, the one-point structure tensors provide all

the structural information that is necessary to infer scalar

transport. For example, as shown in Figs. 4a,d and 5, in the

hydrodynamic case, the velocity and scalar fluctuation fields

are organized into long streamwise eddies with an almost ax-

isymmetric cross section (d11 ≈ 0.1, d22 ≈ 0.4,d33 ≈ 0.5).

In the Rm = 1 MHD case, the streamwise structures in

the velocity field become flattened, with a cross section

that is much narrower in the spanwise than in the trans-

verse direction (d11 ≈ 0, d22 ≈ 0.3, d33 ≈ 0.7). A similar

morphology is found in the magnetic fluctuation field. To

understand the behavior of the scalar flux coefficient (equa-

tion 17) shown in Fig. 6c, we examine in greater detail

the turbulence structure tensor for the velocity field. As

shown in Figs. 5 and 6, in the absence of a magnetic field,

the streamwise eddies have a very strong vortical character

(r11 << r22, r33, f11 ≈ 8.3 at St = 10). As one would have
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(a) (d)

(b) (c) (e)

Figure 4: Three dimensional magnitude contours showing

the structural anisotropy induced at large times (St = 10)

when Rm = 1, M = 2 and λ = 1: (a) Velocity field for

the hydrodynamic case; (b) velocity field for MHD case; (c)

magnetic field case the MHD case; (d) scalar field case hy-

drodynamic case; (e) scalar field case the MHD case;
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Figure 5: Evolution of the normalized dimensionality tensor

for (a) the velocity field, (b) the magnetic field, and (c) the

scalar field when λ = 1.0. Lines correspond to the hydrody-

namic case and dark symbols to the MHD (Rm = 1) case:

( , ) d11 ; ( , ) d22 ; ( , ) d33 ; ( ,

) d12.

expected, this strongly vortical organization of the velocity

field, favors a strong scalar flux in the transverse direction

and ζ2
2 is quite large at St = 10, while the streamwise flux

coefficient is almost zero (see Fig.6c). In the Rm = 1 MHD

case, the flattened streamwise eddies are no longer vortical,

but instead represent helical structures where kinetic en-

ergy is equally distributed among jetal and vortical motions

(r11 ≈ r22 ≈ 0.4 at St = 10 in Fig. 6). In addition, the

flattening (d22 << d33) of the eddy cross section (which ap-

pears much wider the in transverse direction x2) favors the

coherence of the turbulent fluctuation in that direction. As

a result, the scalar flux coefficients in both the streamwise

and transverse directions are quite large at St = 10.

The above discussion shows that the drastic modifica-

tions of the scalar flux coefficients induced by the external

magnetic field can be explained nicely if one makes use of

the one-point turbulence structure tensors (2), (3) and (34)

in order to visualize the morphology of the turbulence fields.

CONCLUSIONS

We have used Rapid Distortion Theory (RDT) and Di-

rect Numerical Simulations (DNS) to show that the trans-

port of a passive scalar in both simple hydrodynamic, and

in more complex flows, is to a large extend determined by

the structure of the turbulent fields. Furthermore, the one-

point turbulence structure tensors were shown to provide an

accurate description of the structural morphology of the tur-

bulence. In the case of MHD turbulence in a rotating frame,

the structure tensors were used to explain modifications in

passive scalar flux, brought about by the activation of the

external magnetic field, that would otherwise be difficult to

understand. We propose that these results provide strong

evidence for the need to construct structure-based models
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total shear St

(c)ζ2
i

Figure 6: Evolution of (a) rij (equation 1) and (b) of fij

(equation 3) when λ = 1.0. Lines correspond to the hy-

drodynamic case and dark symbols to the MHD case with

Rm = 1: ( , ), 11 component; ( , ), 22

component; ( , ), 33 component; ( , ),

12 component. The corresponding evolution of the scalar

flux coefficient (equation 17) is shown in (c); lines corre-

spond to the hydrodynamic case, dark symbols to the MHD

case, and open symbols to the hydrodynamic simulations of

Brethouwer (2005): ( , , ) ζ2
1 ; ( , , ) ζ2

2 .

for the turbulent flux of passive scalars. We are currently

working on the construction of such a structure-based model

and we hope to soon be able to report on its performance.
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