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ABSTRACT

A turbulence model based on a statistical analysis of

magnetohydrodynamic (MHD) turbulence with the flow-

expansion effects incorporated is applied to the solar wind.

In the model, the dynamics of the turbulent MHD residual

energy (difference between the kinetic and magnetic ener-

gies) and the turbulent cross helicity (velocity–magnetic-

field correlation) are simultaneously solved with those of

the turbulent MHD energy and its dissipation rate. The

observed radial behaviors of the solar-wind turbulence, i.e.,

the decay of the cross helicity and the stationariness of the

Alfvén ratio (rA, the ratio of kinetic to magnetic-field ener-

gies) are reproduced by a numerical simulation of the model.

The stationary value of rA � 0.5 far from the Sun is eluci-

dated as a stationary solution of the turbulence model.

INTRODUCTION

Spacecraft observations of solar wind have provided in

situ information on the velocity and magnetic-field fluctu-

ations in inhomogeneous plasmas. According to the ob-

servations, the solar-wind fluctuations show a high degree

of Alfvénicity. Namely, (i) the cross-correlation between

the velocity and magnetic-field fluctuations is very high,

and (ii) the equipartition between the kinetic and mag-

netic energies is realized (Belcher and Davis, 1971). It

is also known that the Alfvénicity decreases as the he-

liocentric distance increases: the scaled cross correlation

|W |/K(= 2|〈u′ · b′〉|/〈u′2 + b′2〉) � 1 → 0.2 and the Alfvén

ratio rA(≡ 〈u′2〉/〈b′2〉) � 1 → 0.5 (Fig. 1). Not a few

attempts have been done in elucidating this transitional be-

havior of solar-wind turbulence (see Roberts et al., 1990; Tu

and Marsch, 1995 and references cited therein). However, it

has been difficult to completely reproduce the radial evolu-

tion of the turbulent energy, cross helicity, and the energy

difference, simultaneously. So, this transition is left as one of

the unsolved problems in the current magnetohydrodynamic

(MHD) turbulence theory for the solar wind.

The degree of Alvénicity in MHD turbulence can be

described by one-point turbulence quantities such as the

turbulent cross helicity W (≡ 〈u′ · b′〉) and turbulent MHD

residual energy KR(≡ 〈u′2 − b′2〉/2). Recently, a model

equation for KR has been proposed on the basis of a sta-

tistical analysis of inhomogeneous MHD turbulence (Yokoi,

2006). As compared with the previous work relevant to

KR (Zhou and Matthaeus, 1990; Tu and Marsch, 1993;

Matthaeus et al., 1994), its features may be summarized

as (i) systematic incorporation of large-scale inhomogene-

ity through the nonlinear mixing terms and (ii) one-point

modeling based on the Green’s function formalism. These

features make the model more appropriate than the previ-

ous models in describing turbulent behaviors in the outer

heliosphere, where inhomogeneities of the large-scale veloc-

ity and magnetic field are considered to play an important

role in the turbulence evolution.
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Figure 1: Observed radial evolution of the scaled cross helic-

ity |W |/K and the Alfvén ratio rA against the heliocentric

distance r (AU). Redrawn from Roberts et al. (1990).

EQUATION OF TURBULENT MHD RESIDUAL ENERGY

Fundamental equations

The density ρ, velocity u, and magnetic field b∗ of MHD

fluids obey
∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p +

1

ρ
j∗ × b∗ + ν∇2u (2)

∂b∗
∂t

= ∇× (u × b∗) + λ∇2b∗ (3)
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∇ · b∗ = 0 (4)

[ν: kinematic viscosity, λ: magnetic diffusivity]. Note that

the magnetic field and electric-current density measured in

the original units, b∗ and j∗, are related to the counterparts

in the Alfvén-speed units as

b =
b∗

(μρ)1/2
, j =

j∗
(μ/ρ)1/2

(5)

(μ: magnetic permeability). As this consequence, Eqs. (1)

and (4) are rewritten as

∇ · u = −
(

∂

∂t
+ u · ∇

)
ln ρ (6)

∇ · b = −1

2
(b · ∇) ln ρ (7)

We decompose a field quantity f into the mean F and

the fluctuation around it, f ′, as

f = F + f ′, F = 〈f〉 (8)

with

f = (ρ, u, b, j, p) (9)

F = (ρ̄, U, B, J, P ) (10)

f ′ = (ρ′, u′, b′, j′, p′) (11)

(〈·〉: ensemble average). In this work, we are interested in

the effects of the large-scale stationary behavior of the solar-

wind turbulence and consider the effects of the mean-density

variation. Then we neglect the density fluctuation as

ρ = ρ̄, ρ′ = 0 (12)

throughout this work. This point does not deny the impor-

tance of the effects of density fluctuation, in particular at

small spatial scales and short timescales.

Model of the turbulent MHD residual-energy equation

As far as a comparison with the solar-wind observation is

concerned, the turbulent statistical quantities measured at

a given heliocentric radius with an observed density bear

a great deal of relevance to this work. So we will con-

sider the total turbulent MHD energy K(≡ 〈u′2 + b′2〉/2),

the cross helicity W (≡ 〈u′ · b′〉), and the turbulent MHD

residual energy KR(≡ 〈u′2 − b′2〉/2) in this work, instead

of the compressible counterparts such as 〈ρ(u′2 + b′2)〉/2,

〈ρu′ · b′〉, etc.

Applying the Reynolds decomposition [Eq. (8)] into

Eqs. (2)-(4), we get equations for the velocity and magnetic-

field fluctuations, u′ and b′. From these equations, we

obtain the evolution equation of the turbulent MHD residual

energy KR as

DKR

Dt
≡

(
∂

∂t
+ U · ∇

)
KR

= −Rab
T

∂Ua

∂xb
+ W ab

T

∂Ba

∂xb
− Γ · B

−εR + TR + DRT (13)

where εR is the dissipation rate of KR, TR is the transport

rate of KR, and DRT is the density-variation-related terms.

Here, RT, WT, and Γ in Eq. (13) are the self-correlation

tensor, cross-correlation tensor, and torsional cross vector of

MHD turbulence, respectively. They are defined by

Rαβ
T ≡

〈
u′αu′β + b′αb′β

〉
(14)

W αβ
T ≡

〈
u′αb′β + b′αu′β〉

(15)

Γα ≡
〈

b′a
u′a

∂xα
− u′a ∂b′a

∂xα

〉
(16)

These correlations represent nonlinear mixing due to turbu-

lence and are expected to play a central role in the evolution

of the turbulent MHD residual energy.

In Eq. (13), DRT represents the effects of mean-density

variation. We see from Eqs. (6) and (7) that the mean-

density variation can be related to the divergence of the

mean velocity and magnetic fields as

∇ · U = −
(

∂

∂t
+ U · ∇

)
ln ρ̄ = − (U · ∇) ln ρ̄ (17)

∇ · B = −1

2
(B · ∇) ln ρ̄ (18)

Since our interests in this work lie only in the steady state

of the large-scale solar-wind structure, we dropped temporal

derivative of the mean density in Eq. (17). The explicit

expressions for the DRT are given later.

From a statistical theoretical analysis of the incompress-

ible MHD turbulence, we obtained the expressions for RT,

WT, and Γ in terms of the spectral functions (Yokoi, 2006)

With the aid of these expressions, we model these quantities

as

Rαβ
T =

2

3
Kδαβ − νRSαβ + HRT (19)

W αβ
T =

2

3
Wδαβ − νRMαβ + HRT (20)

Γ = Cr1
ε

K2
KRB + HRT (21)

(Sαβ : mean-velocity strain rate, Mαβ : mean-magnetic-field

strain rate, HRT: helicity-related terms, Cr1: model con-

stant). Here, ε is the dissipation rate of the turbulent MHD

energy defined by

ε = ν

〈
∂u′a

∂xb

∂u′a

∂xb

〉
+ λ

〈
∂b′a

∂xb

∂b′a

∂xb

〉
(22)

and νR is the turbulent residual viscosity defined by

νR = νK
KR

K
(23)

with νK being the turbulent viscosity:

νK = CνK
K2

ε
(24)

(CνK: model constant).

Using Eqs. (19)-(21), we model the equation for the tur-

bulent residual energy (KR equation) as

DKR

Dt
=

1

2
νR

(
S2 − M

2) − CεR

(
1 +

Cr1

CεR

B2

K

)
ε

K
KR

+
1

ρ̄
∇ ·

(
νK

σR
ρ̄∇KR

)
+ DRT (25)

Here, the second (CεR-related) and the third terms corre-

spond to εR and TR in Eq. (13), respectively. As a first step

of modeling the turbulent MHD residual-energy equation,

we have dropped the helicity-related terms (HRT).

It is worth while to give a brief explanation on the

structure of the KR equation. Since the turbulent resid-

ual viscosity νR is defined as Eq. (23), the right-hand side

(RHS) of Eq. (25) with DRT dropped is linear in KR. This

shows that no KR can be generated unless a finite amount

of KR (seed of KR) already exists. With taking into account
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the compressible or flow-expansion effect, this situation must

be changed. This point will be referred to in the following

section. Here we should remark the following two points.

Firstly, the first term of Eq. (25) represents KR generation

(or destruction) due to the relative magnitude of the mean

velocity strain (S2) to the magnetic counterpart (M2). Sec-

ondly, the Cr1-related part of the second term of Eq. (25)

shows that the presence of the mean magnetic field (B) leads

to returning turbulence to equipartition since it always de-

structs the existing KR. This corresponds to the Alfvén

effect caused by the mean magnetic field. The second term

of Eq. (25) suggests that the destruction of KR is brought

by a combination of two turbulence processes: the turn-over

of eddies and the Alfvénic interaction.

APPLICATION TO THE SOLAR WIND TURBULENCE

System of model equations

As was referred to in Introduction, the solar wind is

blown away from the Sun to the surrounding space. In order

to quantitatively discuss the radial evolution of the solar-

wind turbulence, we should take into account this expansion

effect properly. For this purpose, we incorporate the effects

of the mean-density stratification by way of Eqs. (17)-(18).

In this formulation, the evolution equations for the turbu-

lent MHD energy K, its dissipation rate ε, the cross helicity

W , and the turbulent MHD residual energy KR are given as

∂K

∂t
= − (U · ∇) K

−1

6
(3K + KR)∇ · U − 2W∇ · B

+
1

2
νKS2 − 1

2
νMS : M + βJ2 − γΩ · J

−ε + ∇ · (WB) +
1

ρ̄
∇ · (νKρ̄∇K) (26)

∂ε

∂t
= − (U · ∇) ε + Cε1

ε

K
PK − Cε2

ε

K
ε

+
1

ρ̄
∇ ·

(
νK

σε
ρ̄∇ε

)
(27)

∂W

∂t
= − (U · ∇) W

−1

2
W∇ · U −

(
2K − 1

3
KR

)
∇ · B

+
1

2
νKS : M − 1

2
νMM2 + βΩ · J − γΩ2

−CεW
ε

K
W + ∇ · (KB) +

1

ρ̄
∇ ·

(
νK

σW
ρ̄∇W

)
(28)

∂KR

∂t
= − (U · ∇) KR − 1

6
(K + 3KR)∇ · U

−1

3
W∇ · B +

1

2
νRS2 − 1

2
νRM2

−CεR

(
1 +

Cr1

CεR

B2

K

)
ε

K
KR +

1

ρ̄
∇ ·

(
νK

σR
ρ̄∇KR

)
(29)

where

β = Cβ
K

ε
K, γ = Cγ

K

ε
W, νK =

7

5
β, νM =

7

5
γ (30)

Here, PK in the ε equation [Eq. (27)] denotes the production

terms of K [the terms related to the inhomogeneity of U and

B in Eq. (26)]. The dissipation rate of W , εW , defined by

εW = (ν + λ)

〈
∂u′a

∂xb

∂b′a

∂xb

〉
(31)

is modeled in the simplest possible way as the eighth or

CεW-related term in Eq. (28). A brief explanation on the

derivation of this compressible modification for the K, W ,

and KR equations [Eqs. (26), (28), and (29)] is given in

Appendix. Note that here we included ∇ · B-related terms

arising from the mean-density variation through Eq. (18)

only but left the MHD-pressure-related terms not included.

This is because the latter are regarded as being already

included in the diffusion or transport-rate term of each equa-

tion.

This system of model equations [Eqs. (26)-(29)] is simul-

taneously solved in a numerical manner with appropriate

boundary conditions. In the above turbulence model, we

have formally 12 model constants. In this work, we adopt

the following values:

eddy viscosity etc.

CνK =
7

5
Cβ = 0.09, CνM =

7

5
Cγ = 0.09 (32)

ε equation

Cε1 = 1.4, Cε2 = 1.9, σε = 1.3 (33)

W equation

CεW = 1.8, σW = 1.0 (34)

KR equation

Cr1 = 0.01, CεR = 1.0, σR = 1.0 (35)

It is important to stress that, in principle, these model con-

stants are not adjustable parameters but universal constants

in that, once optimized, they should be fixed throughout var-

ious applications of the model. Among them, the constants

appearing in the K [Eq. (32)] and ε [Eq. (33)] equations

should be identical with the counterparts in the hydrody-

namic (HD) k− ε model since the MHD K − ε model should

be reduced to the HD k − ε model in the absence of the

magnetic field, whose constants have been fully optimized

through the various engineering applications. In contrast,

the constants appearing in the W equation, CεW and σW

[Eq. (34)], leave room for further optimization. Among

the two, CεW is important for it is directly connected to

the dissipation rate of W . The newly added constants are

appearing in KR equation. Among the εR (dissipation of

KR)-related constants, Cr1 and CεR, CεR should be unity

(CεR = 1) since the equation for K +KR should be reduced

to the usual turbulent energy equation in the case of vanish-

ing magnetic field. Then we adopt values as in Eq. (35).

Numerical simulations

We assume time independent mean fields of a solar wind.

As a first step of simulation, we fix the mean velocity and

magnetic-field throughout the simulation. We adopt spatial

distributions that are given by the current theories of the so-

lar wind since they agree with observations well (Weber and

Davis, 1967). In the theoretical model, the mean fields in

the equatorial plane are considered under the assumptions

of (i) time independence; (ii) axsymmetry around the rota-

tion axis; (iii) plasmas constrained in the equatorial plane;

and symmetry with respect to the equatorial plane. In the
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spherical polar coordinate (r, θ, φ), the mean velocity and

magnetic fields are expressed as

U =
(
Ur(r), Uθ(r), Uφ(r)

)
=

(
Ur, 0,

Ω�r

M2
a − 1

[
M2

a

(r/ra)2
− 1

])
(36)

B =
(
Br(r), Bθ(r), Bφ(r)

)
=

(
ra

r

√
Va

√
Ur, 0,

Uφ − Ω�r

Ur
Br

)
(37)

where Ω� is the angular velocity of the Sun and ra is the

Alfvén point defined by Ur(ra) = Br(ra)(≡ Va). Here, Ma

is the Alfvén Mach number defined by

Ma(r) =
Ur(r)

Br(r)
(38)

and we have Ma = 1 at the Alfvén point ra. As can be

seen in Eqs. (36) and (37), we dropped the θ or polar-angle

dependence of the mean fields. This is because we sup-

pose a solar-wind region near the equatorial plane within

a magnetic sector (Br > 0) where the θ dependence can

be neglected as a first-order approximation. This treatment

does not deny the importance of the θ dependence in case

we consider a phenomenon such as a flow across the cur-

rent sheet, where the up-down asymmetry with respect to

the current sheet near the equatorial plane is of essential

importance.

As far as the mean radial velocity Ur is concerned, the

prediction given by the non-rotating unmagnetized model is

almost identical with the one by the magnetic rotator model

(Parker, 1965). So we use in Eqs. (36) and (37) the solar-

wind speed given by the former model, which is a solution

of
Ur2

c2s
− ln

Ur2

c2s
= −3 + ln

r4

r4
s

+ 4
rs

r
(39)

Here rs is the sonic point where the radial speed of the solar

wind, Ur, is equal to the speed of sound cs. The sonic point

is calculated as rs = GM�/2c2s (G: gravity constant, M�:

solar mass). In the region treated in this work (r > ra > rs),

Ur can be approximated by the expression in the region far

from the sonic point (r 	 rs) as

Ur(r) = 2cs[ln(r/rs)]
1/2 (40)

The mean velocity and magnetic fields [Eqs. (36) and (37)]

with Eq. (40) are plotted in Fig. 2. Here, the fields are

scaled by the Alfvén speed at the Alfvén point, Va, as Ûr =

Ur/Va, B̂r = Br/Va, etc. Note that Ûr = B̂r = 1 at the

Alfvén point (r̂ = r/ra = 1).

As for the boundary conditions for K, ε, W and KR, we

fix the values of them at the inner boundary:

K = K0 = 1.0 × 10−2, ε = ε0 = 8.0 × 10−3,

W = W0 = −7.5 × 10−3, KR = KR0 = 0

at r̂ = 1 (41)

and assign the vanishing of the second derivatives at the

outer boundary:

∂2K

∂r2
=

∂2ε

∂r2
=

∂2W

∂r2
=

∂2KR

∂r2
= 0 at r̂ = 100 (42)

The system of the inner boundary values [Eq. (41)] may

be set differently. Actually, the simulation results have not

changed drastically if we varied these values.

10-3

10-2

10-1

100

101

100806040200

r̂

U ˆ  r

U ˆ  
φ

B
 ˆ  r

– B ˆ 
φ

Figure 2: Radial distribution of the mean velocity and mag-

netic fields. The mean fields scaled by Va are denoted as Ûr,

——; Ûφ, – – –; B̂r, · · · · · ·; B̂φ, – - –. The heliocentric dis-

tance r̂ is scaled by the Alfvén radius ra, on which we adopt

ra = 21.5r� in this work (r�: solar radius). The orbit of

the Earth corresponds to r̂ = 10.

Results

The simulated radial distributions of the turbulent MHD

energy K, its dissipation rate ε, the turbulent cross helicity

W , and the turbulent MHD residual energy KR are plot-

ted against the heliocentric distance in Fig. 3. With the

heliocentric distance r̂, the absolute values of K, ε, and

W decrease from their inner boundary values at r̂ = 1.

In contrast, the absolute value of KR increases near the

Sun then decreases with r̂. The value of KR decreases

from its inner boundary value of KR0 = 0 to its minimum

KR � −0.87 × 10−3 at r̂ � 3.

-1.5x10-3

-1.0

-0.5

0.0

0.5

1.0

1.5

100806040200

r̂

Kε

W

KR

Figure 3: Simulated radial distributions of the turbulent

statistical quantities. K, · · · · · ·; ε, - - -; W , – – –; KR,

——.

The energy dissipation rate ε, the cross helicity W , and

the residual energy KR scaled by the turbulent energy K are

plotted against the heliocentric distance in Fig. 4. We see

from this figure that the characteristics of decays in W/K

and in KR/K are well reproduced.

The radial evolutions of the magnitude of the scaled cross

helicity |W |/K and the Alfvén ratio rA are given in Fig. 5.

This figure should be compared with Fig. 1. Note that the

range of r̂ = 1 − 100 in the present simulation corresponds

to the heliocentric distance of r = 0.1− 10 AU. The general

tendency of the observation is reproduced by the simulation.

DISCUSSIONS

1096



-1.0

-0.5

0.0

0.5

1.0

100806040200

r̂

KR/K
W/K

ε/K

Figure 4: Simulated radial evolution of the energy dissipa-

tion rate ε, the cross helicity W , and the residual energy

KR, scaled by the turbulence energy K. ε/K, - - -; W/K, –

– –; KR/K, ——.
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0.2

0.0
100806040200

r̂

rA

|W|/K

Figure 5: Simulated radial evolution of the cross helicity

scaled by the turbulence energy, |W |/K, and the Alfvén ratio

rA[= (K + KR)/(K − KR)]. |W |/K, – – –; rA, ——.

Dominant balances in energetics

In order to increase our understanding of the dynamics

of the solar-wind turbulence, in this subsection, we exam-

ine the dominant balances of the terms in the turbulent

MHD energy (K) [Eq. (26)], cross-helicity (W ) [Eq. (28)],

and residual-energy (KR) [Eq. (29)] equations. For the pur-

pose of seeing the general tendency, we list the representative

values of each term in both regions near and far from the

Sun in Tab. 1. Note that each value is scaled by the value

of the convection terms.

KR equation. Near the Sun, a negative KR is domi-

nantly generated by the flow-expansion effect coupled with

the turbulent MHD energy, −(K/6)∇ · U. This effect can

be interpreted as follows: Both the turbulent kinetic en-

ergy 〈u′2〉/2 and the magnetic one 〈b′2〉/2 are reduced by

a flow expansion represented by ∇ · U. We should remem-

ber that −(K/2)∇ · U in the K equation reduces the K

production for ∇ · U > 0 (Tab. 1). The degree of reduc-

tion is larger in 〈u′2〉/2 than in 〈b′2〉/2, then a negative

KR(= 〈u′2 − b′2〉/2) is associated with the flow expansion.

These effects associated with the flow expansion of a solar

wind, are of great importance in particular in the vicinity of

the Sun, where equipartition between the kinetic and mag-

netic energies is realized. In other words, only these effects

can work for the production of |KR| even in the absence of

the seed of KR.

The destruction of KR, εR, is represented by the sixth

or CεR and Cr1-related term in Eq. (29):

εR = CεR
ε

K
KR + Cr1

B2

K

ε

K
KR (43)

This is a combination of the eddy-distortion [the first term

in Eq. (43)] and the Alfvén (the second term) effects. The

appearance of the second or B-related term should be re-

marked. Deviation from equipartition between the kinetic

and magnetic energies or a finite value of KR is suppressed

by the Alfvén effects associated with a strong magnetic field.

In the solar-wind turbulence, these effects may play a cer-

tain role both in the regions near and far from the Sun, since

B itself remains to be fininte even in the region where the

shear of B becomes negligibly small. Quantitatively, this

situation directly depends on the magnitude of the Alfvén

effects through our choice of model constant Cr1. The value

of Cr1 is closely connected with the timescales of MHD tur-

bulence.

In the region near the Sun, the production of KR is dom-

inantly attributed to (K/6)∇·U. This production, with the

convection of KR by U, is mainly balanced by the flow ex-

pansion effects coupled with W and KR, (W/3)∇ · B and

(KR/2)∇ · U, and εR [Eq. (43)] as

− (U · ∇) KR − 1

6
K∇ · U

−1

2
KR∇ · U − 1

3
W∇ · B − εR � 0 (44)

As the heliocentric distance increases, the relative impor-

tance of the convection by U in the local |KR| generation

increases. Noting that | − (W/3)∇ · B| rapidly attenuates

with r̂, we have

− (U · ∇) KR − 1

6
K∇ · U − 1

2
KR∇ · U − εR � 0 (45)

in the region far from the Sun (approximately corresponding

to the outer heliosphere).

The order of magnitude of the terms in the KR equation

[Eq. (29)] is depicted in Fig. 6. The dent of the convection

term |(U · ∇)KR| at r̂ � 3 shows the value of (U · ∇)KR

reverses its sign there.

10-8

10-7

10-6

10
-5

10-4

10-3

10-2

100 101 102

r̂

  |(U ⋅ ∇) KR|

  + (1/6) K ∇ ⋅ U
  – (1/2) KR ∇ ⋅ U
  – (1/3) W ∇ ⋅ B
  – (1/2) νR S2

  – (1/2) νR M2

  + Cε R (ε / K) KR

  + Cε R (B
2 / K) (ε / K) KR 

  |∇ ⋅ [(νK / σR) ∇ KR]|

Figure 6: The order of magnitude of terms in the turbulent

MHD residual-energy (KR) equation [Eq. (29)] against the

scaled heliocentric distance r̂.

Alfvén ratio stationarity in space

With understanding the above energetics of the turbulent

statistical quantities, we examine here the Alfvén-ratio sta-

tionarity in space (rA � 0.5) observed in the region far from
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Table 1: The balances between the major terms in the turbulent MHD energy (K) [Eq. (26)], cross-helicity (W ) [Eq. (28)], and

residual energy (KR) [Eq. (29)] equations, respectively. Note that the values are scaled by that of the convection terms. So the

signs of the entries change depending on the signs of the convected quantities.

r̂ ∂K/∂t −(U · ∇)K − 1
2
K∇ · U − 1

6
KR∇ · U −2W∇ · B + 1

2
νKS2 ∇ · (WB) −ε

7.4 0 1 −0.75 0.068 0.090 0.072 0.11 −0.60

90.0 0 1 −0.70 0.074 1.6 × 10−3 0.094 2.5 × 10−3 −0.48

r̂ ∂W/∂t −(U · ∇)W − 1
2
W∇ · U −2K∇ · B 1

3
KR∇ · B + 1

2
νKS : M ∇ · (KB) −CεW

ε
K

W

7.4 0 1 −0.61 0.24 0.011 −0.040 0.28 −0.88

90.0 0 1 −0.50 0.051 2.7 × 10−3 −0.011 0.063 −0.61

r̂ ∂KR/∂t −(U · ∇)KR − 1
6
K∇ · U − 1

2
KR∇ · U − 1

3
W∇ · B + 1

2
νRS2 −Cr1

B
2

K
ε
K

KR −CεR
ε
K

KR

7.4 0 1 1.74 −1.41 −0.10 0.13 −0.24 −1.12

90.0 0 1 0.45 −0.43 −5.3 × 10−4 0.059 −0.78 −0.30

the Sun (r >∼ 3 AU) from the viewpoint of the stationary

solution of the turbulent residual-energy model equation.

If we remark that the diffusion effects in the present sim-

ulation are negligible in the whole regions, the balance in

the energetics of statistical quantities will be generally kept

among the production, convection, and dissipation terms. In

the framework of purely incompressible turbulence model,

an increase of the residual energy KR due to the convection

by the mean flow U and the production by the shears S and

J must be balanced by the dissipation of KR, εR, due to the

eddy distortion and to the Alfvén effects:

− (U · ∇) KR +
1

2
νRS2 + βJ2 − εR � 0 (46)

In this simulation, the second and third or S2- and J2-

related terms in Eq. (46) are much smaller than the rest

terms, so they may be neglected. Then we have

− (U · ∇) KR − εR � 0 (47)

In this work, we have extra terms arising from the flow-

expansion effects, the ∇ ·U- and ∇ ·B-related terms. They

are originated from the compressibility or the mean-density

variation in the solar wind, and in this sense, have origins

different from the terms appearing in Eq. (46) which are

inherently incompressible. With this point in mind, we ex-

amine Tab. 1 and Fig. 6. Then we find the balance relation

(47) [or (46)] roughly applies. This seems to be the case

irrespective of the region near or far from the Sun. In par-

ticular, in the region far from the Sun, the incompressible

balance (47) holds with reasonable accuracy.

Provided that the incompressible balance relation of

Eq. (46) is realized, we see from Eq. (44) that in the region

near the Sun we have

−1

2
KR∇ · U − 1

6
K∇ · U − 1

3
W∇ · B � 0 (48)

In the region far from the Sun, Eq. (45) with Eq. (47) is

reduced to

−1

2
KR∇ · U − 1

6
K∇ · U � 0 (49)

which suggests that the relation

KR

K
� −1

3
(50)

would be realized there. This may explain, from the view-

point of the steady solution of a turbulence model, why the

stationary value of rA � 0.5 is observed in the region far

from the Sun.

CONCLUSIONS

A turbulence model, constituted of the turbulent MHD

residual energy (KR) and the turbulent cross helicity (W )

as well as the turbulent MHD energy (K) and its dissipation

rate ε, was applied to the solar wind. With the aid of the

numerical simulation, the observed radial evolution of the

solar-wind turbulence was shown to be reproduced by the

model. The stationary value of the Alfvén ratio (rA � 0.5)

in the region far from the Sun was elucidated from the view-

point of a stationary solution of the turbulence model.
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