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ABSTRACT

Turbulent fluctuations in MHD flows can become

strongly anisotropic or even quasi-two-dimensional under

the action of an applied magnetic field. We investigate this

phenomenon in the case of low magnetic Reynolds numbers.

It has been found in earlier DNS and LES of homogeneous

turbulence that the degree of anisotropy is predominantly

determined by the value of the magnetic interaction pa-

rameter and only slightly depends on the Reynolds number,

type of large-scale dynamics, and the length scale. Further-

more, it has been demonstrated that the dynamic Smagorin-

sky model is capable of self-adjustment to the effects of

anisotropy. In this paper, we summarize the results and pro-

pose a simple and effective generalization of the traditional

non-dynamic Smagorinsky model to the case of anisotropic

MHD turbulence.

MHD TURBULENCE AT LOW MAGNETIC REYNOLDS

NUMBER

Magnetohydrodynamic (MHD) turbulent flows occur in

numerous astrophysical, geophysical, and technological ap-

plications. We consider the case of low magnetic Reynolds

number

Rm ≡ uL/η ¿ 1, (1)

typical for the industrial and laboratory flows of liquid met-

als, oxide melts, and other electrically conducting fluids (see,

e.g. Davidson (2001)). In (1), u and L are the typical ve-

locity and length scales, and η = (σµ0)−1 is the magnetic

diffusivity, σ and µ0 being the electric conductivity of the

liquid and the magnetic permeability of vacuum.

Low-Rm interaction between a static magnetic field and

a turbulent flow is an important factor of some metallurgi-

cal operations, such as continuous steel casting or growth

of large semiconductor crystals, where magnetic fields are

intentionally used to non-intrusively suppress the unwanted

development of the flow. In other cases, such as the pri-

mary aluminum production in Hall-Héroult or inert anode

processes, or in the lithium cooling blankets for magnetic

confinement fusion, the inevitably present static magnetic

field has an adverse effect on performance, which has to be

minimized through optimization of the process.

The results of the present work, albeit rigorously valid

only in the case of low Rm, can be extended to the situa-

tions with moderate Rm and high hydrodynamic Reynolds

number, most notably to the earth dynamo problem. The

diffusive cut-off scale of the magnetic field is sufficiently large

in such cases so that the magnetic field can be fully resolved

in the DNS-like manner. The task of modeling the turbulent

velocity fluctuations at smaller scales reduces to the problem

addressed in this paper.

In the low-Rm case, the MHD equations can be signifi-

cantly simplified by applying the quasi-static approximation.

The perturbations of the magnetic field induced by fluid mo-

tions are small in comparison with the imposed magnetic

field and can be neglected. They can also be approximately

assumed to adjust instantaneously to the velocity perturba-

tions. The Lorentz force is expressed as a linear functional

of velocity and the governing equations can be represented

in a closed form as

∂tu + (u · ∇)u = −ρ−1∇p + ν∆u− σB2ρ−1∆−1∂zzu, (2)

∇ · u = 0, (3)

where we assume that the magnetic field is B = B0ez , and

∆−1 is the reciprocal Laplace operator that stands for a so-

lution of the Poisson equation for the electric potential with

proper boundary conditions. The non-dimensional form of

(2) contains two dimensionless parameters, one of which is

the Reynolds number Re ≡ uL/ν and another is the mag-

netic interaction parameter N ≡ σB2L/ρu that estimates

the ratio between the Lorentz and inertia forces.

We focus on MHD turbulence far from the walls and

consider the implications of the Lorentz force for large-eddy

simulations. Modification of turbulence has been relatively

thoroughly studied in analytical, experimental, and numer-

ical works (see, for example, Schumann (1976), Alemany

et al (1979), Zikanov and Thess (1998), or Vorobev et al

(2005)). It has been understood that in unbounded flows

the direct effect of the magnetic field is two-fold. First, there

is an additional turbulence suppression via Joule dissipation

of induced electric currents. Second, the flow acquires ax-

isymmetric anisotropy with flow structures elongated in the

direction of the magnetic field. The nature of the anisotropy

becomes transparent if we use the Fourier transform to write

the rate of the Joule dissipation of a mode û(k, t) as

µ(k) = σB2ρ−1|û(k, t)|2 cos2 θ, (4)

where θ is the angle between the wavenumber vector k and

the magnetic field B. The Joule dissipation tends to elim-

inate the velocity gradients along the magnetic field lines,

thus leading to elongation of flow structures. The flow

approaches two-dimensional form with zero parallel gradi-

ents at N → ∞, although it has been argued by Thess

and Zikanov (2007) that the proper term is ‘quasi-two-

dimensionality’ due to the inevitable elliptic and shear flow

instabilities of the two-dimensional structures. Furthermore,

pure two-dimensionality is impossible in the presence of walls

non-parallel to the magnetic field (see, e.g. Sommeria and

Moreau (1982)).

Only the anisotropy of gradients is directly affected by

the magnetic field. Another type of anisotropy referring to

inequality between the velocity components (anisotropy of

the Reynolds stress tensor) can follow from the action of the

magnetic field indirectly, through the nonlinear interaction

mechanism. Other indirect effects include the suppression

of the nonlinear energy transfer between the length scales

and the associated increase of the inertial range slope of
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Figure 1: Results of Vorobev et al (2005). Gradient anisotropy coefficient (5) is shown as a function of k. (a), DNS (——) and

test LES at different filer widths (− · − · −) and (— — —) at Reλ = 92. (b), LES at Reλ = 92, at Reλ = 140 (— — —), and

at Reλ = 290 (− ·− ·−). (c), LES at Reλ = 290 with different filter widths. (d) LES at Reλ = 140, with isotropic (− · ·− · ·−)

and two-dimensional (— — —) forcing.

the energy power spectrum (approaching k−3 in quasi-two-

dimensional flows at high N).

HOMOGENEOUS MHD TURBULENCE: RESULTS OF

EARLIER STUDIES

A detailed study of the anisotropy of homogeneous MHD

turbulence at low Rm was conducted by Vorobev et al

(2005). DNS and LES computations were performed in a

wide range of Re and N . In order to achieve a statistically

steady flow, the artificial force was applied to the large scale

modes with 1.5 ≤ k ≤ 3.1. Two types of forcing were used,

one isotropic with the energy input equally divided among

the forced modes and another purely two-dimensional with

the energy input limited to the modes with k⊥B.

The main results are illustrated in figure 1, which shows

the scale-dependent anisotropy of flow gradients estimated

as

g(k) ≡ 3τ

2

µ(k)

E(k)
=

3
∑ k2

z
k2 û · û∗∑
û · û∗ , (5)

where the sums are over all wavenumber vectors in the shell

k−1/2 < |k| ≤ k+1/2, and µ(k), E(k) are the power spectra

of the magnetic dissipation rate and kinetic energy. The

scaling factor in (5) uses the Joule damping time τ ≡ ρ/σB2

and is chosen so that g(k) = 1 in an isotropic flow and

g(k) = 0 in a purely two-dimensional flow with zero magnetic

dissipation.

It has been found that at all k outside the range of arti-

ficial forcing, g(k) is a remarkably robust function of the

magnetic interaction parameter N . The influence of the

length scale, Re, and the details of the large-scale dynam-

ics (dictated by the different types of the forcing) is much

weaker. It has also been noticed that the value of g(k) at

small and moderate scales is well approximated by the global

anisotropy coefficients

Gij =

〈
(∂ui/∂z)2

〉
(1 + δi3)〈

(∂ui/∂xj)
2
〉

(1 + δij)
, i = 1, 2, 3, j = 1, 2, (6)

where 〈. . .〉 stands for the volume averaging.

LES modeling of decaying and forced homogeneous MHD

turbulence was conducted by Knaepen and Moin (2004) and

Vorobev et al (2005), respectively. The Smagorinsky eddy

viscosity closure hypothesis was used in both cases with the

subgrid-scale stress tensor τ ij expressed through the rate-

of-strain tensor of filtered velocity field Sij as

τ ij = −2CS∆
2|S|Sij , |S| =

(
2SijSij

)1/2
, (7)

where ∆ is the filter width and CS is the Smagorinsky con-

stant. The conclusion of both studies, achieved through the

a-posteriori comparison with the results of high resolution

DNS was that the Smagorinsky model is overdissipative if

used in its simple form with constant CS . Substantially bet-

ter agreement with the DNS results was achieved when the

constant CS was determined using the dynamic procedure

(Germano 1991, Lilly 1992).

Poor performance of the simple Smagorinsky model with

constant CS in the case of MHD flows with high N could

be anticipated. The values used for CS (between 0.01 and

0.0324 depending on the type and width of the filter and

the strength of mean shear do not take into account the

flow transformation caused by the applied magnetic field

(anisotropy, suppressed nonlinear energy transfer, and steep-

ened energy spectrum). All these factors lead to reduction

of the subgrid-scale energy dissipation and, thus, require re-

duction of CS . The better accuracy of the dynamic model is,
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Figure 2: Flows with 3D forcing, Re = 2500, and numerical resolution 64 × 64 × 128. Time evolutions of the resolved total

energy (a), global anisotropy coefficient (b), and volume-averaged Smagorinsky coefficient (c) are shown for N = 0, 1, 5, and

10.

too, not entirely surprising. The model has demonstrated its

ability to remedy the overdissipation problem in other situa-

tions characterized by reduced SGS dissipation, for example

in the laminar-turbulent transition.

SMAGORINSKY CONSTANT AS A FUNCTION OF

ANISOTROPY PARAMETERS

For our purposes, the discussion of the previous section

can be reduced to the following two hypotheses, which, al-

though not fully proven, received substantial factual support

in LES of Knaepen and Moin (2004) and Vorobev et al

(2005).

1. The dynamic adjustment of CS is sufficient to account

for anisotropy and other aspects of the flow transforma-

tion caused by the imposed magnetic field. No other

modification of the Smagorinsky closure is needed to

keep the accuracy of the model at the same level as in

the isotropic case.

2. The variation of CS caused by the magnetic field can

be adequately described by a function of a single scalar

parameter, such as the anisotropy coefficient (6) or the

magnetic interaction parameter N .

Our goal is to capitalize on the hypotheses and obtain the

relations CS = CS(N) and CS = CS(G). A brief discussion

of the results is provided below. A more detailed description

can be found in Vorobev and Zikanov (2007).

One can speculate on which of the two dependencies,

CS(N) or CS(G), is preferable. There is no strong prefer-

ence in the case of homogeneous turbulence, where, as shown

by Vorobev et al (2005) and confirmed by our recent com-

putations, G can approximately be considered a one-to-one

function of N . In the real flows, where N is evaluated based

on the size of the flow domain and some constant charac-

teristic velocity, its effective value can change in space (for

example because of variation of B) or time (for example

in the case of decaying flow). The relation CS = CS(G)

seems, therefore, preferable as the one based on a universal

anisotropy characteristic that can be evaluated locally, both

in space and time.

We present the results of a series of LES computations of

homogeneous MHD turbulence in a box of dimensions 2π ×
2π × 4π with periodic boundary conditions. The dynamic

Smagorinsky model is used as a subgrid-scale closure. The

numerical method is pseudo-spectral based on the fully de-

aliased Fast Fourier Transform. The flow is artificially forced

at 1.5 ≤ k ≤ 3.1 in the same manner as it was done by

Vorobev et al (2005). Each numerical experiment starts with

a non-magnetic run that lasts long enough to produce a fully

developed turbulent flow. Then, at t = t0, the magnetic field

B is applied and kept constant till the flow transformation

is complete, after which the flow statistics are collected and

averaged over several (at least, 3) eddy turnover times T =

L(t0)/u(t0). The Reynolds number Re and the magnetic

interaction parameter N are evaluated in the isotropic flow

at t = t0 using the integral length scale L and the rms

velocity u. The experiments are conducted at 0 ≤ N ≤ 10

and Re = 700, 2500, and 6500. Two numerical resolutions

with 64×64×128 and 32×32×64 spectral functions are used.

The filtering width ∆ of the LES closure is defined as the

grid step. Further details of the computational procedure

can be found in Vorobev et al (2005).

The typical temporal evolution of the flows is illustrated

in figure 2. After the introduction of the magnetic field, the

global characteristics such as the total resolved energy, rate

of resolved viscous dissipation or the anisotropy coefficient

G evolve rapidly until they stabilize at new levels corre-

sponding to the forced anisotropic flows. The Smagorinsky

constant evolves in the same way but, as can be seen from

comparison between the figures 2a,b and 2c, its evolution to

new levels is slower.

The flow anisotropy was estimated using the time-

averaged global coefficient G and the scale-dependent coef-

ficient g(kmax) taken at the length scale of the filter width.

One can see in figures 3a,b that both coefficients decrease

rapidly at small and moderate N and somewhat slower at

stronger fields with N > 3. The flow becomes strongly

anisotropic but remains essentially three-dimensional. An

important feature of curves in figures 3a,b is their close-

ness to each other. This is quite remarkable considering the

fact that the curves are obtained for substantially different

Reynolds numbers, forcing mechanisms, and numerical res-

olutions. Moreover, as can be seen in figure 3c, G is nearly

equal to g(kmax) and, thus, to coefficients g(k) at any other

k outside the range of forced length scales. Our calculations

confirm the conclusions obtained by Vorobev et al (2005)

on the basis of the DNS and LES computations at lower

Reynolds numbers.

The main results are presented in figure 4, which shows

the dependence of the volume- and time-averaged Smagorin-
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Figure 3: Global anisotropy coefficient (a) and the scale-dependent anisotropy coefficient taken at the scale of filter width (b) as

functions of magnetic interaction parameter; (c), Global vs. filter-width coefficients. ., Re = 700, ¦, Re = 2500; /, Re = 6500.
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Figure 4: (a) Volume- and time-averaged Smagorinsky constant CS as a function of the magnetic interaction parameter (a),

global anisotropy coefficient (b) and coefficient of anisotropy at filter width (c). Bold line in (b) is for the linear relation (8).

Notations are as in figure 3.

sky constant CS on the anisotropy characteristics. As in

the previous figures, data obtained at different Reynolds

numbers, forcing mechanisms, and numerical resolutions are

plotted. The constant decreases with the strength of the

magnetic field as represented by increasing N or decreasing

anisotropy coefficients. The results support the second of

our hypotheses. The curves in figure 4 are quite close to

each other. The Smagorinsky constant can be considered a

function of N , G, or g(kmax) with a reasonable degree of

accuracy. One can see in figure 4b that the agreement is

particularly good for the function CS = CS(G). Requiring

that CS attains its isotropic value at G = 1 and zero in a

purely two-dimensional flow at G = 0 we can approximate

the data in figure 4b by a simple linear relation

CS = CS0G (8)

shown by the bold line. Here CS0 is the Smagorinsky con-

stant corresponding to the isotropic non-magnetic flow. It is

about 0.011 in our calculations but can have different values

in other cases depending on type of the flow and type and

width of the filter.

In order to test the formula (8) we conducted sim-

ple numerical experiments. Forced flows with Re = 2500

and numerical resolution 64 × 64 × 128 were computed us-

ing the dynamic Smagorinsky model, simple Smagorinsky

model with constant CS = CS0, and the modification of

the Smagorinsky model with constant CS adjusted at each

time step according to (8). Each run started with the same

isotropic initial velocity field. Calculations were performed

for N = 1 and N = 5. After completion of transitional peri-

ods, the statistics were collected and time-averaged for the

fully established anisotropic flows.

The results are presented in figure 5. One can see that

the adjustment (8) results in almost exact reproduction of

the spectra of energy and dissipation rates of flows obtained

with the dynamic Smagorinsky model. On the contrary, the

spectra calculated with the Smagorinsky model with con-

stant CS are noticeably, albeit not very strongly, different,

with typical overdissipative suppression at large k.

It must be stressed that such an excellent agreement be-

tween the dynamic model and the model with adjusted CS is

observed only for statistically steady periods of the flow evo-

lution. The situation during the transient periods is quite

different as illustrated by our test simulations of decaying

turbulence. In the simulations, a fully developed forced non-

magnetic flow is used as an initial conditions. At the moment

t = t0, the magnetic field is applied, and the forcing is dis-

continued, after which the flow is allowed to decay freely for

several turnover times simultaneously developing anisotropy.

Figure 6 shows the results of the dynamic LES of the process

for N = 1 and N = 5. One can see in figures 6a,b that both

G, which represents CS/CS0 determined according to (8),
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Figure 6: Decaying turbulent flows with Re = 2500, N = 1 and 5 calculated using the dynamic model. (a), global anisotropy

coefficient G, which also represents CS/CS0 calculated according to the linear relation (8); (b), Smagorinsky constant CS scaled

by the isotropic value CS0; (c), CS vs. G

and the dynamically determined CS/CS0 decrease with time

as the flow becomes anisotropic but at very different rates.

Initially, the decay rate for the dynamic CS is almost zero,

whereas the anisotropy coefficient drops rapidly. At later

stages, CS decays faster than G but remains significantly

larger than predicted by (8). This is further illustrated in

figure 6c. Similar delay in the modification of the Smagorin-

sky constant is demonstrated by the forced flows during the

transitional stages of their development (see figures 2b,c).

One can be tempted by a simple explanation that the

generation of dimensional anisotropy is an essentially linear

process governed by the Joule dissipation (4). Its typical

time scale is the Joule damping time τ ≡ ρ/σB2. On the

other hand, the variation of the Smagorinsky constant is

associated with the nonlinear process of establishing new

correlations between the turbulent rate of strain and stress

tensors occurring at the time scale of the eddy turnover time

T = L/u. One can expect slower evolution of CS at N =

T/τ > 1. The explanation, albeit possibly relevant, is clearly

an oversimplification. In particular, it does not explain the

delay in the development of CS at N = 1 (see figure 6).

CONCLUDING REMARKS

The main result of our study is a confirmation of the hy-

pothesis that the dynamic adjustment of the Smagorinsky

constant in the case of magnetically suppressed turbulence

can be accurately approximated by a simple linear function

of the global coefficient of gradient anisotropy. Apart from

purely theoretical interest, the relation has a potential prac-

tical value. Calculation of CS in the dynamic model, if done

at the every time step, approximately doubles the amount of

computations in comparison with the standard Smagorinsky

model. This is undesirable in simulations of industrial pro-

cesses such as, for example, the Czochralski growth of large

crystals or continuous steel casting, the tasks computation-

ally challenging even with the simplest turbulence models.

With quantified dependence of CS on G one could still use

the standard model but avoid its overdissipative character

by adjusting CS to the strength of the flow anisotropy.

We found that the adjustment formula cannot be used for

computation of essentially transient processes because the

development of anisotropy occurs at a faster rate than the

modification of the Smagorinsky constant. Furthermore, the

formula was obtained for homogeneous turbulence and may

prove inaccurate in the presence of mean shear or rotation.

It is possible that improved correlations can be developed for

such situations but they are likely to be also more complex

and less universal than our simple formula. Their advantage

over the dynamic model is, thus, far from being obvious.
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