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ABSTRACT

The linear and nonlinear evolution of perturbations is
studied in a magnetohydrodynamic channel flow with elec-
trically insulating channel walls in which a strong magnetic
field possesses an orientation orthogonal to the stream but
parallel to the walls. The basic flow is unaffected by the
magnetic field and retains the Poiseuille velocity profile. Lin-
ear optimal perturbation and their maximum amplifications
over finite time intervals are computed using an iterative
scheme based on the direct and adjoint governing equations
for the subcritical Reynolds number Re = 5000. The pres-

ence of a magnetic field changes the spatial structure of
optimal perturbations. As the Hartmann number increases,
the optimal modes cease to be the classical streamwise rolls
and become oblique rolls with axes at some angle to the
direction of the flow. At sufficiently high Hartmann num-
bers, the optimal perturbations are the purely spanwise Orr
modes. For Hartmann numbers in the range from 0 to 100 di-
rect numerical simulations (DNS) are applied to investigate
how the transition to turbulence is affected by the magnetic
field. Simulations are conducted using the optimal modes
as initial values with weak three-dimensional noise added at
the maximum amplification time.

INTRODUCTION

A channel flow in a purely spanwise magnetic field repre-
sents important aspects of complex flows in the presence of
a magnetic field with non-zero component parallel to solid
walls. Such flows can be found in numerous metallurgical
and materials processing applications. Prominent examples
include the electromagnetic flow control in continuous steel
casting (Davidson, 1999; Thomas & Zhang, 2001) and in
growth of large silicon crystals. Another area of applica-
tions is the liquid metal (Li or Pb-17Li) cooling blankets
of breeder type for fusion reactors (Barleon et al., 2001).
The typical blanket design includes a duct flow in a strong
imposed magnetic field. Instability and transition to turbu-
lence in sidewall boundary layers (in respect to which the
magnetic field is spanwise) is one of the possible ways to
achieve the desired intensification of heat and mass transfer.

From a different application viewpoint, Lee & Choi (2001)
have shown that a spanwise magnetic field can lead to sub-
stantial reduction of the turbulent drag in a channel flow.

The general effect of the imposed magnetic field is two-
fold. On the one hand, the flow is suppressed by Joule
dissipation of induced electric currents. On the other hand,
the magnetic field acts anisotropically. The Lorentz force
preferentially affects the flow modes with strong gradients
in the direction of the magnetic field. No electric currents
are generated and no Joule dissipation occurs in a two-
dimensional flow uniform along the magnetic field lines.

As far as general theory of instability and transition to
turbulence in parallel shear flows is concerned, the situation
of a channel in a spanwise field is of substantial interest.
The applied magnetic field renders the spanwise direction
preferable in the sense that the perturbations uniform in
this direction are not directly affected, in particular, not
suppressed by the magnetic field. We examine this aspect
in detail through a systematic study of the optimal linear
perturbations providing the strongest transient growth for
different strength of the magnetic field for a fixed, sub-
critical Reynolds number. Among the possible transition
scenarios, we focus on the one based on the algebraic tran-
sient growth of optimal perturbations and their subsequent
three-dimensional breakdown, which we shall study by direct
numerical simulations. This scenario was shown to realize
in other parallel shear flows, such as the plane Poiseuille
(Reddy et al., 1998), pipe Poiseuille (Zikanov, 1996), and
Hartmann (Krasnov et al., 2004) flows. We shall discuss the
results of our study after presenting the mathematical model
and the numerical methods in the next section.

PROBLEM DEFINITION AND NUMERICAL APPROACH

We consider the flow of an incompressible electrically
conducting fluid in an infinite plane channel between insulat-
ing walls located at z = ±L with a magnetic field B0 = B0e

in the spanwise direction e ≡ (0, 1, 0). The principal sketch
of the problem is shown in figure 1.

The flow is driven by a pressure gradient ∂P0/∂x. We ap-
ply the quasi-static approximation, whereby the fluctuations
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Figure 1: Channel flow under uniform spanwise magnetic
field.

of the magnetic field arising due to the fluid motion adjust
instantaneously to the velocity fluctuations and are much
weaker than the imposed magnetic field. This approach
corresponds to the limit of low magnetic Reynolds number
Rem and approximates the case of liquid metal flows. This
approximation is widely used to study turbulent MHD chan-
nel flows, e.g. by Lee & Choi (2001); Boeck et al. (2007).
The length and velocity scales are the laminar centerline ve-
locity U and the channel half width L. The unit of time
is L/U . The non-dimensional basic velocity profile is the
parabolic Poiseuille profile UH = 1 − z2. We introduce two

non-dimensional parameters, the Reynolds number

Re = UL/ν (1)

and the Hartmann number

Ha = B0L
√

σ/ρν, (2)

where ρ and ν stand for density and kinematic viscosity of
the fluid, and σ denotes its electric conductivity.

Thereby, the governing equations in non-dimensional
form reduce to the Navier-Stokes system with the additional
Lorentz force, i.e.

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2

v + (3)

+N (−∇φ × e + (v × e) × e) ,

∇ · v = 0, (4)

∇2φ = ∇ · (v × e) , (5)

vx = vy = vz =
∂φ

∂z
= 0 at z = ±1 (6)

with the magnetic interaction parameter N ≡ Ha2/Re and
the electric potential denoted as φ.

Finally, integral conditions should be specified. We as-
sume that the volume flux Q per span width is constant.
In addition, the total electric current is set to zero in the
y-direction, which fixes the mean potential gradient in the
y-direction.

Linear analysis of non-modal perturbations
In the linear analysis we split the flow fields into a basic

flow and three-dimensional perturbations as

v = UH(z)(1, 0, 0) + vp, φ = φH + φp(x, y, z), (7)

p = PH + pp.

We linearize the system (3–5) with respect to the perturba-
tions and study the evolution of decoupled monochromatic
Fourier modes with the wavenumbers α and β in the stream-
wise (x) and spanwise (y) directions at Re = 5000 and
various values of Ha. For this given Reynolds number the
flow is linearly stable, i.e. all eigensolutions decay expo-
nentially. However, the eigenmodes may form combinations
that experience substantial transient algebraic growth before
they eventually decay.

To quantify the amplification at time T we use the kinetic
energy E of the perturbations, whereby the individual con-
tributions of each wavenumber pair (α, β) can be considered
independently. This norm, therefore, is defined as

E(T ) ≡
∫

(û(z, T )û+(z, T ) + v̂(z, T )v̂+(z, T ) + (8)

+ŵ(z, T )ŵ+(z, T ))dz

where the superscript + denotes complex conjugation. Spa-
tial integration is performed over the entire channel width,
and the perturbations are obtained by time integration over
the time period [0, T ].

The amplification gain of any given mode at time T is the
ratio E(T )/E(0). This ratio can be maximized over all possi-
ble initial vertical shapes to give the maximum amplification
Ĝ(T, α, β) of the disturbances with the wavenumbers (α, β)
at the time T . The search for the disturbance providing
the maximum amplification, the so-called optimal distur-
bance, is the subject of this part of our study. To solve this
problem we apply a method which computes the maximum
energy gain through an optimization procedure (e.g., Farrell
& Ioannou (1996); Andersson et al. (1999); Luchini (2000);
Schmid & Henningson (2001)). The optimum of E(T )/E(0)
is determined with two imposed constraints: (i) the distur-
bance energy E(0) at time t = 0 is equal to unity; (ii) the
disturbance satisfies the linear governing equations as well
as the boundary conditions during the complete time in-
terval [0, T ]. The solution is obtained with the help of a
Lagrangian formalism in which Lagrangian multipliers – ad-
joint fields – are introduced to enforce these constraints. The
entire procedure, therefore, amounts to a series of forth-and-
back iterations solving direct (0 → T ) and adjoint (T → 0)
equations.

The direct and adjoint equations are solved numerically
using a pseudospectral method based on Chebyshev polyno-
mials and a projection approach to enforce incompressibility.
The code is based on the one used by Schmid & Rossi (2004)
and has been adapted to the MHD channel flow.

Method of direct numerical simulations

We study instability and transition to turbulence trig-
gered by the non-linear evolution of optimal perturbations,
obtained and analysed previously in the linear context. To
reproduce the non-linear flow evolution, direct numerical
simulations are employed. The non-dimensional equations
(3–5) with boundary conditions (6) are solved numerically.
We use a representation of the flow field in terms of ve-
locity potentials complying with the incompressibility con-

straint and a pseudo-spectral algorithm. The pseudospectral
method is based on Fourier series in the horizontal directions
x and y and a Chebyshev polynomial expansion in the ver-
tical z–direction (Canuto et al., 1988; Gottlieb & Orszag,
1977). This representation, therefore, accounts for periodic
boundary conditions in the horizontal direction and no-slip
conditions in the wall-normal direction.

We have applied this method and the corresponding
flow solver in our previous studies, e.g., Krasnov et al.
(2004); Boeck et al. (2007). The modifications made for
the present work concern the Lorentz force and the time-
stepping method. The Lorentz force term is modified to
spanwise orientation of the magnetic field and is treated as
an explicit term in the temporal discretization. Further-
more, the new time-stepping scheme uses three time levels
for the approximation of the time derivative and is second-
order accurate. The flow solver is parallelized. Inter-process
communication utilizes the MPI library. More details can
be found in Boeck et al. (2007).

1082



(a) (b)

alpha

b
et

a

0 1 2 3 4
0

1

2

3

4

alpha

b
et

a

0 1 2 3 4
0

1

2

3

4

Figure 2: Isolevels of energy amplification Ĝ(α, β, T ) in the
(α,β)-plane for Re = 5000 and Ha = 10. Two typical times
T : (a) T = Topt ≈ 64, at which the global maximum is
reached, (b) T ≈ 189, corresponding to the optimal time for
purely streamwise perturbations (also see figure 3).

RESULTS

Linear evolution results
In this section, we investigate how the transient growth

changes in the presence of a spanwise magnetic field. The op-
timization method computes the maximum energy amplifi-
cation Ĝ(α, β, T,Re, Ha) for a given wavenumber pair (α, β)
and a given time T . This function itself can be maximized
over α and β to provide M̂tot(T, Re, Ha) – the maximum am-
plification among all the perturbations at given time T and
flow parameters. Further maximization over time T provides
the global maximum amplification Mtot(Re, Ha) which is
reached at time T = Topt(Re, Ha). The corresponding opti-
mal wavenumber pair is denoted by (αopt, βopt).

For the purely streamwise perturbations, when the func-
tion Ĝ(α, β, T,Re, Ha) is maximized over β, provided that
α = 0, equivalent optimal quantities may also be defined:
Mstream(Re, Ha) and βstream.

The search for optimal perturbations is performed in a
square (α, β)-domain (a β-interval in the case of streamwise
perturbations) with the wavenumbers varying from 0 to 4.

Typical behaviour of the amplification factor Ĝ is illus-
trated in figures 2. Isolines of Ĝ(α, β, T,Re, Ha) are shown
as functions of α and β at different times T for Re = 5000
and Hartmann number Ha = 10. The contours indicate vari-
ation of Ĝ from low (white regions) to high (black regions)
values.

The largest transient amplification for hydrodynamic
channel flow is provided by perturbations with α = 0, as
shown, e.g., by Butler & Farrell (1992). In that case, the
optimal perturbations have the form of purely streamwise
vortices. When the spanwise magnetic field is applied, these
modes are strongly damped, and are therefore taken over by
oblique modes with non-zero wavenumber α. In particular,
we found that at Hartmann numbers between 2 and 5 the
strongest transient growth is already provided by oblique
perturbations with α 6= 0. This constitutes the main differ-
ence between the magnetic and non-magnetic cases.

For Ha = 10, which represents the cases of small and
moderate Hartmann numbers, there is a single peak of
the amplification curve corresponding to an oblique mode
at Topt ≈ 64 (see figure 3). For large times T (T >
189), the streamwise perturbations dominate. It has to
be stressed that the effect of the magnetic field is quite
strong even at such a small Hartmann number. The global
maximum Mtot(Re, Ha) observed for an oblique mode at
Topt is about twice as large as the maximum amplification
Mstream(Re, Ha) obtained at T ≈ 189 for the streamwise
modes: Mtot ≈ 900 vs. Mstream ≈ 450.

The effect of higher Hartmann number may render the
picture more complex, as can be seen in figure 4 for Ha = 50.
The highest amplification occurs for T ≈ 15 (fig. 4a), but at
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Figure 3: Energy amplification factors M̂tot(T, Re,Ha)
( ) for dominant modes and M̂stream(T, Re,Ha)
for streamwise vortices ( ) as functions of time T ;
Re = 5000 and Ha = 10.
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Figure 4: The results of linear analysis for Re = 5000 and
Ha = 50. (a,b) Isolevels of energy amplification Ĝ(α, β, T )
in the (α,β)-plane at different moments in time T – (a)
global maximum at T = 15, (b) three local peaks at T ≈ 28.
(c) Amplification factors M̂tot(T, Re, Ha) ( ) for dom-
inant modes and M̂stream(T, Re, Ha) for streamwise vor-

tices ( ) as functions of time T .

later stages, e.g. at T ≈ 28, several co-existing local maxima
are observed (fig. 4b). The entire effect is illustrated further
in fig. 4c. Again, streamwise modes dominate at large T , but
the curve of maximum amplification shows three discernable

peaks corresponding to the global maximum at Topt ≈ 15
and two local maxima at T ≈ 33 and T ≈ 88. These peaks
are associated with the dominance of different families of
oblique modes with different (α,β) wavenumbers.

The effect of the magnetic field on the transient growth is
summarized in figures 5 and 6. Maximization with respect to
T and the two wavenumbers α and β provides the maximum
amplification M̂ and the corresponding wavevector (α, β) as
functions of Ha. We see that the transient growth of oblique
perturbations is also reduced by the spanwise magnetic field,
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vs. Hartmann number Ha for Re = 5000.

and that the oblique angle of the optimal modes increases
monotonically with the magnetic field strength.

For Ha ≥ 100, the spanwise Orr-mode vortices un-
affected by the magnetic field become the modes with
strongest transient amplification. In Fig. 6, these modes
provide the constant amplification level, which is maintained
for Ha ≥ 100. We also show the maximum amplification of
purely streamwise rolls with α = 0 for comparison. For
these modes, the amplification M̂stream eventually reduces
to unity, i.e. they experience no transient growth for suffi-
cently large Ha.

Summarizing the results obtained at Re = 5000, we
can conclude that the largest amplification is found (i) for
streamwise modes at very small Hartmann number Ha < 5,
(ii) for oblique modes in a wide range of moderate to large
Ha, and (iii) for purely spanwise modes at very large Ha,
greater than 100.

Concerning the damping of streamwise perturbations,
we note that scaling relations M̂stream ∼ Ha−2 (cf. fig-
ure 6) and β ∼ Ha−1 are found numerically. The scaling
of M̂stream can be derived by an asymptotic analysis of
the linearized Navier-Stokes equations. Details are given in
Krasnov et al. (2007).

Non-linear evolution and transition to turbulence

In this section we study the non-linear evolution for flow
regimes with subcritical Re = 5000 and Ha ranging between
10 and 100 by DNS. The transition to turbulence is consid-
ered for the classical two-step scenario. This scenario implies
that the initial transient growth of optimal perturbations is

sufficiently strong to render the modulated basic flow unsta-
ble to three-dimensional perturbations.

The initial conditions for the DNS consist of the basic
flow modulated by an optimal linear mode of a specified
amplitude. For each Hartmann number we choose the cor-
responding optimal mode found in the linear problem. If
different linear modes give maximum amplifications at dif-
ferent times, such as in the Ha = 50 case, simulations are
conducted separately for every mode used as an initial con-
dition. Besides that, we also examine purely streamwise
vortices to reveal their diminishing role in transition as Ha
increases. The initial kinetic energy of the optimal pertur-
bations E(0) is specified between 10−5 and 10−2 relative to
the energy of the basic flow. To trigger the transition, weak
three-dimensional noise is added to the modulated flow at

the time t = Topt of maximum linear amplification. The
energy E3D of the noise is chosen to be 10−2 of the initial
optimal perturbation energy.

Transition by streamwise and oblique modes
We recall that for the non-magnetic case the linear anal-

ysis yields streamwise vortices as optimal perturbations.
Indeed, our simulations at Ha = 0 show that a small ini-
tial energy E(0) = 10−5 is sufficient for the flow to become
turbulent when 3D noise is added. For higher Ha this is not
the case anymore – there is a significant effect of the mag-
netic field upon the streamwise vortices already at Ha = 10.
As can be seen in figure 7(top), transition to turbulence is
induced when a perturbation energy of streamwise modes
exceeds the level of 10−3. At the same time, the results
of the optimal oblique mode in figure 7(bottom) show that
it is a far better candidate to trigger the transition. Even
an initial energy as small as E(0) = 10−5 is already suffi-
cient when 3D noise is added. Moreover, the transition itself
occurs earlier than in the case of streamwise vortices.

The two-step mechanism of transition was applied for
the set of Hartmann numbers in figure 5 up to Ha = 100.
We have considered all families of optimal linear modes, each
providing the maximum amplification in a certain time range
(e.g., figure 4). No transition to turbulence was detected
starting at Ha = 30 and higher values of Ha. The nonlin-
ear effects become noticeable when the initial perturbation
energy becomes E(0) ≥ 10−3 , but the transition to turbu-
lence is never triggered. The possible explanation is two-fold.
First, the maximum energy amplification gets weaker as
Ha grows (for example, only Mtot ≈ 55 for Ha = 50).
Secondly, the Joule dissipation strongly suppresses the three-
dimensional perturbations once they are introduced.

Transition caused by Orr modes
At high Hartmann numbers (Ha ≥ 100, figures 5 and

6), the transient amplification is provided by the Orr modes
unaffected by the magnetic field. Their nonlinear growth at
Reynolds number Re = 5000 can sufficiently modify the ba-
sic flow to make it unstable to 3D noise. Therefore, the Orr
modes can still be considered as a possible route to turbu-
lence. At the same time, the results observed in the previous
section suggest that 3D evolution would be suppressed by a
strong magnetic field.

We conducted simulations at Ha = 100 with the 2D Orr
mode being the optimal perturbation. It was found that suf-
ficiently strong initial perturbations E(0) ≥ 10−3 (figure 8a)
evolve into a purely two-dimensional travelling-wave state
observed earlier by Jimenez (1990) in a two-dimensional
non-magnetic channel flow. This evolution can be regarded
as a common solution for all values of Ha, including the
non-magnetic case. In the latter case, the transition to
a fully turbulent state is triggered by 3D noise added at
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Figure 7: The nonlinear evolution of perturbation energy
E(t) at Re = 5000 and Ha = 10 starting with streamwise

optimal mode (top) and starting with an optimal oblique
mode (bottom). Initial energy of optimal modes varies from
E(0) = 10−5 to E(0) = 10−2, the 3D noise of energy E3D =
10−2E(0) is added at t = Topt.

t = Topt. Contrary to that, at Ha = 100 the noise destroys
the time-dependent 2D flow in such a way that it returns
back to the basic unperturbed state, as seen in figure 8a
(solid curves). This re-laminarization can be attributed to
energy transfer by nonlinear interactions from the 2D modes
to 3D modes with a finite spanwise wavenumber, which are
rapidly damped by the Joule dissipation.

Similar simulations were conducted in the entire range
0 ≤ Ha ≤ 100. A re-laminarization similar to that for Ha =
100 was found at Ha ≥ 30. Transition to turbulence was
found at lower Ha (e.g. at Ha = 10 and 20). We note, that
at such Hartmann numbers, transition was also produced by
the oblique modes. One can conclude that, in the presence
of a sufficiently strong magnetic field, the Orr modes cannot
be considered as the route to 3D turbulence.

Another aspect of the results obtained at Ha = 100 is the
question of whether purely two-dimensional turbulence can
be sustained by a strong imposed magnetic field (see, e.g.,
a discussion in Tsinober (1990)). Such 2D states are known
to be very unstable in respect to random perturbations, so
that non-MHD flow becomes 3D turbulent very rapidly as
the perturbations are introduced. In the presence of the
magnetic field the situation may change. This raises some
questions such as (i) whether the 2D states are stable to
3D perturbations and, (ii) if unstable, towards which flow
regime they evolve.

We continued two simulations with E(0) = 10−3 and
10−2 as two-dimensional until the finite-amplitude 2D solu-
tions similar to those found by Jimenez (1990) were obtained
(see figure 8). Adding 3D noise at this stage (T ≈ 1500)
led to the instability of the 2D structures and quick en-

(a)

10-4

10-3

10-2

10-1

   0  200  400  600  800 1000 1200 1400 1600

E
(t

)

t

E(0) = 10-2

 
E(0) = 10-3

 
added 3D noise

(b)

10-4

10-3

10-2

10-1

1600 1800 2000 2200 2400 2600

E
(t

)

t

non MHD
Ha =  20
Ha =  30

Ha = 100

Figure 8: The nonlinear evolution of perturbation energy
E(t) starting with the Orr mode at Re = 5000 and different
Ha. (a) Case Ha = 100, the evolution with intial energies
E(0) = 10−3 and 10−2 up to a sustained 2D finite-amplitude
state. 3D noise of energy E3D = 10−2E(0) is added at
t = Topt for the bold curves. (b) Instability of the sustained
2D state and transient evolutions for 0 ≤ Ha ≤ 100, 3D
noise of amplitude E3D = 10−7E2Dstate being added at
T ≈ 1500. Curves at Ha = 0, 20, 30, 100 are presented.

ergy drain into 3D perturbations. In case of Ha ≤ 20 a
transition to turbulence was detected (figure 8b, non MHD
and Ha = 20 curves). For higher Hartmann number, as
Ha ≥ 30, any development of 3D structures was suppressed
by the strong magnetic field. As a result, the flow evolved
back to the basic state (curves for Ha = 30 and 100 in fig-
ure 8b). Concluding this section, we can state that whereas
a sufficiently strong magnetic field eventually suppresses any
three-dimensionality in the flow, it cannot sustain the non-
steady 2D solutions found by Jimenez (1990).

CONCLUSIONS

We have studied instability and transition to turbulence
in a plane channel flow of an electrically conducting fluid
in the presence of a uniform constant magnetic field in the
spanwise direction. The case of small magnetic Reynolds
number was considered. The scenario of transition based on
the transient growth of certain perturbations and subsequent
secondary instability of the modified base flow was analyzed
using linear and non-linear computational models. In the
linear part, the optimal (with strongest transient growth)
perturbations were determined with the help of the iterative
procedure based on integration of direct and adjoint equa-
tions. The non-linear evolution of the optimal modes, their
breakdown, and transition to turbulence were investigated
in a series of direct numerical simulations.
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We found that the magnetic field has strong quantita-
tive and qualitative effects on the transient growth. By
means of added Joule dissipation, it suppresses all pertur-
bations except purely spanwise modes. For the streamwise
rolls that appear as optimal perturbations in the classical
hydrodynamic flow, the suppression is described by power
law dependencies with the energy amplification and span-

wise wavenumber of the strongest growing mode scaling as
Ha−2 and Ha−1 , respectively.

More interestingly, the nature of the optimal modes
changes under the impact of the magnetic field. At Hart-
mann numbers above a moderate threshold value (between
Ha = 2 and Ha = 5), the optimal perturbations change
from streamwise to oblique rolls. Their oblique angle in-
creases monotonically with Ha demonstrating the shifting
balance between the two opposing energy fluxes, the Joule
dissipation and the energy transfer from the basic flow, both
of which decrease with the growing oblique angle. At suf-
ficiently strong magnetic field characterized by Ha larger
than a threshold between 50 and 100, the strongest (and
quite moderate) growth is supplied by purely spanwise Orr
modes unaffected by the magnetic field.

In the non-linear analysis we first focused on the tran-
sition to turbulence caused by the breakdown of growing
streamwise or oblique modes at Hartmann numbers in the
range 5 ≤ Ha ≤ 50. Numerical experiments were conducted,
in which linear optimal modes of low amplitude were used
as initial conditions and weak three-dimensional noise was
added to trigger the secondary instability. It was found that
stronger optimal growth of the oblique modes renders them
better candidates for the dominant mechanism of the tran-
sition. For example, at Ha = 10 and Re = 5000, the initial
energy not less than 10−3 of the energy of the base flow is
required by the streamwise modes to initiate the transition,
while energy levels as small as 10−5 are sufficient for the
oblique modes.

In the case of strong magnetic fields at Ha about 100 and
higher, the spanwise perturbations are the only ones expe-
riencing appreciable transient growth. We found that these
modes are unable to generate the transition to turbulence at
high Ha. Their growth and non-linear saturation lead to es-
tablishing a spanwise-independent secondary flow observed
earlier in the two-dimensional simulations of Jimenez (1990).
Instability of this flow to three-dimensional perturbations
cannot be suppressed by the magnetic field in the range of
Ha considered in the present paper. The instability leads
to the transition back into the base state. Further investi-
gations are needed to resolve interesting related questions,
such as that of stability of the two-dimensional solutions at
even higher Ha and the role played by the spanwise Orr
modes in the transition at supercritical Re.
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