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ABSTRACT

This paper presents implicit large eddy simulation of

compressible turbulent mixing produced by a shock wave

passing through a perturbed gas interface. Two different

initial conditions are employed, three different grid sizes for

each initial condition, and two very high order numerical

methods. Solutions are gained which are reasonably grid

converged, and approach a quasi self-similar state. It is

shown that the choice of initial conditions affect significantly

the growth of the turbulent mixing zone, and the plane av-

eraged mixing parameters. The high wavenumber initial

perturbation leads to a smoother mean volume fraction pro-

file, and a lower growth rate. Employing low wavenumber

perturbations gives a faster growth rate due to the presence

of long wavelengths which grow on a longer timescale. The

paper discusses further the behaviour of resolved turbulent

kinetic energy, kinetic energy spectra, and self-similarity of

plane averaged quantities.

INTRODUCTION

This paper concerns large eddy simulations (LES) of

shock wave induced instabilities (Richtmyer-Meshkov) and

turbulent mixing. Richtmyer Meshkov (RM) (Richtmyer,

1960) instability occcurs when an incident shock wave passes

through a perturbed interface between two gases, triggering

growth of the interface width. These instabilities first grow

linearly, and then transition to turbulence. They are of im-

portance in the study of supernovae explosions, wakes of

jet engines, combustion chambers and inertial confinement

fusion.

In engineering analysis often it is assumed that initial

conditions are forgotten, and hence are not important to

the late time development of turbulence. However, in na-

ture the initial perturbations are formed as a summation

of unstable modes which each grow at different rate. It

has been demonstrated that the form of the initial pertur-

bations can affect significantly the growth of the resulting

mixing layer in idealised Rayleigh Taylor, Kelvin Helmholtz

and Richtmyer-Meshkov instabilities (Youngs,2004). This is

due to the finite time taken to redistribute the kinetic energy

deposited by the shock wave between the turbulent compo-

nents, where anisotropy potentially can persist over a long

period of time.

This paper investigates the growth of a Richtmyer-

Meshkov mixing layer using two different perturbations. The

first is a narrowband combination of high frequency modes,

which represents growth of a turbulent mixing layer purely

via mode coupling of the high wave numbers. The second

initial condition consists of a broadband linear combination

of modes from one third the domain size to the high fre-

quencies. If the initial conditions are forgotten then the

asymptotic growth rate, and associated statistics of the mix-

ing layer should be the same in both cases. However, it is

possible that the large scale perturbations continue growing

to a later time, hence dominating the growth of the turbu-

lent mixing zone.

As current computational power does not allow Direct

Numerical Simulation of such complex flows, Large-eddy

simulation (LES) is as a viable alternative in flows of in-

dustrial interest where the time dependent behaviour of the

flow must be resolved. Conventional LES, where an explicit

subgrid model is added to the averaged Navier Stokes equa-

tions, has been employed successfully in many prototype

flows, however it is known to provide excessive dissipation in

flows where the growth of an initially small perturbation to

fully turbulent flow must be resolved. It has been recognised

that some numerical schemes, labelled as high-resolution

methods, gain good results in complex flows without the

explicit addition of a subgrid model (Lesieur and Metais,

1996). This approach is termed Implicit Large-eddy Simula-

tion, or ILES. This paper employs three different variable

reconstruction methods: second-order van Leer limiting;

ninth-order WENO (Balsara,2000); and a recently developed

fifth-order MUSCL scheme (Thornber,submitted).

NUMERICAL METHODS

Governing Equations

This paper is concerned with the simulation of the Eu-

ler equations, where viscosity is assumed negligible (Re →

∞). The three-dimensional compressible Euler equations

are solved using the direction split method. This involves

solving in each principal direction the following governing

equations,

∂U

∂t
+
∂E

∂x
= 0, (1)

where,

U = [ρ, ρu, ρv, ρw, e]T , (2)

E =
[
ρu, ρu2 + p, ρuv, ρuw, (e+ p)u

]T
, (3)

e = ρi+ 0.5ρ
(
u2 + v2 +w2

)
, (4)

and ρ, i, u, v, w are the density, specific internal energy

per unit volume and Cartesian velocity components, respec-

tively. Throughout this paper it is assumed that the fluid

satisfies the ideal gas equation of state

p = ρi (γ − 1) , (5)
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where γ = 5/3 is the ratio of specific heats. In addition, a

passive scalar is advected to track the two gas components,

assumed to be miscible.

Numerical Methods

The numerical method is a standard finite volume

solver employing the HLLC approximate Riemann solver

(Toro,1997). Higher order accuracy is achieved using

MUSCL extrapolation,

P
L
i+1/2

= Pi+
1

2
φ
(
rL
)

(Pi −Pi−1) (6)

P
R
i+1/2

= Pi+1−
1

2
φ
(
rR
)

(Pi+2 −Pi+1) (7)

where P is the vector of cell averaged primitive variables,

and the cells are labelled by the integer i. Also,

rLi =
Pi+1 −Pi

Pi −Pi−1

(8)

rRi =
Pi+1 −Pi

Pi+2 −Pi

(9)

The third-order van Leer (van Leer,1977) and fifth-order

limiters (Kim and Kim,2005) are employed

φV L =
2r

1 + r
(10)

φL,M5 =
−2/rL

i−1
+ 11 + 24rL

i
− 3rL

i
rL
i+1

30
(11)

φR,M5 =
−2/rR

i+2
+ 11 + 24rR

i+1
− 3rR

i+1
rR
i

30
(12)

where monotonicity is maintained in the fifth-order method

by limiting the above extrapolations using

φL,M5 = max(0, min(2, 2rLi , φ5th,L)) (13)

φR,M5 = max(0, min(2, 2rRi , φ5th,R)) (14)

This limiter has been modified to significantly improve

performance in resolving fine scale motion, particularly at

low Mach. It ensures that the dissipation rate is constant,

and that pressure is coupled with the vorticity field as Mach

tends to zero, without sacrificing the scheme’s ability to

capture shocks and explicit stability (Thornber,submitted).

The modified scheme resolves modes to a higher wavenumber

than standard ninth-order WENO and van Leer reconstruc-

tion methods.

The WENO ninth-order method employed is that by Bal-

sara and Shu (2000), which uses a weighted combination

of non-linear polynomials to achieve higher order accuracy

with minimum impact on the monotonicity of the resulting

schemes.

Initialisation

The test case uses the initial conditions derived by

Youngs (2004) to examine the influence of initial conditions

on the growth of the resultant mixing layer. The flowfield

consists a heavy and light gas separated by a perturbed

interface where the perturbation satisfies a given power spec-

trum and mean amplitude. The incident shock wave is

of Mach= 1.84, equivalent to a four-fold pressure increase

across the shock wave. The initial conditions are

0.0 < x < 2.3(ρ, u, p) = (6.38,−61.5, 4× 105) (15)

2.3 < x < 3.35 + ξ(ρ, u, p) = (3.0,−291.58, 105) (16)

3.35 + ξ < x < LD(ρ, u, p) = (1.0,−291.58, 105) (17)

where an initial velocity is given to the gas interface such

that the centre of the interface is stationary after passage of

the shock wave. The ratio of specific heats, γ, is set to 5/3.

For the broadband initialisation, the interface pertur-

bation ξ is given as the sum of modes of random phase

conforming to an initial power spectrum P ∝ c/k2. The

modes excited are restricted between λmin = 32π/256 and

λmax = 2π/3 and the standard deviation of the pertur-

bation amplitude is 0.1λmin . The grid sizes used were

360 × 256 × 256, 180 × 128 × 128 and 90 × 64 × 64, and

the domain size is fixed at 2.4π × 2π × 2π. This is essen-

tially a convergence study with the same initial condition

on all grids, only more poorly resolved on the coarsest grid.

This problem was solved with the modified fifth-order lim-

iter for all grids, and the WENO ninth-order for the coarse

and medium grids.

The narrowband perturbation has an initial power spec-

trum P ∝ c, and excited modes lie between λmin = 16∆x

and λmax = 32∆x. The initial amplitude is 0.1λmin. In this

case the initial perturbation has been chosen to lie at a high

frequency, but where the numerical scheme resolves pertur-

bations without dampening. This problem employs grids of

size 360×300×300, 360×150×150 and 360×75×75. As the

initial perturbation and amplitude is linked to the grid scale,

the perturbations on the smaller grid grow faster, propor-

tional to λmin. To compensate for this the grid size in the

x-direction is increased proportionally such that the mesh re-

mains square at all resolutions. In order of decreasing mesh

size, the domain sizes are; 2.4π×2π×2π, 4.8π×2π×2π and

9.6π× 2π× 2π. This problem was solved using the modified

fifth-order limiter.

RESULTS AND DISCUSSION

Non-Dimensionalisations

Before discussing the results, it is important to set out

the relevant scaling laws and non-dimensionalisations. Fol-

lowing Youngs (1994) all lengthscales are normalised by the

minimum wavelength λmin, and wave numbers by kmin =

1/λmin. The time is scaled via λmin and ∆u, which is

the velocity impulse given to the interface. Finally, total

Kinetic Energy, and the kinetic energy spectra are non-

dimensionalised by λmin∆u2ρ, where ρ = 1. All subsequent

results are non-dimensional.

Note that in all subsequent figures the standard numer-

ical scheme is the modified fifth order method.

Flow Phenomenology

Figure 1 shows mass fraction isosurfaces illustrating the

initial condition and evolution of the turbulent interface with

time. It can be seen that for early time (t∆u/λmin = 7) the

flow field consists of a series of mushroom like structures

generated by the deposition of vorticity at the gas inter-

face. Kelvin-Helmoltz (KH) instabilities grow exponentially

hence breaking the large coherent structures. At late time

the flow field is turbulent, consisting of motion on many dif-

ferent scales. There are some ’coherent’ structures remaining
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Figure 1: Evolution of mass fraction isosurfaces for the fine grid narrowband perturbations at t∆u/λmin = 0, 7 and 250 using

the modified fifth order scheme (top) and a comparision of the three numerical methods using broadband perturbations at

t∆u/λmin = 250 at 128 grid cross-section (bottom)
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Figure 2: Integral mixing width, Molecular mixing fraction and mixing parameter for the narrowband perturbations (top) and

broadband (bottom)
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(mushrooms shedding KH vortices) at the gas front, but in-

between there is a well mixed zone.

Figure 1 also shows the isosurfaces of mass fraction for

each of the three numerical methods at late time for the

128 cross-section grid (broadband initial conditions). It is

clear that the van Leer limiter is too dissipative to allow

realistic growth of perturbations, hence, to economise on

space, further results are not presented here. Of WENO

ninth order (W9) and the modified fifth order (M5) the fifth-

order has more fine scale structure, indicating less numerical

dissipation.

Growth Rates and Mixing Measures

Linear theory dictates that the rate of growth of the

mixing layer V is proportional to k∆va0A, where k is the

wavenumber, ∆v the velocity impulse, a0 the initial ampli-

tude of the wave and A = (ρ2 = ρ1) /(ρ1 + ρ2), the Atwood

number. In this section the following parameters are exam-

ined; Integral mixing layer width W =
∫
f1f2dx; Molecular

mixing fraction θ =
∫
< f1f2 > dx/

∫
< f1 >< f2 >

dx; and the mixing parameter Ξ =
∫

< min(f1 , f2) >

dx/
∫
min(< f1 >,< f2 >)dx. < fa > indicates the y − z

plane averaged volume fraction of species a, where species 1

is the heavy gas. It is generally accepted that the integral

mixing layer width, defined as W =
∫
f1f2dx (considered

less sensitive to fluctuations) grows at late time as tp. θ

gives a guide to the total reaction rate for a slow reaction,

and Ξ is an equivalent measure for a fast reaction rate where

one reactant is fully depleted.

Figure 2 shows these quantities plotted for both sets of

initial conditions, for all grid resolutions. The mixing layer

width exhibits good grid convergence, and is plotted on log-

arithmic axes to highlight the power-law behaviour of the

amplitude. Assuming that amplitude is proportional to tp,

giving p = 0.24± 0.015 for the narrowband simulation, and

p = 0.33 ± 0.03 for the broadband initial conditions. This

demonstrates that, for the duration of the simulation, the

mixing layer width depends crucially on the form of the ini-

tial conditions.

The molecular mixing fraction θ and mixing parame-

ter Ξ both approach a constant state. This is achieved

more rapidly with narrowband perturbations than with the

broadband initialisation. At the lower resolutions with

M5 the level of molecular mixing is higher than with the

WENO method, however as grid size increases both θ and

Ξ decrease. The asymptotic value of approximately 0.8

agrees well with previous mixing simulations of the related

Rayleigh-Taylor instability by Youngs (2003) and Cook and

Zhou (2002). The slower convergence of the mixing statis-

tics at high grid resolution indicates that a self-similar state

has not yet been achieved for the broadband simulations.

For self-similarity the profiles of average volume fraction

and mixing fractions should scale with a single characteris-

tic lengthscale at all times, in this case the integral mixing

layer width W . Figure 3 shows the plane averaged volume

fraction, and Figure 4 the plane averaged mixing fraction

< f1f2 >. The scaled volume fraction profiles collapse ex-

cellently for all resolutions at all times for the narrowband

and broadband perturbations, being almost identical at all

times.

The narrow band perturbations lead to a smoother mean

volume fraction profile, whereas the broad band perturba-

tions give a smooth central region (−1.5 < x/W < 1.5) with

outer regions on the bubble and spike side where the per-

sisting large scale structures cause a break in the smooth
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Figure 3: Plane averaged volume fraction for narrowband

(top) and broadband (bottom) perturbations.
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profile. This change to the mean profile is most likely the

late time growth of large scale perturbations which are not

present in the narrowband simulation, and are at the head

and tail of the mixing layer at late times.

The plane averaged mixing fractions are not as well con-

verged. Interestingly, the level of mixing appears to be

decreasing at higher resolution in both cases, indicating that

the lower dissipation at higher resolution leads to less diffu-

sive transport. The WENO limiter promotes greater mixing,

having a profile which peaks at < f1f2 >= 0.21 as opposed

to 0.16 for the M5 limiter at the same resolution. As time

progresses the peak of < f1f2 > increases, as expected.

Turbulent Kinetic Energy

Figure 5 shows the total fluctuating kinetic energy (point

value in the x and y direction respectively, the z omitted as

it is very similar to the y direction. This is computed from

the fluctuating velocities, i.e. the point velocities minus the

plane average velocities. Additionally, the instantaeneous

two dimensional kinetic energy spectra is plotted for the

centre of the mixing layer in the homogeneous y − z plane.

Both simulations demonstrate excellent grid conver-

gence, the x direction turbulent kinetic energy decreasing

throughout the simulations in a power law form. The y and

z direction kinetic energy first increases as KH instability

transfers energy from the x direction to the y and z. In

the narrowband simulation the turbulent kinetic energy in

the x direction decreases at a rate proportional to t−1.24 , in

the y and z proportional to t−1.2 , in good agreement with

experimental results from grid generated homogeneous de-

caying turbulence (Kang,2002). This is also seen at 128 and

256 resolution in the broadband initial condition, but with

a decay rate proportional to t−1.05 for the x direction tur-

bulent kinetic energy, and t−0.8 for the y and z directions.

It appears that both initialisations are tending towards a

homogeneous state as time progresses.

The two dimensional kinetic energy spectra are com-

pared to the theoretical results of Kolmogorov (k−5/3) and

the proposed solution for RM instability of k−3/2 by Zhou

(Zhou,2001). This is computed in the midplane of the

mixing layer, in the y − z plane. Examining the narrow-

band results indicates excellent scaling of the kinetic energy

spectra from the different grid resolutions under the non-

dimensionalisations detailed in Section . The small scales

are nearly identical, and the spectra appear to follow more

closely the k3/2 spectrum. The differences at large scales

(low wavenumbers) reflect the limitations posed by grid size,

which prevents further mode coupling in the low resolution

simulations.

The broadband spectra also collapse well at different

grid resolutions, and methods. Comparison between the

different grids and methods show that the M5 method is

not sufficiently dissipative at low resolutions, and that the

WENO method is too dissipative. This is consistent with the

plane averaged mixing results presented in Figure 4, which

demonstrate more mixing at the lower resolutions than at

the higher resolutions. At the highest resolutions there is

excellent agreement for the first 48 modes when comparing

the 128 and 256 cross-section grids with the M5 method,

and up to mode 28 with WENO. At moderate wavenumber

the spectra appear to scale as k−5/3, and at k−3/2 at high

wavenumber.

CONCLUSIONS

Simulations of shock induced turbulent mixing with two

different initial conditions have been conducted. Two differ-

ent high order methods have been used, and three different

grid sizes. Excellent grid convergence is observed through-

out.

The typical behaviour of a multimode Richtmyer-

Meshkov simulation is seen, beginning with the growth of

coherent ’mushroom’ shaped structures which transition to a

fully turbulent mixing zone. It is shown that the growth rate

of the mixing zone depends on the initial perturbation, as the

long wavelength perturbations promote a faster growth rate

than short wavelength perturbations. This is most likely

to be due to the slow but persistent growth of large scale

perturbations which dominate over the short wavelengths

at long times. Examining the mean volume fraction pro-

files and development of two mixing indicators implies that

the development of the mixing zone has reached an approxi-

mate self-similar state. The asymptotic state is not reached

as rapidly for the broadband perturbations as for the nar-

rowband.

The turbulent kinetic energy decays more rapidly in the

narrow band simulation, close to that expected from ho-

mogeneous decaying turbulence. However, the broadband

simulation demonstrates slower decay. In both simulations

the turbulent kinetic energy components are tending towards

isotropy, but do not reach it in the time range simulated.

Turbulent kinetic energy spectra show a closer agreement to

a k−3/2 range at the high wavenumbers, with some k−5/3

at intermediate scales.
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