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ABSTRACT

Particulate flow in the semicircular canals of the inner

ear is suspected to be the most common cause for vertigo.

This pathologic condition is known as benign paroxysmal

positional vertigo (BPPV). We propose an analytical model

for this flow configuration which consists of an equation for

the fluid flow and of an equation of motion for the parti-

cles including the appropriate Stokes drag and gravitational

forces. A modal analysis of the linearized equations sug-

gests a reduced-order model for BPPV constructed from the

two least stable modes. A Stokes number, formed with the

eigenvalues of these two modes, is shown to be an important

parameter in BPPV. We derive explicit expressions that con-

nect the particle and canal properties directly to the onset,

strength and duration of the vertigo.

INTRODUCTION

The semicircular canals (SCC) are the primary human

sensors for angular motion. They are part of the vestibular

organ in the inner ear (figure 1). The SCCs are filled with a

fluid called the endolymph. Angular movements of the head

induce a flow of the endolymph. This flow deflects a flex-

ible gelatinous structure called the cupula. The deflection

of the cupula triggers nerve signals. These signals lead to a

compensatory eye movement which is called the nystagmus.

The nystagmus allows us to remain focused on an object

even while we are in motion.
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Figure 1: The human vestibular organ.
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Figure 2: Clinical measurements of the nystagmus and head

velocity of a BPPV patient (canalithiasis) during and after

a head maneuver (—— head velocity; • nystagmus velocity

N measured by tracking the eye movement).

SCCs may contain small calcite particles (e.g., because

of a head trauma or as a consequence of aging). These free-

floating particles disturb the endolymph flow and lead to

faulty signals from the cupula (which results in a pathologi-

cal nystagmus). This medical condition is known as benign

paroxysmal positional vertigo (BPPV). It is the cause for

30% of all vertigo syndromes in humans. The particles are ei-

ther floating freely in the SCC (canalithiasis) or they adhere

to the cupula (cupulolithiasis). The present work focuses

solely on canalithiasis.

In clinical experiments the nystagmus velocity is mea-

sured during and after a well-defined angular maneuver

of the head. It is symptomatic for canalithiasis patients

that the per-rotatory nystagmus (i.e., the regular nystag-

mus which compensates for the angular head maneuver) is

followed by a short latency period (0 < t < TL) and then a

second pathological nystagmus called positional nystagmus

(figure 2). The intensity of the nystagmus peaks at t = TP

(typically 5 to 10s) and then decays slowly. During the po-

sitional nystagmus BPPV patients have the impression that

they are spinning again (in the same direction) even though

they are at rest. This leads to vertigo, dizziness and nausea.

Only little is known about the exact mechanisms that

govern BPPV (Rajguru et al., 2005, 2004; Squires et al.,

2004). We present a new analytical model for BPPV based
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Figure 3: Schematic diagram of a semicircular canal.

on particulate flow in a duct. This model allows us to un-

derstand the underlying mechanisms of BPPV. Further, the

model yields the relevant dimensionless numbers for this flow

configuration, which helps us to understand the influence of

geometrical and physical parameters on BPPV.

ENDOLYMPH FLOW IN SEMICIRCULAR CANALS

The flow of the endolymph in a single SCC is described

by the model of Van Buskirk et al. (1976). Angular head

movements, described by the angle α(t), are constricted to

the plane of the SCC. This model considers the viscous flow

in the slender part of the duct which spans an angle β and

has a constant circular cross-section Ac = πa2 (Figure 3).

The radius of the cross-section a is much smaller than the

major radius R of the torus and centrifugal effects can be

neglected. The flow in the utricle (which spans the angle

γ) enters the equation only in the form of the inertial force

of the fluid contained in the utricle. The cupula is modeled

by a restoring force which is proportional to the volume dis-

placement V (t) of the cupula. For the scope of our work

we assume that the volume displacement V is proportional

to the nystagmus velocity N . We can compute the volume

displacement from the axial endolymph velocity u(r, t) with

V (t) = 2

Z 1

0
u(r′, t)r′ dr′ (1)

All variables are non-dimensionalized with respect to the vis-

cous time scale Tref = a2/ν, the canal radius a as reference

length, and R/Tref as reference velocity, respectively. The

velocity u(r, t) is measured relative to the canal. Relative to

the inertial system the endolymph velocity is u + α̇.

Under these assumptions the axial component of the

Navier–Stokes equations for the flow in the SCC can be writ-

ten as (Van Buskirk et al., 1976)

ü− 1

r̃

∂

∂r

�
r

∂

∂r
u̇

�
+ ǫ

Z 1

0
u(r′, t) r′dr′ = −(1+γ/β)

...
α (2a)

with the boundary conditions

u(r = 1) =
∂

∂r
u(r = 0) = 0 (2b)

The dimensionless coefficient ǫ is a measure for the

cupula stiffness, i.e., the dimensionless form of the propor-

tionality constant K that relates the cupula displacement V

to the reactive force of the cupula on the fluid. It is defined

as

ǫ =
2AcKT 2

ref

ρβR
(3)

The ansatz u(r, t) = û(r)e−σt yields the eigensolutions of

(2). All modes are stable and non-oscillatory (Obrist, 2006).

The least stable mode is directly related to the mechanical

properties of the cupula and is named cupula mode. The

decay rate of this mode corresponds to the so-called time

constant of the SCC (4.2 s in man). The eigenvalue of the

cupula mode is approximately given by

σc ≈ ǫ/16 (4)

The shape of its eigenfunction is close to the parabola 1−r2.

The other modes depend only weakly on the properties of the

cupula. They are called duct modes. Their eigenvalues are

approximately given by σd,k ≈ λ2
k

where λk is the k-th root

of the Bessel function J0. The corresponding eigenfunctions

are the formed by the Bessel function J0(r′).

With a modal expansion of u it can be shown (Obrist,

2006) that the cupula displacement is given by

V (t) ∼
"
α̇(t) − σc

Z
∞

0
α̇(t − τ)e−σcτ dτ

#
(5)

This equation is approximate in the sense that it gives in-

accurate results for head maneuvers with angular velocities

α̇ that change very rapidly with respect to the decay rates

of the duct modes. For most natural head maneuvers (5) is

sufficiently accurate.

Equation (5) is evidence that SCCs are indeed good sen-

sors for angular motion, since it shows that V ∝ α̇ apart

from the so-called velocity error

α̇e ≡ −σc

Z
∞

0
α̇(t − τ)e−σcτdτ (6)

The velocity error leads to an overshoot in the cupula dis-

placement at the end of a head maneuver (cupula swinging

back beyond its relaxed state). If the velocity error is strong

enough it leads to a sensation of reverse angular motion when

the rotation is suddenly stopped.

MODEL FOR BPPV

To model BPPV we must augment Van Buskirk’s equa-

tion (2) by an equation for the particle motion. We use a

particle model which is similar to the model used by Rajguru

et al. (2004).

We assume that a certain number np of spherical par-

ticles of radius ap with mass mp at the axial location

xp(t). (Note that the actual number of particles in the

SCCs of BPPV patients is not known.) The axial location

is measured relative to the moving canal and it is non-

dimensionalized with respect to the major canal radius R.

The origin xp = 0 is set to the (initially) lowest point in the

canal such that we may assume the initial conditions

xp(0) = ẋp(0) = 0 (7)

We assume that the particles are equally distributed (in a

statistical sense) across the duct cross-section.

The particle equation of motion,

mpR(ẍp + α̈) = Fs + Fg (8)
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includes a term for the particle inertia mp(ẍp + α̈) and two

terms for external forces that act upon the particle. The

external forces consist of the gravitational force,

Fg = −mp(1 − ρ/ρp)g sin(xp + α) (9)

and a drag force

Fs = −6πνρap(ẋp − up) (10)

which corresponds to the Stokes drag of a sphere of radius

ap. Since we do not track the radial position of the particle

we approximate the fluid velocity up by the bulk velocity ū

of the fluid.

At the same time we introduce the Stokes drag (10) into

the fluid equation (2). Here we assume that the Stokes drag

Fs of a single particle induces a body force −Fs/(AcβR).

Therefore, all np particles together exert a total body force

−npFs/(AcβR) on the fluid, whereas each particle by itself

satisfies the particle equation (8).

This yields the governing equations for the particulate

flow in a SCC, i.e., an analytical model for BPPV:

ü − 1

r̃

∂

∂r

�
r

∂

∂r
u̇

�
+ ǫ

Z 1

0
u r′dr′

+ χ

�
2

Z 1

0
u̇ r′dr′ − ẍp

�
= −(1 + γ/β)

...
α (11a)

ẍp + ξ

�
ẋp − 2

Z 1

0
u r′dr′

�
+

1

Fr2
sin(xp + α) = −α̈ (11b)

with the initial and boundary conditions

u(r, 0) = u̇(r, 0) = xp(0) = ẋp(0) = 0 (12a)

u(1, t) =
∂

∂r
u(0, t) = 0 (12b)

Apart from the stiffness coefficient ǫ these equations con-

tain three new dimensionless coefficients Fr2, ξ and χ. The

Froude number Fr is defined as

Fr2 =
R

gT 2
ref(1 − ρ/ρp)

(13)

The coefficient ξ reflects the inverse of the particle relaxation

time, whereas the coefficient χ determines the particle-fluid

coupling. They are defined as

ξ =
9ρa2

2ρpa2
p

χ =
3apnp

βR
(14)

Typical values for the physical parameters can be found in

table 1.

The governing equations (11) form a system of inhomo-

geneous partial integro-differential equations. In the term

for the cupula reaction force and in the terms for the Stokes

drag we find integral operators of Fredholm type. The grav-

ity term in (11b) introduces a nonlinearity to this system. In

the following section we will explain the basic mechanisms

of BPPV by computing numerical solutions of (11). Then,

a modal analysis of the linearized governing equations will

provide us with a deeper understanding of the influence of

the various physical parameters, e.g., the canal geometry, on

the symptoms of BPPV.

BASIC MECHANISMS OF BPPV

We solve the governing equations (11) numerically by

using a mixed implicit/explicit time integration scheme and

Table 1: Typical physical and geometrical parameters (val-

ues from Van Buskirk et al. (1976) and Squires et al. (2004)).

description value

major canal radius R 3.2 × 10−3 m

duct radius a 1.6 × 10−4 m

angle spanned by the duct β 1.4π

angle spanned by the utricle γ 0.42π

cupular stiffness K 13 GPa/m3

endolymph density ρ 103 kg/m3

endolymph viscosity ν 10−6 m2/s

particle density ρp 2.7 × 103 kg/m3

particle radius ap 0.5 − 25µm
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Figure 4: Numerical solution of (11) for np = 7 and

ap = 14µm; —— (dimensional) cupula displacement V , – – –

(dimensional) volume flow V̇ ∝ ū.

finite differences for the discretization of the spatial deriva-

tives.

Figure 4 shows a typical solution of (11) for the head

maneuver from 0◦ (upright) to −120◦ (supine). This head

maneuver is part of the Dix-Hallpike maneuver, which is a

diagnostic maneuver for clinical testing. The same maneuver

was also used to obtain figure 2.

During the head maneuver (per-rotatory phase, t < 0)

the cupula displacement V (t) follows qualitatively the head

velocity α̇(t). Immediately after the head maneuver has

ended (t = 0) there is an overshoot, i.e., the cupula has

swung past its relaxed state and is deflected to the opposite

side. The magnitude of this overshoot corresponds to the

velocity error (6). Up to this point the solution is qualita-

tively the same as it is for the healthy (particle-free) SCC.

In the post-rotatory phase (t > 0) the cupula displacement

V (t) crosses the zero axis a second time at t = TL. It only

returns to its relaxed position after it has reached a local

extremum −Vmax at t = TP . This corresponds to the posi-

tional nystagmus that is observed with canalithiasis patients.

The second crossing of the zero axis and the subsequent lo-

cal extremum of the cupula displacement is perceived as a

secondary angular motion and causes vertigo.

The results shown in Figure 4 are shown again in Figure 5

as a sequence of schematic drawings. It documents the two-

phase process of canalithiasis: particle positioning during

the per-rotatory phase and gravity-driven flow during the

post-rotatory phase which is induced by the falling particles.
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Figure 5: Schematic drawings of the semicircular canal with

particles (ap = 11µm, np = 10) during a head maneuver

(the arrow shows the particle velocity ẋp + Rα̇; the cupula

is drawn separately below the canal as a bulged membrane).

MODAL ANALYSIS

We can obtain a deeper understanding of BPPV from

a modal analysis of the governing equations (11). To this

end, we replace the trigonometric term in the particle equa-

tion (11b) by xp + α. Although this approximation may

introduce a sizable error for angles of 90◦ and more, we will

see that the results obtained from the linearized problem

remain qualitatively correct.

We write the linearized governing equations (11) in ma-

trix form as
∂

∂t
Qu = Pu + f (15)

where u(r, t) = (u(r, t), u̇(r, t), xp(t), ẋp(t))T .

To obtain an eigenvalue problem we drop the forcing f

and make the ansatz

u(r, t) = û(r)e−σt (16)

with û = (û(r),−σû(r), x̂p,−σx̂p)T . This gives the gener-

alized eigenvalue problem for BPPV

−σQû = Pû (17)

with the boundary conditions û(1) = ∂/∂r û(0) = 0.

A numerically computed spectrum is shown in figure 6.

Apart from two new eigenvalues (the slow and the fast par-

ticle mode) the spectrum looks almost the same as the spec-

trum of the endolymph flow without particles. This suggests

that we can find approximate expressions for the eigenvalues

by decoupling the linearized governing equations.

We obtain decoupled equations by dropping the term for

the Stokes drag from the fluid equation (since χ ≪ 1) and

by neglecting the contribution of u in the particle equation

(assuming that |û| ≪ |ẋp|). With these simplifications we

have eliminated the two-way coupling from our model.

The decoupled fluid equation is equivalent to van

Buskirk’s equation (2a). The corresponding eigenvalue spec-

trum was discussed extensively by Obrist (2006) and the

results were summarized above.

The decoupled homogeneous form of the particle equa-

tion (11b) has the simple form

ẍp + ξẋp + Fr−2xp = 0. (18)
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Figure 6: Eigenvalue spectrum for ǫ = 0.09752, ξ = 426.667,

χ = 2.13154×10−2 and Fr2 = 0.7905 (np = 10, ap = 10µm).

This equation yields two particle modes,

σs =
1

Fr2ξ
, σf = ξ. (19)

According to their decay rate we name them the slow particle

mode σs and the fast particle mode σf . As noted earlier, the

fast particle eigenvalue σf = ξ corresponds to the inverse of

the particle relaxation time.

The slow particle mode decays much slower (on the order

of seconds). Its eigenvalue lies close to the eigenvalue σc of

the cupula mode. This suggests that BPPV (which is a rel-

atively slow process) is mainly governed by the slow particle

mode and the cupula mode. We define a Stokes number St

which relates a typical time constant for the particle motion

(1/σs) to a typical time constant of the fluid flow (1/σc).

St ≡ ǫFr2ξ

16
=

9πKa4

16β a2
p g(ρp − ρ)

. (20)

For typical values of ǫ, ξ and Fr we find that St may be

below as well as above unity. For the parameters given in

table 1 the critical particle size where St = 1 is 14.3µm. We

will see in the following that St plays an important role in

BPPV.

Before we continue we would like to point out that the ex-

pressions in (19) are just approximations to the eigenvalues

of (15). Moreover, a numerical evaluation of the eigenval-

ues for different Stokes numbers (figure 7) reveals that the

cupula mode and the slow particle mode actually switch roles

as St passes through unity, i.e., the eigenvalue σs follows the

expression (19) for St > 1, but approaches ǫ/16 for St < 1

(and vice versa for σc). We also conclude from this figure

that the slow particle mode decays slower than the cupula

mode for all choices of St .

REDUCED-ORDER MODEL FOR BPPV

During the post-rotatory phase, i.e., after the head ma-

neuver has ended, the forcing f in (15) is zero. Therefore, the

post-rotatory phase can be considered an initial value prob-

lem with a solution governed by the eigensolutions from the

previous section. The initial conditions are the endolymph

velocity, the cupula displacement, and the particle position

and velocity at t = 0 which are a direct result of the head

maneuver.

We build a reduced-order model for the post-rotatory

phase from the slow particle mode and the cupula mode since

these are the only two eigenmodes that will prevail after a

few microseconds. Although both modal solutions decay in

time, we can obtain transient growth if the eigenfunctions
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are not orthogonal to each other. We can confirm this by nu-

merically computing the eigenfunctions. As a matter of fact,

we find that the velocity profiles of both modes are nearly

parabolic, i.e., they are nearly “parallel” to each other. The

associated particle velocities, however, have opposite signs.

In the slow particle mode the particle moves against to the

endolymph flow (counter-flow), whereas it moves with the

endolymph in the cupula mode (co-flow).

We define the reduced-order model for BPPV as�
ū

ẋp

�
= A1

�
ūs

−σsx̂p,s

�
e−σst+A2

�
ūc

−σcx̂p,c

�
e−σct (21)

where we replaced the (nearly parabolic) velocity profile

u(r, t) by the bulk velocity ū. The vectors (ūs,−σsx̂p,s)

and (ūc,−σcx̂p,c) are the eigenvectors of the slow particle

mode and the cupula mode, respectively. The constants A1

and A2 are determined from the initial conditions, i.e., from

the particle and endolymph velocity immediately after the

head maneuver has ended.

It is straightforward to show that

A1 =
ẋp,0

−σsx̂p,s

θ0 − θc

θs − θc

(22a)

A2 = − ẋp,0

−σcx̂p,c

θ0 − θs

θs − θc
(22b)

where θ0 = ū0/ẋp,0 is the ratio between the initial fluid and

particle velocities, and θs, θc are the corresponding ratios for

the slow particle and cupula mode, respectively.

Numerical simulations show that typical head maneuvers

end with negative fluid and particle velocities. Therefore, we

can assume a co-flow situation at t = 0 (θ0 > 0). On the

other hand, we have found at the end of the previous section

that the slow particle mode (counter-flow) will always prevail

as t → ∞. Therefore, either the fluid flow ū or the the

particle velocity ẋp must change sign at a certain time t > 0.

These two cases are shown schematically in Figure 8.

The case A1 > 0 describes BPPV. Here, the cupula re-

laxes faster than the particles fall to the bottom of the canal.

The fluid velocity will change sign at t = TP which is the

time of the peak nystagmus and |V | = Vmax.

For A1 < 0 the fluid velocity remains negative for all

t > 0 and only the particle velocity changes sign. In that

case the particles fall faster than the cupula relaxes. There is

no nystagmus. Although theoretically possible, we have not

been able to observe this case in our numerical simulations

of the full nonlinear equations.

(a)
—— ū

– – – ẋp

– · – V

TP

t

A1 > 0

(b)
—— ū

– – – ẋp

– · – V

t

A1 < 0

Figure 8: Two possible cases of transition from co-flow to

counter-flow: (a) for A1 > 0 the fluid velocity ū changes

sign at t = TP ; (b) for A1 < 0 the particle velocity ∂xp/∂t

changes sign and there is no positional nystagmus.

The reduced-order model allows us to derive explicit (ap-

proximate) expressions for the characteristic values of the

positional nystagmus (TL, TP , and Vmax). For example,

the time to peak TP (where the endolymph bulk velocity ū

changes sign) is given by

TP =
1

σc − σs

ln

�
θc(θ0 − θs)

θs(θ0 − θc)

�
(23)

With the help of the function θu we can further simplify the

expressions for TP , TL, and Vmax.

θu =
−χFr2ξ

ǫFr4ξ2 − (16 + 2χ)Fr2ξ + 4
(24)

The function θu approximates θs for St < 1 and θc for

St > 1. The change from co- to counter-flow is reflected

by a change of sign of θu as St passes through unity. With

this we obtain the simplified explicit expressions for the char-

acteristic values of the positional nystagmus:

TP =
16

ǫ

St

St − 1
ln

�
1 − θ0

θu

�
(25a)

TP − TL =
16

ǫ

St

St − 1
lnSt (25b)

Vmax =
16

ǫ
ū0(St − 1)

�
1 − θ0

θu

�
−

1

St−1

(25c)

We have tested the expression for TP − TL against nu-

merical simulations of the linearized equations (15) and of

the full nonlinear BPPV model (11). According to (25b) the

difference between latency and time to peak is independent

of the number of particles. We see from figure 9 that (25b)

is a good prediction for TP −TL for large particles (St < 1).

For small particles (St > 1) the influence of np becomes

visible and expression (25b) under-predicts TP − TL. Ap-

parently, the nonlinear gravity term plays a larger role for

small particles.
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The expression (25b) can be evaluated without knowing

anything about the head maneuver. The expression (25a),

however, requires knowledge of the initial condition θ0, i.e.,

the result of the head maneuver. In Figure 10 we have plot-

ted the ratio θ0/θu obtained from numerical simulations of

the nonlinear equations. For small particles (St > 1) the

ratio is negative and it becomes more negative the smaller

the particles get. According to (25a) the cupula displace-

ment then peaks at increasingly later times TP . For large

particles (St < 1) and large np the behaviour remains qual-

itatively the same. For small numbers of larger particles,

however, we find that the ratio θ0/θu approaches 1. It be-

comes even larger than 1 for np = 1 and ap ≈ 20 . . . 25µm.

In that case there should be no positional nystagmus (com-

pare to figure 8(b) where the particle velocity changes sign

rather than the fluid velocity). However, in the nonlinear

case these effects are somewhat mollified and we have not

been able to observe the disappearance of the positional nys-

tagmus.

CONCLUDING REMARKS

A central result of our study is the formulation of several

dimensionless coefficients which determine the behavior of

SCC with canalithiasis. The reduced-order model is a simple

model with two degrees of freedom which describes the post-

rotatory phase (t > 0) as an initial value problem. The

expressions (25) are a direct result of this model. They allow

us to study the influence of geometrical parameters (e.g.,

canal radius, particle size, etc.) on BPPV.

We find, for instance, that the latency TL and the time

to peak TP are proportional to R. This simple result leads

to a possible explanation for the clinical observation that

patients with canalithiasis in the horizontal SCC (< 10% of

all cases) show shorter latency and a stronger and earlier

nystagmus than patients with canalithiasis in the posterior

SCC (∼ 90% of all cases). At least the shorter latency and

the earlier peak nystagmus can be explained by the canal

geometry: the major radius R of a typical horizontal SCC is

approximately 10 to 20% smaller than in the posterior canal

(Curthoys et al., 1976).

The proposed model is able to explain the principal rela-

tions between the physical and geometrical parameters and

the BPPV symptoms. However, it is not able to predict

precisely the intensity of the positional nystagmus, for in-

stance. We assume that the biggest difference between our

model and the actual physiological process lies in the parti-

cle modeling. Our particle model assumes Stokes drag in a

flow field without walls. However, the pressure drop due to

a (very small) sedimenting particle in a pipe is a function of

the radial position of the particle (see, e.g., Happel & Bren-

ner, 1973; Squires et al., 2004). Our model under-predicts

the pressure drop if the particle is in the center of the canal,

and it over-predicts the pressure drop if the particle is close

to the wall. To study this effect we added an equation of

motion for the radial direction to our governing equations.

We found that the particles spend most of the time during

the head maneuver (t < 0) and after the peak nystagmus

(t > TP ) close to the wall. During the phase where the posi-

tional nystagmus is building up (0 < t < TP ), the particles

are mostly close to the center of the canal. So, it turns out

that our crude particle model yields (on average) the cor-

rect pressure drop. We also found that the results remain

qualitatively the same whether we include the radial equa-

tion of motion or not. The inability of our model to yield

good predictions for the nystagmus intensity (compare, for

instance, figures 2 and 4) is most likely due to the fact that

we neglect the blockage effect of large particles (ap/a > 0.1)

and the effect of clusters of sedimenting particles.

REFERENCES

Curthoys, I. S., Markham, C. H., and Curthoys, E. J.,

1976, “Semicircular duct and ampulla dimensions in cat,

guinea pig and man”, J. Morph., Vol. 151, pp. 17–34.

Happel, J., and Brenner, H., 1973, “Low Reynolds Num-

ber Hydrodynamics: with special applications to particulate

media”, 2nd edn., Noordhoff, Leyden.

Obrist, D., 2007, “Fluidmechanics of semicircular canals

– revisited”, ZAMP , submitted.

Rajguru, S. M., Ifediba, M. A., and Rabbitt, R. D., 2004,

“Three-dimensional biomechanical model of benign paroxys-

mal positional vertigo”, Ann. Biomed. Eng., Vol. 32 (6),

pp. 831–846.

Rajguru, S. M., Ifediba, M. A., and Rabbitt, R. D., 2005,

“Biomechanics of horizontal canal benign paroxysmal posi-

tional vertigo”, J. Vest. Res., Vol. 15, pp. 203–214.

Squires, T. M., Weidmann, M. S., Hain, T. C., and Stone,

H. A., 2004, “A mathematical model for top-shelf vertigo:

the role of sedimenting otoconia in BPPV”, J. Biomech.,

Vol. 37, pp. 1137–1146.

Van Buskirk, W. C., Watts, R., and Liu, Y., 1976, “The

fluid mechanics of the semicircular canals”, J. Fluid Mech.,

Vol. 78 (1), pp. 87–98.

1034


	Volume3_part2
	Part1
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Leerseite
	Part2
	TSFP5 Author indexA4.pdf
	Sheet1




