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ABSTRACT

The development of an adaptive particle redistribution

method for Eulerian Monte-Carlo simulation of joint scalar

probability density function coupled with LES is described.

The proposed method is assessed with two test cases, namely

the Sandia/TUD turbulent piloted methane/air jet flames D

and F. Numerical results of the transported mixture fraction

and its fluctuations are compared on the one hand side to a

calculation with an uniformly distributed amount of parti-

cles and on the other hand side with experimental data.

INTRODUCTION

Better knowledge of mixing and combustion dynamics in

turbulent flows becomes cumulatively important, especially

to achieve high efficiency and low emission in modern gas

turbines. In this regard CFD has become an important tool

of optimization processes pollutant emissions and reduction

of development phases of novel constructions. However, ac-

curate prediction of flow, mixing and combustion processes

and dynamics require a comprehensive set of numerical sub-

models, since direct numerical simulation (DNS) is too ex-

pensive [Janicka and Sadiki (2005)].

A promising tool for reliable predictions of unsteady

phenomena as occurring in turbulent reacting flows is the

large eddy simulation (LES). LES can be seen as a compro-

mise between Reynolds averaged Navier Stokes (RANS) and

DNS, computing the large scale structures while modeling

the small scale influence of the turbulence. Nevertheless,

the information on the small scales are necessary for their

influence on the turbulence-chemistry interaction and espe-

cially on the chemical reaction rates. These rates show a

highly non-linear behavior with the crucial properties in the

modelling.

With respect to this, it is essential to be aware of the

joint probability density function (JPDF) of the transported

scalar within the subgrid. Commonly, the so called pre-

sumed β-PDF approach is used [Rhodes (1975)]. Here,

scalar PDF’s are standardized in terms of scalar means and

variances. In combustion processes characterized by sev-

eral involved species the assumed PDF method needs further

assumptions and is computational expensive [Pope (1994)].

Furthermore the presumed shape of the subgrid PDF is a

restrictive approximation in cases of complex mixing and

high turbulence-chemistry interaction. Olbricht et al. (2006)

showed, that the presumed β-PDF’s have a strong smooth-

ing character and that often occurring complex micromixing

situations cannot be well described by this PDF.

In order to avoid this lack a modelled transport equation

for the composition PDF is solved. In general, this equation

is highly dimensional and thus impractical to be solve using

a finite volume method. Hence, the Monte-Carlo method has

been used to solve this PDF transport equation in which the

PDF is represented by an ensemble of stochastic particles.

One major advantage of the transported PDF method is that

the filtered chemical reaction source term appears in closed

form and thus has not to be modelled.

In the present paper the hybrid LES Monte-Carlo PDF

approach is extended by an adaptive method. Within the

following chapters this method is described in detail. For

proving of the accuracy of the method along with its nu-

merical implementation two configurations are considered,

Sandia/TUD flame D and F, which are turbulent piloted

methane/air jet flames experimentally investigated by Bar-

low and Frank (1998) and Schneider et al. (2003).

GOVERNING EQUATIONS

In reactive cases like combustion the density changes in

time as a function of temperature and concentration. Fol-

lowing the spatial filtering procedure made to obtain the

filtered equations for LES the appearance of unclosed terms

according to these density changes can be avoided by using

Favre-filtering (density-weighted filtering: ρ̄φ̃ = ρφ). Equa-

tions (1) and (2) represent the Favre-filtered conservation of

mass and momentum for fluids with Newtonian behavior.

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = 0 (1)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj) =

∂

∂xj

(
ρ̄ν̃

( ∂ũi

∂xj
+

∂ũj

∂xi

)

−2

3
ρ̄ν̃

∂ũk

∂xk
δij + ρ̄τsgs

ij

)
− ∂p̄

∂xi
(2)

Thereby the unresolved term τsgs
ij are due to the non-

linearity of the convective term. This so called subgrid scale

stress tensor is closed by the standard Smagorinsky model

[Smagorinsky (1963)].
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τsgs
ij − 1

3
τsgs
kk

δij = 2νtS̃ij with νt = (CS∆̄)2|S̃ij | (3)

S̃ij =
1

2

( ∂ũi

∂xj
+

∂ũj

∂ui

)
(4)

The model coefficient CS is dynamically calculated by

the procedure originally proposed by Germano et al. (1991)

with the modifications suggested by Lilly (1992). ∆̄ in equa-

tion (3) represents the averaged filter width, which coincides

with the size of the grid cells.

In Pope (1981) it is shown, that the development of the

scalar PDF P (ψ; x, t) can be described by a multidimen-

sional transport equation. This PDF evolves in physical

space (x, t) as well as in composition space ψ(= ψ1, ψ2, ...),

which determines the stochastic variables for the scalars

φ(= φ1, φ2, ...). The transport equation for the Favre-

filtered PDF reads as follows:

∂

∂t
(ρ̄P̃ ) +

∂

∂xi
(ρ̄P̃ ũi) +

∂

∂ψα
(ρ̄P̃ Sα) = (5)

∂

∂xi

[
ρ̄(D̃ + Dt)

∂P̃

∂xi

]
+ E(ψ; x, t) (6)

Here, the left hand side includes the accumulation, the

convection and the chemical source terms. The first term

on the right hand side represents the diffusive transport in

physical space which is followed by the molecular mixing

term in composition space. The terms on the left hand side

of equation (6) including the chemical source term exist in a

closed form, whereas the terms on the right hand side have

to be modelled. Thereby the turbulent diffusion has been

approximated by a gradient assumption.

Since the PDF’s are commonly multidimensional with a

variety of transported scalars, one has to take care of the

efficiency of the used solver for equation (6) in order to keep

the computational effort as low as possible. The Monte-

Carlo method requires a computational effort which is rising

linearly with the number of transported scalars and thus is

the best choice for solving the PDF transport equation. For

comparison, the computational effort of a finite difference

scheme increases exponentially with the number of unknown

variables [Pope (1981)].

NUMERICAL PROCEDURE

In the context of this work the three dimensional CFD

code FLOWSI is used. For transported PDF calculations

a stochastic Eulerian Monte-Carlo solver was integrated in

framework of the existing finite-volume LES code. The code

is based on an axis symmetric staggered grid. The time

integration uses an explicit three-step low-storage Runge-

Kutta scheme. The momentum transport is second order

in space, while the finite-volume transport for the scalars is

carried out with a predictor/corrector approach using TVD-

schemes [Kempf (2003)] and hence reaching second order

accuracy away from sharp gradients.

The Monte Carlo method uses an ensemble of stochastic

particles to represent the PDF’s. The present paper han-

dles the Eulerian approach of the Monte Carlo method in

which the ensemble of stochastic particles are fixed in physi-

cal space in contrast to the Lagrangian approach, where the

particles follow the flow. In order to solve the PDF trans-

port equation the Fractional Steps method proposed by Pope

(1985) is applied. Here, the actual simultaneous proceed-

ing effects, convection, diffusion, chemistry and mixing are

processed in sequence as shown in equation (7).

P̃ (ψ; t + ∆t) = (I + ∆tC)(I + ∆tM)(I + ∆tR)P̃ (ψ; t) (7)

The approximation of the PDF P̃ (ψ; t+∆t) by using the

Fractional Steps method implies an error of order ∆t. The

three fractional steps are namely the convective and diffusive

transport C, the mixing processM and the chemical reaction

R. The applied models for the three processes are described

below.

The convective and diffusive transport is approximated

by upwind discretization. The simulation of this transport

is accomplished by an exchange of values of the stochastic

particles between adjacent cells.

The molecular mixing process is modelled by the so called

Modified Curl’s model [Janicka et al. (1979)], which is based

on a pairwise interaction between stochastic particles. The

effect of using different sgs-mixing models in LES context is

investigated by Bisetti and Chen (2005).

In the present paper the chemical process R is neglected,

since the transported scalar mixture fraction is commonly a

non-reacting property without any sources. This is the case

as long as there is no phenomenon related to two phase flows

with phase changes. Nevertheless, flamelet tables created by

the chemical kinetics tool CHEM1d [Hermanns (2001)] are

used to determine the thermodynamic and chemical state.

Therefor, the tables are entered with the calculated mixture

fraction value of each particle and returns information about

density, temperature and several chemical species. By using

Monte Carlo PDF methods it turns out that it is not re-

quired to make a β-integration of the flamelet table over the

variance of the mixture fraction. In comparison to a pre-

integrated flamelet table the memory usage is lower, since

the tables have less dimensions.

ADAPTIVE PARTICLE DISTRIBUTION METHOD

The adaptive method aims at an effective usage of the

implemented Monte Carlo PDF method. The idea is to re-

distribute the actually fixed stochastic particles in a way

that there is a higher density of particles in areas of interest,

for example the reaction zone. With such an approach the

statistical error can be reduced with the same memory con-

sumption and nearly the same computational effort. The

new distribution of the particles can be calculated by an

arbitrary function. The present work introduces and inves-

tigates a distribution function which is based on two major

assumptions:

• The PDF of a well mixed scalar field can be uniquely

defined by a single stochastic particle

• The standard error εN depends linearly on the variance

of the scalar

From the first assumption it appears, that a DNS calcu-

lation needs only as many particles as cells. The DNS cell

size should be chosen according to Kolmogorov’s scale η,

which is the smallest scale of turbulence. That implies, that

inside this microscales all fields are well mixed and hence the

PDF can be represented by a single particle. Kolmogorov’s

approach of comparing the integral length scale L with Kol-

mogorov’s scale is known as

L

η
= Re3/4 (8)
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This equation is used to make an estimation of the max-

imum number of particles, which is needed for an exact

representation of the PDF in a given LES cell. For applica-

tion in a three dimensional problem equation (8) has to be

taken to the third power. Substitution of the integral length

scale L with the LES cell width ∆LES leads to equation (9).

(L

η

)3
=

∆3
LES

∆3
DNS

= (Re3/4)3 = Re9/4 (9)

Taking the first assumption into account and inserting it

in equation (9) one gets the correlation of the ideal particle

amount for the LES cell size:

Nmax
LES

Nmax
DNS

=
Nmax

LES

1
= Re9/4 (10)

The present work uses a local turbulent Reynolds number

to calculate equation (10), which is defined by

Ret =
u‘∆̄

νt
(11)

Here, u‘ denotes the velocity fluctuations, νt the turbu-

lent viscosity and ∆̄ the average cell length. The velocity

fluctuations are not entirely resolved and so a model for the

spatial unresolved part of u‘ has to be used. This work

makes use of the model proposed by Yoshizawa (1982) for

the unresolved turbulent kinetic energy ksgs.

ktotal = kresolved + ksgs = kresolved + (
1

(Cv∆̄)2
ν2

t ) (12)

The constant Cv is defined according to Scotti et al.

(1993) as Cv = 0.1. Eventually the ideal particle density

for each cell can be computed by using equation (13).

Nmax
LES = Re

9
4
t =

(√
2
3
(kresolved + 1

(Cv∆̄)2
ν2

t )∆̄

νt

) 9
4

(13)

The second assumption is, that the standard error is lin-

early proportional to the variance of the mixture fraction

and inversely proportional to the square root of the number

of particles inside the ensemble [Pope (1985)].

εN =
σ√
N

(14)

From equation (14) by approaching a constant standard

error, one can derive a relation between the particle density

N and the sgs-variance.

N ∼ σ2 = 〈f ‘2〉 (15)

σ = 〈f ‘2〉 1
2 denotes the second central moment of the

mixture fraction f . In this work, the normalized variance,

the so called unmixedness ξ is inserted into equation (15).

The unmixedness is normalized by the maximum value of

the variance f(1− f). Hence, one obtains equation (16).

N ∼ 〈f ‘2〉
f(1− f)

= ξ (16)

Taking both relations (13) and (16) into account one ob-

tains the eventual relation between the particle density, the

flow characteristics and the mixing properties.

N = Nmax
LES · ξ (17)

Obviously, the distribution function of N must be rea-

sonably continuous in time in order to keep the error due to

the change of the particle density as low as possible. Un-

fortunately the local turbulent Reynolds number Ret and

accordingly Nmax
LES vary in time, because the turbulent viscos-

ity νt is not continuous in time due to the used eddy-viscosity

model. Thus, we use a time averaged N
max
LES as a matrix and

include the time dependence of the particle density by the

unmixedness ξ(t) [see equation (18)].

N(t) = N
max
LES · ξ(t) (18)

Kuehne (2006) compared different adaptation frequen-

cies and concluded to prefer a frequency of twenty time steps.

The procedure of adaptation is described below. At first, the

new number of particles for each cell is calculated accord-

ing to the distribution function. Dependent on the relation

between the previous and the newly calculated amount of

particles per cell different procedures are possible [Permana

and Chen (2003)].

1. previous and new number of particles are the same: all

values of the particle ensemble are copied

2. previous amount of particles in a cell is larger than the

new one: the values of the new ensemble are randomly

chosen out of the existing one

3. previous particle density is lower than the new one:

the values of the existing particles are copied as often

as the integer of the ratio new to previous amount,

the values of the remaining particles are again chosen

randomly from the previous ensemble

It is evident, that the calculated distribution of the par-

ticles does not result in the same total amount of particles

as the simulation is initialized. Hence, the adaptation proce-

dure distributes the particles according to the given function

as long as the total number of particles is reached. Concisely,

the total number of particles in the domain is kept constant

and there is a redistribution of the given particle ensemble.

CONFIGURATION

The investigated configuration in this contribution is a

non-premixed piloted methane/air jet flame measured at the

Sandia National Laboratory and the Darmstadt University

of Technology [Barlow and Frank (1998)]. The center nozzle

has a diameter of Djet = 7.2mm and the pilot flame has a

diameter of Dpilot = 18.2mm. The fuel consists of 25% of

methane CH4 and 75% of air. The stoichiometric mixture

fraction is fst = 0.351. The fuel of the pilot flame is a

premixed composition of acetylene C2H2, hydrogene H2, air,

carbon ioxode CO2 and nitrogen N2. Experiments show,

the flames behave like non-premixed flames, even though

a premixed composition is inserted from the center nozzle.

Around the pilot flame a so called coflow with a low speed air

flow is arranged, in order to protect the flame from extrinsic

interferences. Different Reynolds numbers have been applied

to this configuration and build a series of flames, which are

called Sandia/TUD flame A, B, C, D, E and F. In this work

flame D and F with the properties shown in table 1 are

investigated.

The computational domain for the simulations has a

length of 20 jet diameters in axial direction and 10 jet di-

ameters in the radial direction. The domain is discretized

by grids with 280000 cells (flame D) and 960000 cells (flame

F), respectively. The uniform particle distribution at ini-

tialization is 20 particles per cell for both flames and hence
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Table 1: Properties of the Sandia/TUD flames D and F

Ujet[
m
s

] Upilot[
m
s

] Uco[m
s

] Rejet[−]

Flame D 49.6 11.4 0.9 22400

Flame F 99.2 22.8 0.9 44800

gives total numbers of particles of ND
tot = 5.6 · 106 and

NF
tot = 19.2 · 106 for flame D and flame F, respectively.

RESULTS

Figure 1 shows the distributions of the ideal particle den-

sity N
max
LES averaged .for the two investigated cases flame D

and F. As one can clearly see, the structures of the more

turbulent flame F on the right hand side are smaller than

the ones of flame D. Furthermore flame F shows higher val-

ues for this property in general. As one would expect, N
max
LES

is higher near the inlet boundary, which is caused by larger

velocity fluctuations according to the existence of two mix-

ing layers. On the one hand side between the main jet and

the surrounding pilot and on the other hand side between

the pilot and the coflow. The highest values range around

90000 particles per cell whereas the lowest numbers are ap-

proximately 300.

Figure 1: Distribution of the ideal particle density N
max
LES

averaged over 5000 time steps. Flame D on the left and

flame F on the right.

Figure 2 depicts instantaneous captures of the particle

density N(t) for flame D and F. The mixing layers contain

the highest amounts of particles, this can easily be seen in

the inlet region, where two mixing layers are present. In-

side the flame, near the centerline, one can observe a low

particle density which is associated to the absence of any

mixing phenomena. The comparison of both configurations

does not show any outstanding differences within the par-

ticle distributions except for the higher number of particles

in flame F caused by a finer grid. The highest level of the

particle density is around 45 for flame D and 60 for flame F.

Looking at the quantitative results in figure 3 one can

see radial distributions of the mixture fraction (left) and its

standard deviation (right) for flame D. The results are shown

for three different axial positions, namely x/d =2, 7.5 and

15. The plots compare results of simulations using a con-

stant particle density of 20 ppc with the above described

Figure 2: Instantaneous capture of the particle density.

Flame D on the left and flame F on the right.

adaptive method and experimental data. Besides the mix-

ture fraction results the average of the particle density is

represented. At first it should be mentioned that the stan-

dard deviation plots are scaled in order to identify differences

in the results more accurately.

The adaptive method shows consistently better results

than the simulation with an uniformly distributed particle

field in all axial positions. Nevertheless, the particle density

near the inlet at x/d =2 is still too low, which is apparent

at r/d =0.75 where the experimental data is still affected

by the inlet boundary conditions. Both simulations do not

show this behavior since the mixing of the pilot and the main

jet seems to be too high. The fluctuations of the mixture

fraction are as well dominated by the good results of the

adaptive method. The adaptive method shows good agree-

ment with the experiments especially at x/d = 15. Here, the

uniform particle density calculation underpredicts the fluc-

tuations at higher r/d ratios. Especially at x/d =2 the level

of the fluctuations is too low. This is due to the fact, that

the resolution of the grid within the inlet region is too coarse

and thus the developing mixing layer cannot be calculated

properly. This effect decreases by going downstream and

so the level of the calculated fluctuations are similar to the

experiments. A further aspect regarding the fluctuations is

the underprediction near the centerline in all axial positions.

This phenomenon is due to problems with the axis symmet-

ric mesh. The cylindric grid arrangement implies that the

transport over the centerline is challenging. Especially the

Monte-Carlo procedure shows difficulties in the implementa-

tion, since a positive weighting scheme (e.g. upwind scheme)

has to be used in order to realize the particle exchange be-

tween the cells. At this moment transport of particles over

the centerline is not implemented and thus effects the fluc-

tuation results near r/d =0. This might be confirmed by

good results as soon as one moves from the centerline to the

outer regions.

Figure 4 shows the same properties as figure 3 for flame

F. This flame has significant and increasing probability of

local extinction above the pilot region and is close to global

extinction in the downstream part of the flame [Barlow and

Frank (1998)]. Since the used chemistry table does not in-

clude extincted flamelets, it is obvious that the calculated

results for flame Fdo not agree with the corresponding exper-

iments. This is caused by severe density differences between

burning and non-burning gas in reality which affect the flow
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Figure 3: Radial distribution of the mixture fraction for

three axial positions (left) and rms values of the mixture

fraction (right) of flame D. Uniform particle density 20 ppc

(solid lines), adaptive method(dashed lines), experimental

data (symbols) [Barlow and Frank (1998)], particle density

of adaptive method (dotted lines with triangles).

and the associated mixing significantly. The averaged mix-

ture fraction results of the adaptive method as well as the

calculation with uniform particle density show acceptable

agreement with the experimental data for axial position

x/d =2 with increasing discrepancy by moving further down-

stream. At position x/d =2 the same effect appears as in

flame D. Apparently, there is a lack of both grid resolu-

tion and particle density, since the mixing between the pilot

stream and the main jet is too high. This may also be caused

by the high numerical diffusion due to the first order upwind

scheme, which melts the influence of the inflow boundary

conditions too fast. The calculations overpredict the mix-

ture fraction values in almost all radial positions for x/d =

7.5 and 15. At x/d =15 the adaptive method does not really

increase the accuracy of the simulation but even decreases

it in the outer region. The depicted fluctuation plots show

diverse behavior. The rms values near the inlet are too low

due to the same reasons as described above in figure 3. At

x/d =7.5 the adaptive method catches the experiments quite

accurately at r/d higher than unity but underpredicts the

peak compared to the uniform particle density calculation.

Further downstream at x/d =15 the both calculations show

fluctuations that are higher than the experimental results.

Nevertheless the adaptive method gives better agreement

than the simulation with uniform particle density.

CONCLUSION

An adaptive particle distribution method for a hybrid

Eulerian Monte-Carlo PDF approach coupled with LES has

been introduced and its applicability has been proven by

simulations of the two turbulent piloted methane/air jet

flames, Sandia/TUD flame D and F. Two simulations were

carried out for each case, a calculation with uniform parti-
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Figure 4: Radial distribution of the mixture fraction for

three axial positions (left) and rms values of the mixture

fraction (right) of flame F. Uniform particle density 20 ppc

(solid lines), adaptive method(dashed lines), experimental

data (symbols) [Barlow and Frank (1998)], particle density

of adaptive method (dotted lines with triangles).

cle density in the domain and one with an adaptive particle

distribution. The adaptive method aims at an increase of ac-

curacy of the results by decreasing the statistical error within

regions of interest in the flow. Therefor, a distribution func-

tion has been presented, which includes effects of the flow

characteristics as well as mixing properties for the particle

redistribution. The simulations with particle adaption show

improvements of results for the time averaged mixture frac-

tion and the fluctuations, respectively, for both investigated

cases. Nevertheless the local extinctions of flame F could

not be simulated since the used flamelet model is not able

to represent extinction properly, yet. Concisely it can be

said, that the goal of decreasing the statistical error due to

a lack of particles is achieved. Furthermore the adaptive

Monte-Carlo PDF calculations are a good choice for simu-

lations of the jet flames investigated here according to the

effective usage of the total amount of particles, because the

statistical error can be controlled.

Future work will concentrate on the implementation of

the adaptive method in a parallelized code version, which al-

lows larger calculation domains and higher total amounts of

particles at all. Another aspect will be to prove the applica-

bility of this method in different configurations with complex

geometries.
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