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ABSTRACT

The aim of this work is to investigate and explain ef-

fects of compressibility and heat release on turbulence, in

particular on the dynamics of pressure fluctuations and the

pressure-strain correlations. To this end, we perform and an-

alyze highly resolved DNS of temporally evolving inert and

reacting compressible mixing layers at three different con-

vective Mach numbers. The particular focus of the analysis

is on the question whether mean density effects play the key

role also in the reacting mixing layer.

INTRODUCTION

Effects of reduced turbulence activity and growth rate

of a compressible mixing layer when the convective Mach

number increases, are well-known phenomena. That heat

release due to combustion has similar effects, seems to be

less well-known, although it has important implications for

applications such as scramjet engines the efficiency of which

depends on a proper mixing of oxidizer and fuel.

The growth rate reduction of the inert mixing layer

by compressibility was investigated e.g. by Vreman et al.

(1996). They found out that the decrease in pressure fluctu-

ations which led to reduced pressure-strain terms is respon-

sible for the changes in growth rate of a plane compressible

mixing layer. Pantano and Sarkar (2002) studied inert com-

pressible mixing layers as well and showed by an analysis

based on the wave equation for the pressure fluctuations

that the reason for the reduction of the pressure-strain cor-

relations is a finite time delay in the transmission of pressure

signals from one point to an adjacent point and that the re-

sultant increase in decorrelation leads to a reduction in the

pressure-strain correlation. In a reacting shear layer, heat

release due to chemical reactions leads to a significant de-

crease of the mean density. Therefore, it is of interest to see,

which role mean density effects play in this case. Such effects

were absent in inert compressible homogeneous shear flow

(Sarkar, 1995), but were found to be of key importance for

the understanding of the reduction of pressure-strain corre-

lations in inert compressible channel flow (Foysi et al. 2004).

The relevance of mean density effects in shear layers is

one focus of the present paper, which is organized as follows:

The next section gives an overview over the generic configu-

ration, the six test cases with the different convective Mach

numbers and the most important features of the numerical

simulations. Then, in the main part of the paper, results

including instantaneous flow fields and averaged quantities

Table 1: Computational parameters: L1, L2, L3 are the

streamwise, spanwise and transverse domain sizes resolved

by N1, N2 and N3 grid points, respectively. δω,0 is the initial

vorticity thickness of the shear layer at Reω,0 = 640.

Case L1/δω,0 x L2/δω,0 x L3/δω,0 N1 x N2 x N3

inert 192.375 x 32.25 x 96.75 768 x 192 x 576

rct. 345 x 86 x 172 768 x 192 x 432

are shown and analyzed. Particular attention is given to the

pressure-strain correlations which are investigated with the

help of a Green function. In the last section, a summary is

given and conclusions are drawn.

DNS OF INERT AND REACTING COMPRESSIBLE MIX-

ING LAYERS

DNS of inert and reacting temporally evolving mixing

layers are performed at three different convective Mach num-

bers (Mc = 0.15, 0.7 and 1.1). All test cases are 3D with

x1 and x2 denoting the periodic streamwise and spanwise

directions and x3 the direction of the main shear. Table 1

gives the computational parameters.

In the reacting cases, one stream of the mixing layer

contains oxygen and nitrogen and the other hydrogen and

nitrogen premixed in a way that the free-stream densities are

the same and the stoichiometric mixture fraction is Zs = 0.3.

In the inert cases, pure nitrogen mixes with pure oxygen

both of which have a similar molecular weight which results

in a nearly constant mean density. The schematic configu-

ration is shown in Fig. 1.

Hydrogen chemistry is simplified in order to keep the

number of additional variables small: The assumption of

one global reaction with infinitely fast reaction rates and

a constant common Schmidt number for all species allows

X3

X2

X1

Figure 1: The configuration of temporally evolving shear

layers
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to relate their mass fractions to a single passive scalar, the

mixture fraction Z. In addition to the transport equation of

Z, the continuity and the momentum equations, the energy

equation is solved to retain a fully compressible formulation,

in which dynamic viscosity and heat conductivity depend on

local temperature and species mass fractions. The transport

equations are integrated in time using a 3rd order low-

storage Runge-Kutta scheme and 6th order compact central

schemes in space.

The mixing layers were initialized with hyperbolic tan-

gent profiles for the mean streamwise velocity with super-

imposed random, broadband fluctuations for all velocity

components. They rapidly became turbulent and achieved

a self-similar state with Reynolds numbers based on instan-

taneous vorticity thickness and velocity difference between

the free streams ranging from 15000 to 35000.

In the following, the inert/ reacting cases are denoted by

inert-XX, respectively inf-XX, where XX replaces the con-

vective Mach number.

ANALYSIS AND RESULTS

Instantaneous scalar fields

In order to show that compressibility and heat release at-

tenuate all turbulent fluctuations, we display instantaneous

scalar fields as an example at the beginning of the self-similar

state. Figures 2 to 3 demonstrate the stabilization of O2

mass fraction fluctuations in the middle of the computa-

tional domain when the Mach number increases. This can

be seen clearly when comparing the isolines at 0.1 and 0.9

shown in these figures. For the inert case at low Mc (Fig. 2),

they are much more wrinkled than for case inert-1.1 (Fig. 3).

Figure 2: Case inert-0.15: Instantaneous mass fraction of

O2, x1-x3-plane, isolines YO2 = 0.1 and 0.9 as black lines

Figure 3: Case inert-1.1: Instantaneous mass fraction of O2,

x1-x3-plane, isolines YO2 = 0.1 and 0.9 as black lines, same

scale as in Fig. 2

Figure 4: Case inf-1.1: Instantaneous mixture fraction, x1-

x3-plane, isolines Z = 0.1 and 0.9 as black lines, same scale

as in Fig. 2

A further smoothening can be observed when heat release

sets in (case inf-1.1 in Fig. 4). This is particularly visible

from the isoline Z = 0.1, which is closer to the flame sheet

at Zs = 0.3 than the isoline Z = 0.9.

Momentum thickness growth rates

The stabilizing effect of heat release and compressibility

is also visible from the temporal development of the momen-

tum thickness,

δθ =
1

ρ0∆u2

Z ∞

−∞
ρ

„
1

4
∆u2 − eu2

1

«
dx3, (1)

which is shown in Figs. 5 and 6 for the inert and reacting

test cases, respectively. ∆u = u1 − u2 is the velocity differ-

ence between the free streams (upper stream: index 1, lower

stream: index 2), ρ0 = (ρ1 + ρ2) /2 is the reference density

and ρ the mean density. Here and in the following, • de-

notes a Reynolds averaged quantity and e• a Favre averaged

quantity. Primes and double primes indicate the respective

fluctuations. From Figs. 5 and 6, it can be seen that the

momentum thickness growth rate reduces with increasing

compressibility and with heat release. When a self-similar

state is reached, constant momentum thickness growth rates

are established as shown by the linear regressions.

Mean profiles

During the self-similar state, profiles of flow variables, av-

eraged at different times over the homogeneous directions,

collapse when non-dimensionalized appropriately. There-

fore, also temporal averages can be taken which is done

for all profiles in this and the following sections. Figure

7 shows the Favre averaged streamwise velocity which is not

too much influenced by compressibility and heat release. In

contrast to this, the mean density is visibly affected by both

mechanisms, as seen in Fig. 8. Heat release, in particular
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Figure 5: Momentum thickness, normalized by its initial

value δθ,0, �: inert-0.15, ◦: inert-0.7, 4: inert-1.1, straight

lines show linear regressions for the self-similar state
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Figure 6: Momentum thickness, normalized by its initial

value δθ,0, �: inf-0.15, •: inf-0.7, N: inf-1.1, straight lines

show linear regressions for the self-similar state
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Figure 7: Favre averaged streamwise velocity, normalized by

∆u, �: inert-0.15, ◦: inert-0.7, 4: inert-1.1, �: inf-0.15, •:
inf-0.7, N: inf-1.1
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Figure 8: Mean density, normalized by ρ0, symbols as in

Fig. 7

reduces ρ strongly due to the high temperatures in the vicin-

ity of the flame sheet. For the inert cases, a decrease of the

mean density with increasing Mc is a result of dissipative

heating. When reaction sets in, this mechanism is masked

in the center by the stronger effect of heat release.

Reynolds stresses and turbulent kinetic energy

When neglecting mean viscous effects, the non-

dimensional momentum thickness growth rate is given by

(Vreman et al, 1996)

δ̇θ =
1

∆u

dδθ

dt
≈ − 2

ρ0∆u3

Z ∞

−∞
ρu′′1u

′′
3

∂eu1

∂x3
dx3. (2)

From this equation, it can be seen that there are two factors

that might be responsible for the reduction of the growth

rate by compressibility and heat release: The slope of the

Favre averaged streamwise velocity, ∂eu1
∂x3

, and the Reynolds

shear stress ρR13 = ρu′′1u
′′
3 . The first quantity has been

shown in Fig. 7 to be similar for all mixing layers under

investigation. Therefore, a decrease in Reynolds shear stress

must be the main cause for the decrease in growth rate. This
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Figure 9: Reynolds shear stress ρR13, normalized by ρ0∆u2,

symbols as in Fig. 7
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Figure 10: Turbulent kinetic energy, normalized by ρ0∆u2,

symbols as in Fig. 7
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Figure 11: Turbulent kinetic energy, normalized by ρ∆u2,

symbols as in Fig. 7

is confirmed by Fig. 9.

The stabilizing effect of heat release and compressibility

on turbulent fluctuations can also be seen from the other

Reynolds stresses and is in agreement with what has been

concluded from the instantaneous scalar fields (cf. Figs.

2 to 4). Consequently, also the turbulent kinetic energy,

ρek = ρũ′′i u
′′
i , which is shown in Fig. 10, decreases when nor-

malized the same way as the Reynolds shear stress. However,

when normalizing in another way, namely with the mean

density ρ instead of the constant reference density ρ0, the

consequences of heat release are different: heat release causes

an increase of ek close to the center of the shear layer (Fig.

11). To understand these differences, consider the low Mach

number inert and reacting cases (square open and closed

symbols). The reduction of ρek by heat release in Fig. 10 is

a mean density effect, since the two curves collapse in Fig.

11 over most of the domain, except around the center of the

shear layer. The increase of ek due to heat release, there, is

a consequence of the increase in correlation between Favre

velocity fluctuations. The corresponding correlation coeffi-

cient (not shown) reflects this behaviour and is in contrast

to the behaviour of the correlation between ρu′′i and u′′i .

This also holds for the higher Mach number cases. The ef-

fect of compressibility on the other hand has only a weak

mean density component for the Mach numbers considered,

as concluded from Fig. 8. Its stabilizing effect will later be

related to the pressure fluctuations and their determining

Poisson equation.

Reynolds stress transport equations

The transport equations of the Reynolds stresses are

∂ρRij

∂t
+
∂ (ρeukRij)

∂xk
= Pij − εij + Tij + Πij + Σij (3)

with the production rates Pij , the dissipation rates εij ,

the turbulent transport terms Tij , the pressure-strain cor-

relations Πij and the mass flux coupling terms Σij . The
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Figure 12: Production rate of streamwise Reynolds stress,

normalized by ρ0∆u3/δω , symbols as in Fig. 7
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Figure 13: Pressure-strain rate of streamwise Reynolds

stress, normalized by ρ0∆u3/δω , symbols as in Fig. 7

influence of compressibility and heat release on the produc-

tion tensor,

Pij = −
„
Rik

∂euj
∂xk

+Rjk
∂eui
∂xk

«
, (4)

and the pressure-strain rate tensor,

Πij = p′
 
∂u′′i
∂xj

+
∂u′′j
∂xi

!
= 2p′s′′ij , (5)

is particularly strong. The production term and the

pressure-strain rate of the streamwise Reynolds stress ρR11

are shown in Figs. 12 and 13 normalized by ρ0, ∆u and

the vorticity thickness δω . Both, compressibility and heat

release strongly attenuate production and redistribution of

fluctuating kinetic energy. A similar reduction can be ob-

served for the pressure-strain rates of the other diagonal

Reynolds stresses as well.

(p, T, ρ)-fluctuations

The described attenuation of pressure-strain correlations

by compressibility and heat release can be traced back to

x3/δω

p
r
m
s
/

` ρ
0
∆
u

2
´

10.50-0.5-1

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

Figure 14: Rms value of pressure fluctuations, normalized

by ρ0∆u2, symbols as in Fig. 7

x3/δω

T
r
m
s
/
T

10.50-0.5-1

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 15: Rms value of temperature fluctuations, normal-

ized by T , symbols as in Fig. 7
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Figure 16: Rms value of density fluctuations, normalized by

ρ, symbols as in Fig. 7

the attenuation of pressure fluctuations which is stronger

than the reduction of fluctuating velocity gradients and the

changes in their correlation coefficients. The rms pressure

fluctuations are displayed in Fig. 14.

The behaviour of the temperature and density fluctua-

tions can be seen in Figs. 15 and 16. Heat release clearly

enhances density and temperature fluctuations and strength-

ens their coupling which manifests itself in similar profiles

of their rms values.

Reduction of pressure-strain correlations

In order to explain the reduction of the pressure-strain

correlations Πij , an equation determining p′ is derived. It is

obtained by taking the divergence of the momentum equa-

tion, introducing the continuity equation and subtracting

the averaged resulting equation. This leads to:

∂2p′

∂x2
j

=−ρ ∂2

∂xi∂xj

“
u′′i u

′′
j − u′′i u′′j

”

| {z }
A1

−2ρ
∂eu1

∂x3

∂u′′3
∂x1| {z }

A2

+A3 + A4

+B1 +B2 +B3 + C1 + ...+ C5 +
D2ρ′

Dt2| {z }
C6

+
∂2τ ′ij
∂xi∂xj| {z }

D

(6)

The terms on the right hand side (RHS) can be grouped into

four categories: The A-terms depend on the mean density. It

will be shown in the following that the most important ones

are A1 and A2. The other terms on the RHS, i.e. the B-,

C- and D-terms are only present in compressible or react-

ing flows and involve density and viscous stress fluctuations.

Term D, which is the second derivative of the fluctuating

stress tensor, τ ′ij , turns out to be very small for the cases

studied in this work and can therefore be neglected. Term
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C6 contains pressure fluctuations as well as an explicit con-

tribution of the heat release term for reacting flows:

D2ρ′

Dt2
=

1

c2
D2p′

Dt2
− 1

cpT

DQ′

Dt
+ h.o.t. (7)

c denotes the sonic speed and cp the heat capacity of the gas

mixture at constant pressure. Q′ denotes fluctuations of the

heat release term Q,

Q = −
X

α

ρhα
DYα

Dt
(8)

with hα being the enthalpy of species α and DYα/Dt the

substantial derivative of its mass fraction Yα. Provided the

first term on the RHS of Eq. (7) plays a role, it makes Eq.

(6) a convective wave equation. Such an equation was stud-

ied for non-reacting mixing layers by Pantano and Sarkar

(2002). In our simulations, the correlation coefficient of ρ′

and T ′ is negative for all Mach numbers under investigation.

This indicates that acoustic effects are small, and hence the

first term on the RHS of Eq. (7) is negligible. Equation (6)

then becomes a Poisson equation,

∂2p′

∂x2
j

= f, (9)

with all terms on the RHS of Eq. (6) being summarized

in the source term f . After performing a Fourier trans-

formation in the homogeneous directions, p (x1, x2, x3) →
p̂ (k1, k2, x3), and a coordinate transformation in the direc-
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Figure 17: Case inert-0.15: Parts of the pressure-strain

correlation Π11 computed with the Green function. +:

f = f (A1), ×: f = f (A2), ∗: f = f (A3), �: f = f (A4), �:

f = f (B1), ◦: f = f (B2), •: f = f (B3), 4: f = f (C1),

N: f = f (C2), O: f = f (C3), H: f = f (C4), �: f = f (C5)
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Figure 18: Case inert-0.15: Pressure-strain correlation Π11.

Solid: computed with the help of the Green function with

f = f
“P4

i=1 Ai +
P3
i=1 Bi +

P5
i=1 Ci

”
, dashed: evalu-

ated directly
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Figure 19: Case inert-1.1: Parts of the pressure-strain cor-

relation Π11 computed with the Green function. Symbols as

in Fig. 17
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Figure 20: Case inert-1.1: Pressure-strain correlation Π11.

Solid, no symbols: computed with the help of the Green

function with f = f
“P4

i=1 Ai +
P3
i=1 Bi +

P5
i=1 Ci

”
,

dashed, no symbols: evaluated directly, solid with sym-

bols: computed with the help of the Green function with

f = (A1 +A2) and constant density

tion of the main shear, x̆3 = 2x3/L3, Eq. (9) becomes

„
d2

dx̆2
3

− k2
1 − k2

2

«
p̂ (k1, k2, x̆3) = f̂ (k1, k2, x̆3)

with
∂p̂

∂x̆3

˛̨
˛̨
x̆3=±1

= 0.

(10)

This equation can be solved with a Green function G (Kim,

1989),

p′ (x1, x2, x̆3) =

Z 1

−1
G ∗ f

“
x1, x2, ˘̆x3

”
d˘̆x3 (11)

where the convolution G ∗ f represents the inverse Fourier

transform of Ĝf̂ . Multiplication with 2s′′ij and statistical

averaging results in the pressure-strain correlations

Πij (x̆3) = 2

Z 1

−1
G ∗ f

“
x1, x2, ˘̆x3

”
s′′ij (x1, x2, x̆3)d˘̆x3 (12)

When inserting not the complete RHS f into Eq. (9), but

only a part of it, e.g. term A1, it is possible to see which of

the terms contribute most to the pressure fluctuations and

to what mechanisms the reduction of the pressure-strain cor-

relations is due. Figure 17 shows the contributions to the

pressure-strain term Π11 for case inert-0.15. Obviously only

terms A1 and A2 are significant and all other terms can be

neglected. When summing up all contributions, the result,

shown as a solid line in Fig. 18, corresponds well to the di-

rectly evaluated Π11 (dashed line). When increasing Mc (cf.

Fig. 19), the contribution from term C2, which is one of the

terms involving density fluctuations, starts to grow. How-

ever, it remains small compared to the contributions from
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Figure 21: Case inf-0.15: Parts of the pressure-strain correla-

tion Π11 computed with the Green function. +: f = f (A1),

×: f = f (A2), ∗: f = f (A3), �: f = f (A4), �:

f = f (B1), ◦: f = f (B2), •: f = f (B3), 4: f = f (C1),

N: f = f (C2), O: f = f (C3), H: f = f (C4), ♦: f = f (C5),

�: f = f (C6)
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Figure 22: Case inf-0.15: Pressure-strain correlation Π11.

Solid: computed with the help of the Green function with

f = f
“P4

i=1 Ai +
P3
i=1 Bi +

P6
i=1 Ci

”
, dashed: evalu-

ated directly

terms A1 and A2. Even though fluctuating pressure effects

in term C6 are neglected, the summation of the remaining

terms provides still a good approximation to Π11 as shown

in Fig. 20 since term C6 is one order of magnitude smaller

than A1. Similar results are obtained for the remaining Πij-

terms.

Figure 21 shows the contributions to the pressure-strain

term Π11 for case inf-0.15. As for the inert mixing layer (cf.

Fig. 17), the contributions from terms A1 and A2, which

depend on the mean density, are the largest ones. The other

contributions, even though non-zero, are small compared to

A1 and A2. This is also the case for term C6, which contains

the heat release term explicitly. Again, despite neglecting
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Figure 23: Parts of the pressure-strain correlation Π11 com-

puted with the Green function and constant density ρ0.

Solid lines: case inf-0.15, dashed lines: case inert-0.15, +:

f = f (A1), ×: f = f (A2), ∗: f = f (A1 + A2)

fluctuating pressure effects, the summation of all terms that

are shown in Fig. 21 provides a good approximation to Π11

(cf. Fig. 22).

The complete pressure-strain rate Π11, as well as the con-

tributions from terms A1 and A2, are reduced significantly

by heat release (compare Figs. 17 and 18 to Figs. 21 and

22). To find out, whether this is a consequence of the re-

duced mean density (cf. Fig. 8), which appears as a factor

in terms A1 and A2, ρ0 instead of ρ is inserted into the terms

on the RHS of Eq. (6). Density fluctuations are set to zero.

Figure 23 shows the contributions to Π11 when performing

these modifications for the cases with Mc = 0.15: Now, the

contributions from terms A1 and A2 have approximately

the same size for the inert and reacting mixing layers. Since

similar observations can be made for all pressure-strain cor-

relations evaluated with constant ρ0, it can be concluded

that the reduction of Πij by heat release is predominantly

a mean density effect. In contrast to this, the reduction of

Π11 when Mc increases from 0.15 to 1.1 is only to a small

extent a mean density effect, as seen in Fig. 20 where Π11

has been evaluated with constant ρ0 for comparison. The

dominant effect is due to changes in the fluctuating velocity

field, e.g. the part
“
u′′i u

′′
j − u′′i u′′j

”
of term A1 (cf. Figs. 18

and 20).

SUMMARY AND CONCLUSIONS

DNS of inert and reacting compressible turbulent mixing

layers at three different convective Mach numbers (Mc =

0.15, 0.7 and 1.1) have been performed and analyzed. It

has been found that the effects of compressibility and heat

release on the turbulence structure have the same tenden-

cies, but different reasons: Both lead to a smoothening of

the instantaneous flow fields, a reduction of the momen-

tum thickness growth rate and of the turbulence fluctua-

tions. However, there are qualitative differences between

both effects: The reduction of the turbulent kinetic energy

by heat release is due to the strong decrease of mean den-

sity around the flame sheet and therefore a mean density

effect. The same can be said about the production rates and

the pressure-strain correlations in the Reynolds stress trans-

port equations. In contrast to this, the stabilizing effect of

compressibility is mostly due to changes in the fluctuating

velocity field.
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