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ABSTRACT

A large-eddy simulation (LES) model using a local dy-

namic kinetic energy model (LDKM) for closure is used to

investigate the effect of applied magnetic and electric fields

on the flow development in a supersonic step-combustor.

The magnetohydrodynamic (MHD) equations are solved nu-

merically using a finite volume method with a multi-state

approximate MHD Riemann solver to compute the fluxes.

The resistive fluxes in the magnetic induction equation are

determined using an analytical approximation in order to

relax the time-step constraint. The results show the capa-

bility of external fields to control and/or change supersonic

shear flow and their potential for mixing and combustion

enhancement.

INTRODUCTION

The important issues that still need to be addressed in

the design of feasible scramjets are mixing enhancement

and flame stabilization, especially at high combustor inlet

Mach numbers. A wide variety of “passive” geometrical

enhancements have been proposed to overcome these difficul-

ties. While these approaches do provide some enhancement,

plasma-assisted combustion may offer a more versatile de-

sign with the potential for increased performance. However,

there are many unresolved issues including the exact nature

of how the plasma effect can be introduced at the requi-

site location to manipulate fuel-air mixing. Furthermore,

although there is some experimental evidence (Meyer et al.,

2003) that plasma source in a fuel rich stream can be an

effective source of free radicals (which then can enhance and

stabilize combustion), there is no numerical prediction of

this effect. The current effort is directed toward addressing

these unresolved issues.

Supersonic flow over a rearward facing step is a classical

configuration that has been used effectively as a flame holder

in scramjet combustor. Fuel injection from just upstream of

the step, from the base, and in the recirculation region are all

being explored as means for efficient fuel-air mixing strategy

in this device. Electrical discharges and applied magnetic

fields have also been considered by many authors for en-

hancement. Leonov and Yarantsev (2006) numerically and

experimentally investigated the effect of a variety of electri-

cal discharges on scramjet combustion. Khan and Hoffmann

(2006) have investigated the effects of MHD in the low mag-

netic Reynolds number limit and showed that an applied

magnetic field near the step increases the distance from the

step where reattachment occurs as a result of increased pres-

sure in the recirculation region.

Our previous work demonstrated the ability of an electri-

cal discharge to affect the flow properties of a turbulent shear

layer (Schulz et al., 2006). A non-equilibrium, 11 species ki-

netic model was used to simulate the plasma source. This

previous approach, however, was limited to low magnetic

Reynolds number. In another recent study, a LES approach

using a LDKM closure model for the subgrid gas kinetic en-

ergy and magnetic energy has also been developed (Miki and

Menon, 2006).

The current model is designed to be robust and versatile

for a large number of applications. Thus, no limiting as-

sumptions are made, and the MHD equations are solved in a

conservative fashion using an upwind finite volume scheme.

Solution to the MHD Riemann problem is obtained using

a multi-state approximate Riemann solver. The non-ideal

magnetic terms in the MHD equations are computed in or-

der to account for Ohmic heating and magnetic diffusion in

plasmas with finite resistivity.

NUMERICAL FORMULATION

Governing Equations

An electrically conducting fluid is governed by the MHD

equations. This set of equations consists of an equation

for the time evolution of the magnetic field and the usual

unsteady, compressible, Navier-Stokes equations but with

additional magnetic terms in the momentum and energy

equations (Freton et al., 2000). By applying a spatial (Favre)

filter to these equations, the variables can be decomposed

into resolved and unresolved parts. The spatial filter width

is the local grid scale ∆, and the density weighted filtered

variables are defined by ef = ρf/ρ, where ? signifies spatial

averaging. The resulting filtered LES equations are (Menon

and Patel, 2006):
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− ũj τ̄ij −Hsgs

i − σsgs,v
i

i
= J̄kJ̄k

σ
+ ũi
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Here ρ, ui, p, R and T are density, velocity, pressure, gas

constant, and temperature, respectively. In the momentum

equation, τij is the viscous stress tensor and Tij is magnetic

stress tensor defined as:

∂Tij

∂xj
= εijkJjBk =

∂

∂xj


BiBj

µ0
−

BkBk

2µ0
δij

ff
(1)

Here, εijk is the alternating tensor, Ji is the current

density, Bi is the magnetic field and µ0 is the magnetic
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Figure 1: Schematic of the dump combustor. The physical

size is similar to the experimental set up by Hartfield (1993).

The location of the cathode and the two anodelocations (la-

belled Configuration 1 and 2) are also shown.

permeability. The magnetic stress tensor, Tij is analogous

to the viscous stress tensor having both shear stress and

pressure terms. In the energy equation, E is the sum of

the kinetic and internal energies, κ is the thermal conduc-

tivity, kb is Boltzmann’s constant, cp is the specific heat,

and q is the electronic charge. The electrical heat flux is

divided into two terms: a resistive heating term and a work

term. If the Hall effect is ignored, the resistive heating term

simplifies to the first term on the right-hand side of the

energy equation. The second term on the right-hand side

represents the energy expended in Lorentz acceleration. Rd

represents the energy lost to radiation, and the last term

reflects the energy transfer due to electron mobility in an

electric field. In the induction equation, λ is the magnetic

diffusivity [λ = (σµ0)−1], where σ is the electric conductiv-

ity.

When external fields are applied, it is convenient to solve

for the scalar electric potential and the vector magnetic

potential. The total magnetic field in the above govern-

ing equations is the sum of the applied external field and

the time-varying magnetic field. Similarly, the total cur-

rent density appearing in the energy equation is the sum

of the external current resulting from the application of an

electric field and the time-varying current density. The ex-

ternal magnetic field and the current density are calculated,

respectively, from the scalar and the vector potentials as:

B̄ex,i = εijk
∂Āk
∂xj

, J̄ex,i = −σ̄ ∂φ̄
∂xi

. Here, Āk is the vector

potential of magnetic field and φ̄ is the electric potential.

These are calculated by solving the following equation in

addition to the LES equations (Patankar, 1980; Freton et

al. , 2000):

∂ρ̄Q̄

∂t
=

∂

∂xi

„
Γ̄

∂Q̄

∂xi

«
+ S (2)

where Q̄ = Āk or φ̄. Γ̄ is the diffusion coefficient, which

is unity for Ak and σ̄ for φ (Freton et al. , 2000). S is the

source term and is µ0J̄ex,i for Āk and zero for φ̄.

Closure of subgrid terms.

The subgrid terms appearing in the above LES equations

Figure 2: Density profile of the one-dimensional shock tube

test.

are defined as:8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
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In the current model, Osgs is neglected. The va-

lidity of this assumption remains uncertain. The other

terms are modeled using the subgrid kinetic energy [ksgs =
1
2
(ũkuk − ũk ũk )] and the subgrid magnetic energy [ksgs,b =
1

2µ0
(BkBk − B̄k B̄k )]. The assumption that subgrid dy-

namics at the grid cutoff scale are similar to the smallest

resolved scale (test-scale) allows the determination of the

subgrid terms (Menon and Patel, 2006). The advantage

of using the kinetic and magnetic energy invariants over

other invariants, such as the helicity (Yoshizawa and Yokoi,

1996), is that the governing equations for ksgs and ksgs,b

are simpler and require fewer modeling coefficients. Most

importantly, the LDKM removes the necessity of ad hoc pro-

cedures that many other MHD turbulence models require

(Miki and Menon, 2006).

The MHD-LDKM governing equations for ksgs and ksgs,b

are given as:

8>>>>><>>>>>:
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∂ũj

∂xi
− ρ̄Cε

4̄ (ksgs)
3
2
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+ ∂
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∂xk
)
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∂B̄i
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4̄
√

ρ̄
(ksgs,b)

3
2

where Cε,b, Cε are dynamically calculated using LDKM.

Both equations have the same forms with transport, produc-

tion, diffusion, and dissipation terms. More details about

the closure of these terms can be found in (Menon and Pa-

tel, 2006; Miki and Menon, 2006).

MHD Riemann Solver

A Godunov-type finite volume method is employed here.

The accuracy of such a scheme relies on an exact or approx-

imate solution to the Riemann problem. Exact solutions

to both the gas dynamic and MHD Riemann problem are

986



Figure 3: Density contour for Orszag-Tang vortex problem

using the HLLC scheme at a 400 × 400 grid resolution at

t=0.5 s.

tedious, expensive, and often unnecessary. As a result, sev-

eral approximate solutions to the the Riemann problem have

been developed. The approximate Riemann solver devised

by Harten, Lax, and van Leer (HLL) (1983), and the class

of approximate Riemann solvers that have followed their de-

velopment removes the necessity of wave decomposition and

also have the property of being positively conservative with

the appropriate choice of wave speeds. Gurski (2004) and

Li (2005) have attempted to extend the HLLC framework of

Toro (1997) to the MHD equations (here the ’C’ indicates

that the contact wave is being resolved). Miyoshi (2005) has

developed a four-state approximate Riemann solver called

HLLD for the ideal MHD equations. The accuracy of the

HLLD scheme is improved by removing the assumption that

the components of the magnetic field are constant across the

Riemann fan by incorporating the two Alfven waves.

Several of these numerical methods have been imple-

mented in our study: the HLL and HLLC schemes for MHD

and the HLLD scheme. These schemes solve the ideal MHD

equations in a conservative fashion. The non-ideal terms in

the magnetic induction and the energy conservation equa-

tions result from the plasma having finite resistivity. The

fluxes associated with these resistive terms and the corre-

sponding viscous terms are determined outside the frame-

work of the Riemann problem. Upwind values of the primi-

tive variables determined from the Riemann solver are used

to approximate the viscous and the resistive fluxes, which

are then combined with the ideal fluxes obtained from the

Riemann solver. The species concentrations are treated as

passive scalars, and it is assumed that both the subgrid ki-

netic energy and the subgrid magnetic energy act as passive

scalars.

It is well known that these equations have seven eigen-

values corresponding to the two fast magnetoacoustic waves,

the two slow magnetoacoustic waves, the two Alfven waves,

and the entropy wave. The two fast magneto-acoustic waves

bound the Riemann fan in the MHD problem. It is obvious

that when the magnetic field is zero the seven waves collapse

to hydrodynamic case of the two acoustic waves and the one

entropy wave. Thus, the HLLC solver for hydrodynamics is

included within the MHD HLLC and HLLD solvers in the

limit of zero magnetic field.

The HLL-type of approximate Riemann solvers assume

that the characteristic speeds of the waves that separate the

”averaged” states can be determined. To determine these

Figure 4: (a) Electric potential contours [V] and current

(black lines) contours for configuration (1) and (b) magnetic

contours [T] for configuration (1). Similarly, configuration

(2) is shown in (c) and (d).

characteristic speeds exactly would require an exact solution

to the Riemann problem. Here, we approximate these wave

speeds only from initial data using the algorithm proposed

by Einfeldt et al. (1991) to estimate the left and the right

velocities that bound the Riemann problem. This approach

has been proven to be extremely robust and gives the exact

velocity for isolated discontinuities. This algorithm requires

estimating the Roe-average for the normal velocity and the

bounding signal speeds. The Roe-averaged fast magneto-

acoustic wave speed and normal velocity are obtained using

the approach presented by Cargo and Gallice (1997).

A Riemann problem is constructed at the interface of

each cell and takes as inputs left and right interface val-

ues. In order to increase the accuracy of the scheme, the

cell-centered primitive values can be linearly extrapolated

to determine the left and the right states at the interface.

Conservative values could also be extrapolated. This in-

creases the spatial resolution of the scheme from first order

to nominally second order. It is well known, however, that

high-order reconstruction schemes produce un-physical os-

cillations in the vicinity of large gradients. In order to

limit these oscillations, a slope limiting approach, known as

the Monotone Upstream-Centered Scheme for Conservation

Laws (MUSCL) method is employed. Several limiter options

are available. The monotized-central (MC) slope limiter is

used in this paper (Toro, 1997).

A one-dimensional shock-tube test case is first

performed. The initial conditions are given by

(ρ, p, u, v, w, By , Bz) = (1.08, 0.95, 1.2, 0.01, 0.5, 3.6f, 2f) for

x < 0 and (ρ, p, u, v, w, By , Bz) = (1, 1, 0, 0, 0, 4f, 2f) for

x > 0 with Bx = 4f , with the conversion factor, f = 1/
√

4π.

The solution consists of two fast shocks, two rotational dis-

continuities, two slow shocks, and one contact discontinuity.

The results are presented in Fig. 2. As expected, both the

HLLD and the HLLC schemes resolve the contact discon-

tinuity while the rotational discontinuities are smeared out

by the HLLC scheme as a result of the assumption that the

magnetic field is constant over the Riemann fan.
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Figure 5: Pressure distribution [Pa] (a) No electrical field,

(b) Anode at the bottom wall, and (c) Anode at the top

wall.

The extension of the one-dimensional MHD-type solvers

to multi-dimensions is not straight-forward and is compli-

cated because the solenoidal constraint of the magnetic field

is no longer satisfied numerically. Several multi-dimensional

schemes have been developed in the past to reduce the di-

vergence error. The method of flux constrained transport

is used in this paper. A comprehensive discussion of this

method and many others is given by Gabor (2000)

The Orszag-Tang vortex problem is routinely used as a

two-dimensional test for MHD schemes. The initial condi-

tions of the problem are given by (ρ, p, u, v, w, Bx, By , Bz) =

(ρ0, p0,− sin 2πy, sin 2πx, 0.0,− sin 2πy, sin 4πx, 0.0) in a do-

main 0.0 < x, y < 1.0. The constants ρ0 and p0 are

determined as in Dai and Woodward (1998) by β0 =

p0/(|B|2/8π) = 8πp0 and M0 = ρ0/γp0. In this example,

β0 = 10/3 and M0 = 1.0 are used. Periodic boundary con-

ditions are imposed on all boundaries. Figure 3 shows the

density at t = 0.5 seconds using the HLLC solver (Li, 2005).

The results are in good agreement with past predictions.

Boundary Conditions for the Scramjet

For the scramjet studies, on all solid surfaces, the no-slip,

adiabatic conditions are imposed, except at the cathode and

the anode surfaces, which are held at a constant tempera-

ture of Twall = 3500 K (Freton et al., 2000). At the solid

surfaces, and at the inlet and the outlet, the scalar poten-

tial, φ̄ and the vector potential, Ā are required to have zero

normal gradients. This translates to requiring ∂φ̄
∂ni

= 0 and

∂Āi
∂ni

= 0, where ni is the surface normal unit vector. At the

anode and the cathode surfaces an analytical form, com-

monly used in the literature (Hsu et al., 1982; Freton et al.,

2000), is used to specify the current density distribution, and

is given by: J̄ex,y(l) = Jmaxexp(−bl), where Jmax and b are

the constant, and l is the distance from the center of cath-

ode. In our model, Jmax = 1.4 × 108 Am−2 for the 200 A

case, and b is set to 2000 by calculating the total current.

The estimated size of electric nodes is ≈ 0.5 mm.

Diffusion Model

An explicit time-integration is used in the current study.

This approach limits the time-step to the slowest physical

process. The magnetic Prandtl number varies by several

orders of magnitude throughout the simulation. The time-

step is limited by the diffusion processes within the rel-

atively small region of high magnetic field intensity near

the cathode and the anode surfaces. Typical character-

istic time scales for the different physical mechanism are

: viscous diffusion: ∆td,µe ≈ 10−5s, convection: ∆tc ≈
10−8s, thermal diffusion: ∆td,κ̄ ≈ 10−9s, electric diffu-

sion: ∆td,σ̄ ≈ 10−9 ∼ 10−12s, and magnetic diffusion:

∆td,λ̄ ≈ 10−12 ∼ 10−15s. If the smallest time-step is cho-

sen, it would be ≈ 10−15s. Such a small time step reduces

the feasibility of the simulation. An implicit scheme could

be used, however, updating the field quantities as each time

step can be computationally very expensive. Moreover, since

the variation of temperature (and electrical conductivity) is

significant, solving ∂σ̄
∂xi

∂φ̄
∂xi

+ σ̄ ∂2φ̄

∂x2
i

= 0 is numerically un-

stable. Another approach is to use a dual time-stepping

method. In this method, the diffusion flux is calculated Nσ̄

times during a single flow time step, where Nσ̄ is determined

by Nσ̄ = ∆tc/∆td,σ̄ . Typical values of Nσ̄ for this applica-

tion are Nσ̄ ' 100 ∼ 1000. This method is still restricting,

since the time scales of ∆tc and ∆td,λ̄ are different by more

than six orders of magnitude.

Thus, to remove these stringent time-step constraints,

the diffusion of the magnetic field is modeled using an ap-

proximate analytical expression. To determine the diffusion

flux at each interface of two adjacent cells xi and xi+1, a to-

tal of four cell-centered points are used to approximate the

profile of the local magnetic field. If the boundary points

are referenced at zero, a simple analytical solution exists.

B(x, t) =
n=∞X
n=0

Dn

“
sin

nπx

L

”
exp

„
−

n2π2λ̄t

L2

«
(3)

where

Dn =
2

L

Z L

0
f(x)sin

nπx

L
dx (4)

Here, f(x) is the initial profile at t = 0, and L is the

length between xi−1 and xi+2. Using this expression, the

magnetic diffusion flux during ∆tc is obtained by:

Flux =

Z ∆tc

0
λ̄

∂B(x, t)

∂x
dt (5)

For validation of this method, we compare magnetic field

profiles obtained from the approximated analytical expres-

sion given above and from a traditional finite difference

solution. The overall agreement is good.

NUMERICAL RESULTS

For current study, the gas is assumed to be pure Argon

since the transport coefficients, such as the electrical con-

ductivity, the viscosity, and the thermal conductivity are all

well known values. The thermal properties such as the spe-

cific heat are easily calculated, and the radiation loss terms

can be approximated. Curve-fits for these quantities can be

found in literature (Evans and Hawley, 1967).

For all cases, the following incoming flow conditions are

used: Uin = 1000 ms−1 (Min = 1.7), Pin = 1.4 × 105 Pa,

and Tin = 1000 K. In the cases investigated below, either

the applied magnetic field or the applied current is held con-

stant throughout the simulation time.
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Figure 6: Temperature distribution [K] (a) No electric field,

(b) Anode at the bottom wall, (c) Anode at the top wall.

Applied Electric Field

An electric field is applied in the rearward-facing step by

prescribing a potential difference between two conducting

surfaces (the cathode and the anode). Two different config-

urations are investigated. The cathode is mounted on the

bottom wall just before the step in both configurations, and

only the location of the anode is varied; for the first config-

uration, the anode is located on the bottom wall aft of the

step, and for the second configuration, the anode is located

on the top wall. Figures 4(a)-(d) show the distributions of

the electric field, the current lines, and the magnetic field

for these two configurations.

Figures 5(a) and 6(a) show the pressure and the temper-

ature distributions, respectively, for the nominal case with

no applied external fields. Several well known features are

captured here, including the expansion fan at the corner

which creates a low pressure recirculating region just aft of

the step. The temperature also decreases and reaches a min-

imum of approximately 500 K. The inlet boundary layer on

the wall separates at the corner and the resulting free shear

layer bends downward as a result of the low pressure re-

circulating region, eventually reattaching at the lower wall

further downstream. A recompression shock is seen as the

shear layer attaches to the wall.

When an electric field is applied in either of the configu-

rations, the most noticeable difference is that no expansion

fan forms at the corner of the step. This is obvious from the

pressure distribution profiles for these two cases given in Fig.

5(b) and Fig. 5(c). Instead, a strong shock is formed just

prior to the electrical discharge surfaces. In configuration

(1), (Fig. 5(b)), only one shock is formed, since the anode

is located in the recirculation zone. However, in configura-

tion (2), (Fig. 5(c)), two oblique shocks are created, which

merge together in the center of the flow. The reason these

shocks develop is that the high temperature region near the

electrical discharge surfaces act as bluff bodies. The large

thermal gradient in these regions promote boundary layer

separation and the formation of the oblique shocks. As a re-

sult of the shock waves, the downstream velocity is reduced,

especially for configuration (2) as a result of the formation

Figure 7: Pressure profile along the bottom wall behind the

step.

of two oblique shocks.

Figures 6(b) and 6(c) show temperature profiles for con-

figurations (1) and (2), respectively. Since, the temperature

is relatively large when the field is tuned on, the color map

has been rescaled for case of zero applied field. Since the flow

has a finite resistivity, the flow is not only accelerated as a

result of both thermal and magnetic forces, but also heats

up significantly as a result of resistive electrical heating. For

either configuration, since the current is held constant, the

maximum temperature is approximately (22, 000 K), which

is significantly higher than the case with no applied field.

Since large temperature gradients exist when an electric field

is applied, thermal expansion occurs in the vicinity of the

corner. This thermal expansion coupled with the Lorentz

force keeps the shear layer from bending downward and reat-

taching at the lower wall.

Figure 7 represents pressure distribution along the bot-

tom wall. In comparison with the non-arc case, the two

cases with the arc have flat profiles and there is no grad-

ual pressure increase seen for the non-arc case, which occurs

due to recompression shock. It is clear that there is no reat-

tachment of shear layer. For configuration (2), the pressure

is twice as large as the other configurations because of the

merging of the two shock waves. Furthermore, it can be seen

that the pressure gradually increases downstream when an

electric field is applied. This is related to the approach of

the shear layer to the bottom wall.

A possible mechanism by which the plasma can affect

turbulent shear flow is by changing the local vorticity field.

As shown earlier (Schulz et al., 2006), a possible mecha-

nism is the modification of the baroclinic torque by the local

plasma source. The profile of the magnitude of baroclinic

torque defined as (∇P̄ ×∇ρ̄)/ρ̄2 and the Mach number are

shown in Figs. 8(a)-(b). The applied electric field creates

large temperature and density gradients, which increases the

magnitude of the baroclinic torque. Since the baroclinic

torque term acts as aaproduction term for turbulence, the

flow is expected to be highly turbulent within the shear layer.

This may aid in the enhancement of supersonic mixing pro-

cess if fuel is appropriately injected into these regions. Such

an analysis is planned for the near future.

Applied Magnetic Field

An external magnetic field is applied in the positive

y−direction. Figure 9 shows the pressure at the wall just aft

of the step for various magnitudes of the applied field. The
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Figure 8: (a) Magnitude of baroclinic torque and (b) Mach

number profile in the Y-direction (10 mm from the step).

magnetic field increases the pressure in the recirculation re-

gion, which affects the development of the shear layer. The

pressure here is the sum of the thermal pressure and the

magnetic pressure given by the trace of the magnetic stress

tensor. The magnetic pressure is essentially a component

of the Lorentz force that acts to increase the pressure and

the temperature in the recirculation zone. This result agrees

with previous work (Khan and Hoffmann, 2006). It is no-

ticed that the application of an applied magnetic field does

not create any shock waves prior to the step, and thus an

expansion fan is still seen at the corner.

CONCLUSION

A general-purpose MHD solve has been developed that

is able to simulate supersonic MHD flow. The use of an

approximate Riemann solver efficiently resolves the strong

discontinuities. The plasma source generated by an elec-

trical discharge affects the development of the shear layer.

Results show that the application of external fields increases

the pressure inside the recirculation zone and affects the

reattachment location. By using electrical fields, significant

changes in the flow features are observed, such as the forma-

tion of strong shock waves near the cathode and the anode.

The shear flow that forms at the step corner no longer bends

down and reattaches to the bottom wall with the magnetic

field turned on. Overall, these results demonstrate the abil-

ity of the new solver to tackle problems of plasma generation

in supersonic flows. Future studies will focus on applying

this solver to investigate the impact of the plasma source

location on fuel-air mixing and combustion in such devices.
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Figure 9: Pressure distribution along the bottom surface for
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