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ABSTRACT

Bioinpired optimization is concerned with the develop-

ment and implementation of algorithms and devices based

on our experience and understanding of nature. Fluid me-

chanics are one of the most prominent paradigms of this

type of optimization as humanity has been always fasci-

nated from the ways the majestic eagle exploits the wind

and the wiggling sperm navigates in the seminal fluid. This

fascination has led to mimesis and the development of engi-

neering designs that immitate natural forms and functions.

Besides mimicking the final design it is also possible to mimic

the processes by which this is achieved leading to genetic

algorithms and evolution strategies that can be cast into

optimization problems. In this article we discuss bioinspired

algorithms for flow optimization by describing some of the

fundamental concepts of these techniques and by illustrat-

ing their advantages and drawbacks in selected case studies

from our research. We discuss single and multi-objective

optimization in noisy environments as they pertain to com-

bustion in experimental test-rigs and turbomnachinery, and

the use of evolutionary algorithms and local learning models

for the optimization of expensive cost functions as applied

to simulations of anguiliform swimmers.

INTRODUCTION

Humanity has always sought inspiration from nature in

making its devices. Nature evolves its tools over millions of

years and we continue to strive to understand the workings

of its creations. At the same time humans continue to make

tremendous technological progress, enhancing our capabili-

ties to understand nature and to interact effectively (or at

times destructively) with our environment.

Fluid mechanics is a key paradigm of our understanding

of nature and a prime example of the common approaches

and the differences between nature and human beings in uti-

lizing wind and water. Looking at the flight of the mosquito,

nature may be attributed the characteristic of a ”tinkerer”

when looking at all its long legs and fragile wings, whereas

engineers continue to develop sophisticated machines such

as fighter jets and microfluidic devices. Natural designs, like

the one of mosquitos, have survived their environment over

hundreds of millions of years while our flight experiments are

barely a hundred year old. Yet these six orders of magnitude

are not daunting. We may argue that we have technology

at our disposal to achieve specific goals that for natural cre-

ations may be contradictory to their main dictum of survival.

The argument of this author is that we have technology avail-

able to ”compete” with the magnificent workings of natural

creations but that we need to optimize its utilisation. In

turn we may seek natural inspiration not only from mime-

sis, that is making the airplane wings resemble those of a

bird, but by also examining the processes by which nature

develops its devices.

Bioinspired algorithms for optimization owe their incep-

tion to the work of Ingo Rechenberg at TU Berlin in the

early 60’s. His work as well as other prominent German

scientists (such as the architect Otto Frei), 1 of that gener-

ation, were influenced by the biology teachings of Johann-

Gerhard Helmcke at the Max Planck Institute. The works

of Rechenberg and Frei though focusing on seemingly un-

related disciplines (fluid mechanics and architecture) share

the same roots of reconsidering the relation between engi-

neering thought and natural processes. In 1964 Rechenberg

developed Evolution Strategies (Rechenberg, 1994) by work-

ing in the wind tunnel to recover the possibly optimal form

of a flat plate bent up in a zig-zag form (”Zickzack-Platte”).

The five angles of the corrugated plate were the parameters

of the optimization with 0 being the a-priori known answer.

Deterministic methods led to local optima while finally the

idea of using the ”Galtonbrett” to generate random numbers

for the plate angles and the use of a systematic evaluation of

the better parameters led to a flat plate as the device with

the minimum angle.

In the last 40 years bioinspired optimization has received

attention by many disciplines from architecture to aero-

dynamics leading to the immitaion of natural forms and

processes. In fluid mechanics bioinpired algoritrhms remain

secondary to gradient based techniques although they con-

tinue to receive increased attention. Common arguments

against the so-called Evolutionary Algorithms are their slow

convergence and large numbers of ad-hoc parameters while

one of the key arguments of their supporters is that they

”work” and the ”work well for real problems”. In this paper

we wish to highlight the advantages and drawbacks of these

techniques as they pertain to flow optimization.

Flow optimization involves challenges such as noise, mul-

tiple optima, discontinuities, nondifferentiability and high

computational or experimental costs of a single objective

function evaluation. The cost of optimizing expensive prob-

lems is dominated by the number of fitness function evalua-

tions required to reach an acceptable solution.

In recent years algorithmic developments of bioinpired al-

gorithms have provided a mathematical and computational

framework for bioinspired optimization algorithms by link-

ing them with machine learning algorithms. Algorithms

such as Evolution Strategies and Genetic Algorithms and

their numerous variants can be envisioned as randomised

algorithms where the optimum parameters are sought by

sampling a suitable probability distribution (Kern et al,

2004). The information obtained during the optimization

can be exploited in order to enhance the identification of the

distribution underlying the optimization problem at hand

and increase the performance of the optimization algorithm.

Evolutionary algorithms differ in the type and amount of

past information they utilize. One can distinguish between

1See http://de.wikipedia.org
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algorithms that solely use parameter values and rank infor-

mation of past candidate solutions, and algorithms that ad-

ditionally use the computed values of the cost function. The

algorithms of the first group usually learn probability distri-

butions which are used to sample new candidate solutions. A

number of different approaches to the learning of probabil-

ity distributions evolved from Evolution Strategies (Beyer

and Schwefel 2002) and Genetic Algorithms (Mühlenbein

and Paass 1996; Pelikan et al. 1999). In a recent study

(Kern et al., 2004) we identify important characteristics of

different approaches in continuous domain. Explicit model

building, regularization, and incorporation of a population

independent memory are a few of them. The empirical re-

sults indicate that unimodal and non-separable functions are

particularly well covered by the CMA-ES approach (Hansen

and Ostermeier 2001; Hansen et al. 2003) that uses a mem-

ory. The results for multimodal functions are not so clear-cut

and reveal a strong influence of the population size on the

performance. The CMA-ES has been used in numerous

applications ranging from optimization of simulated micor-

fluidic channels (Müller et al., 2004) to the optimal control

of combustion instabilities (Hansen et al., 2007)

The algorithms of the second group build an empirical

model (response surface, surrogate models) that approxi-

mates the fitness function which then is used in the optimiza-

tion procedure using different strategies. We distinguish

between Evolution Control and the Surrogate Approach. In

Evolution Control, a controlled fraction of individuals are

evaluated on the expensive fitness function, the remainder

only on the model. In the surrogate approach, a fitness

function model is constructed for an initial training set of

evaluated points. An optimization algorithm then searches

for the optimum of the models fitness prediction. The pre-

dicted optimum is evaluated on the fitness function and the

result of the evaluation is added to the models training data.

The procedure then iterates by searching for the optimum

on the improved model. In the literature a wide variety of

models are used as fitness function models. One particularly

promising approach is the use of Gaussian process regression

as it provides the key advantage of predicting an uncertainty

measure in the form of a standard deviation for the predicted

function value. Gaussian Processes have been used for the

optimization of compressor blades (Büche et al., 2005) while

the use of surrogate models has been introduced for opti-

mization of trailing edge for noise reduction (Marsden et.

al 2002). Surrogate modeling for control of trailing aircraft

wakes has been reported in (Cottet et al., 2000). For low

dimensions the surrogate method clearly outperforms other

approaches. For higher dimensions building a reliable sur-

rogate becomes is faced with the ”curse of dimensionality”

and efficient distribution estimation algorithms are superior

in identifying optimal parameters.

We note here that bioinspired techniques should not be

considered as competitors of deterministic techniques such as

optimal control. Gradient based techniques are well suited

to applications where the knowledge of the problem allows

a precise mathematical description and they constitute the

method of choice in numerous engineering applications. In

fluid mechanics however this mathematical description may

not be always available, in particular for complex configura-

tions and for processes based on experimental and empirical

settings.

The large numbers of iteration often involved in EA’s has

largely limited their applicability to problems solved through

numerical simulations. Recent advances in hardware and

the automation of experimental and industrial setups has

increased the suitability of these methods to these prob-

lems. Experimental setups present a number of challenges

to any optimization technique including: availability only of

pointwise information, experimental noise in the objective

function, uncontrolled changing of environmental conditions

and measurement failure.

In this article we present case studies from the develop-

ment of single and multi-objective optimization algorithms

for fluid mechanics problems. Applications such as the opti-

mization of combustion processes in an experimental test rig

have guided the development of single and multi-objective

evolutionary algorithms capable of handling noise and appli-

cations such as the simulation of anguiliform swimmers have

guided the development of optimization techniques capable

of handling expensive function evaluations.

ALGORITHMS FOR EVOLUTIONARY OPTIMIZATION

We consider a black-box optimization scenario where we

want to minimize a single objective function f : Rn →
R, x → f(x). In this problem the information about the

problem is acquired only through the evaluation of the cost

function for different parameter settings. Bioinspired algo-

rithms can be cast in the framework of randomised search

algorithms by considering the optimization problem as the

stochastic search for a parameter vector x that will minimize

f(x). The search points are then sampled iteratively (over

several ”generations”) from a distribution P (x|θg) with pa-

rameters θ = θg that are being adaptively adjusted using an

algorithm Fθ(θg , x1, · · · , xλ, f1, · · · , fλ) in each generation

based on the information received by the objective function.

1. Initialise parameters: θ0 and distribution P (x|θg)

2. For generation g = 0, 1, 2, · · ·

(a) Sample distribution P (x|θg)→ x1, x2, · · · , xλ

(b) Evaluate f(x1) = f1, · · · , f(xλ) = fλ

(c) Update θg+1 = Fθ(θg, x1, · · · , xλ, f1, · · · , fλ)

(d) Break, if termination criterion is reached

Randomized algorithms are considered to be robust in

rugged objective function landscapes and may handle ef-

fectively discontinuities, ridges and local minima. In the

following we describe the Covariance MAtrix Adaptation

technique and its extension for noisy problems.The CMA-

ES has ben shown to perform well in a large number of

real-world problems.2 and it exemplifies several of the as-

pects of bioinspired optimization algorithms.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) was developed by (Hansen and Ostermeier, 1996;

Hansen and Ostermeier, 2001; Hansen et al., 2003; Hansen

and Kern 2004) and is the method of choice for several of

our flow optimization applications. This choice is dictated

by several reasons: CMA-ES is a non-elitist continuous do-

main evolutionary algorithm. Non-elitism avoids systematic

fitness overvaluation on noisy objective functions as even so-

lutions with exceptional fitness values survive only one gen-

eration. In addition, the selection in CMA-ES is solely based

on the ranking of solutions providing additional robustness

2See http://www.inf.ethz.ch/personal/hansenn/cec2005.html
and http://www.inf.ethz.ch/personal/hansenn/cmaapplications.pdf
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in a noisy environment. Finally the CMA-ES provides an ef-

fective adaptation of the search distribution to the landscape

of the objective function and can be reliably used with small

population sizes allowing for a fast adaptation in an online

application. The CMA-ES adapts the covariance matrix of

a normal search distribution to the given objective function

topography achieving nearly optimal covariance matrices for

convex-quadratic objective functions. The CMA-ES incor-

porates invariance to a full rank linear transformation of

the solution vector. The covariance matrix in the CMA-ES is

unbiased, as under random selection the updated covariance

matrix equals the previous covariance matrix in expectation.

Following the algorithm in (Hansen et al., 2003) CMA-

ES can be formulated as follows: Given an initial mean value

m ∈ R
n, the initial covariance matrix C = I and the ini-

tial step-size σ ∈ R+, the λ candidate solutions xk of one

generation step obey

xk = m+ σyk, k = 1, . . . , λ, (1)

where yk ∼ N (0, C) denotes a realization of a normally

distributed random vector with zero mean and covariance

matrix C. Equation (1) implements mutation in the EA by

adding a random vector. The solutions xk are evaluated on

L and ranked such that xi:λ becomes the i-th best solution

vector and yi:λ the corresponding random vector realization.

The algorithm requires updates of m, σ, and C for the

next generation step. For µ < λ let

〈y〉 =
µX

i=1

wiyi:λ, w1 ≥ · · · ≥ wµ > 0,

µX

i=1

wi = 1 (2)

be the weighted mean of the µ best ranked yk vectors. The

recombination weights sum to one. The so-called variance

effective selection mass µeff = 1
Pµ

i=1
w2

i

≥ 1 will be used in

the following. The mean of the new distribution becomes

m←m+ σ〈y〉 =
µX

i=1

wixi:λ. (3)

Equation (3) determines the center of the next population.

The equation implements selection by using µ < λ. Using

different recombination weights must also be interpreted as

selection mechanism. The equation implements recombina-

tion by taking a (weighted) mean of parental solutions.

CMA-ES relies on step-size control the “conjugate” evo-

lution path pσ ∈ R
n. The evolution path cumulates an

exponentially fading pathway of the population mean in

the generation sequence. Assuming that the optimal step-

size leads to conjugate steps, the length of the conjugate

evolution path can be used as adaptation criterion for σ.

Initialized with pσ = 0 the update of pσ (so-called cumula-

tion) and σ reads :

pσ ← (1 − cσ) pσ +
p

cσ(2− cσ)µeff C−
1

2 〈y〉 (4)

σ ← σ × exp

„
cσ

dσ

„‖pσ‖
bχn

− 1

««
(5)

where 1/cσ > 1 determines the backward time horizon of the

evolution path pσ, damping dσ ≈ 1 controls the change mag-

nitude of σ, and bχn is the expected length of a random vari-

able distributed according to N (0, I). The evolution path

is appropriately normalized. We have C−
1

2
def
= BD−1BT,

where C = BD2BT is an eigendecomposition of the sym-

metric, positive definite covariance matrix C.3 The trans-

formation C−
1

2 rescales 〈y〉 into an isotropic reference sys-

tem. Given yi:λ distributed according to N (0, C), as under

random selection, we can derive that
√

µeff C−
1

2 〈y〉 is dis-

tributed according to N (0, I). The transformations make

the expected length of pσ independent of its orientation

and allow the comparison of the length of pσ with its ex-

pected length bχn in (5). Step-size σ is increased if and only

if ‖pσ‖ > bχn, and decreased if and only if ‖pσ‖ < bχn. In

practice we use the approximation bχn =
√

2Γ(n+1
2

)/Γ(n
2
) ≈

√
n
“
1− 1

4n
+ 1

21n2

”
.

Similar to (4) an evolution path pc is constructed to

update the covariance matrix. The covariance matrix admits

a rank-one and a rank-µ update.

pc ← (1− cc) pc + hσ

p
cc(2− cc)µeff 〈y〉 (6)

C ← (1− ccov)C +
ccov

µcov
pcpT

c| {z }
rank-one update

+ ccov

„
1− 1

µcov

« µX

i=1

wiyi:λyT
i:λ

| {z }
rank-µ update

(7)

where ccov ≤ 1 is a learning rate, µcov ≥ 1 determines the

portion between rank-one and rank-µ updates, and hσ = 0

if ‖pσ‖ >
“
1.5 + 1

n−0.5

”
bχn

q
1− (1 − cσ)2(g+1), and 1 oth-

erwise, where g is the generation counter. Consequently, the

update of pc is stalled whenever pσ is considerably longer

than expected. This mechanism is decisive after a change in

the environment which demands a significant increase of the

step-size whereas fast changes of the distribution shape are

postponed until after the step-size is increased to a reason-

able value. A detailed discussion of the strategy parameters

can be found in (Hansen and Ostermeier, 2001; Hansen et

al., 2003; Hansen and Kern, 2004).

Noise-Handling CMA-ES

In order to handle noise high noise levels in the fitness

function we develop a Noise-Handling CMA-ES (NH-CMA-

ES). The algorithm is based on a (µ/µ, λ) CMA-ES with

the default parameters from (Hansen and Kern, 2004). The

noise handling preserves all invariance properties of the

CMA-ES, but biases the population variance when too large

a noise level is detected.

The noise measurement is based on measured rank

changes induced by reevaluations of solutions. The algo-

rithm outputs a noise measurement value s and reads

1. Set Lnew
i = Lold

i = L(xi), for i = 1, . . . , λ, and let

L = {Lold
k

, Lnew
k
|k = 1, . . . , λ}, where λ is the number

of offspring in the CMA-ES.

2. Compute λreev , the number of solutions to be reeval-

uated; λreev = fpr (rλ × λ) where the function fpr :

R → Z, x 7→
(
⌊x⌋+ 1 with probability x− ⌊x⌋
⌊x⌋ otherwise

. If

rλ × λ < 1 and λreev = 0 for more than 2/(rλ × λ)

3Columns of B are an orthonormal basis of eigenvectors,
BTB = BBT = I. Diagonal elements of the diagonal matrix D

are square roots of the corresponding positive eigenvalues. The
matrix D can be inverted by inverting its diagonal elements.

From these definitions it follows that yk ∼ σBDN (0, I) which
allows the generation of the random vector realizations on the
computer.
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generations, set λreev = 1 to avoid too long sequences

without reevaluation.

3. Reevaluate solutions. For each solution i = 1, . . . , λreev

(assuming the solutions of the population are i.i.d., we

can choose the first λreev solutions for reevaluation)

(a) Apply a small perturbation: xnew
i =

mutate(xi, ε) where xnew
i 6= xi ⇐⇒ ε 6= 0.

For the CMA-ES we might apply

mutate(xi, ε) = xi + εσN (0, C), where

N (.) denotes a multi-variate normal distribution

and σ and C are the step-size and the covariance

matrix from the CMA-ES.

(b) Reevaluate the solution: Lnew
i = L(xnew

i )

4. Compute the rank change ∆i. For each chosen so-

lution i = 1, . . . , λreev the rank change value, ∆i ∈
{0, 1, . . . , 2λ−2}, counts the number of values from the

set L \ {Lold
i , Lnew

i } that lie between Lold
i and Lnew

i .

5. Compute the noise measurement, s. Therefore the rank

change value, ∆i, is compared with a limit ∆lim
θ

. The

limit is based on the distribution of the rank changes

on a random function L and the parameter θ (see text).

6. Re-rank the solutions according to their rank sum, i.e.

rank(Lold
i ) + rank(Lnew

i ). Ties are resolved first us-

ing the absolute rank change |∆i|, where the mean

∆i = 1
λreev

Pλreev

j=1 |∆j| is used for solutions i > λreev

not being reevaluated, and second using the (mean)

function value.

The parameters are set to rλ = max(0.1, 2
λ
), ε = 10−7, and

θ = 0.2.

Two noise treatments are used in NH-CMA-ES. First, in-

crease of the evaluation (measuring) time (or reevaluations

of the fitness function). Second, increase of the population

variance (step-size σ), that can have three beneficial effects.

(a) the signal-to-noise ratio is likely to improve, because the

population becomes more diverse; (b) the population escapes

search-space regions with too low a signal-to-noise ratio, be-

cause in these regions the movement of the population is

amplified; and (c) premature convergence is prevented. The

noise treatment algorithm applied after each generation step

uses noise measurement s, and affects step-size σ and eval-

uation time teval.

s← (1− cs) s + css

if s > 0 % apply noise treatment

if teval = tmax

σ ← ασσ

teval ← min(αtteval, tmax)

else if s < 0 % decrease evaluation time

teval ← max(teval/αt, tmin)

Typical parameter settings can be found in (Hansen et al.,

2007)

Local meta model CMA-ES

Local meta-models can be used to enhance the efficiency

of CMA-ES in the optimization of computationally expen-

sive problems, resulting in the local meta-model CMA-ES

(lmm-CMA) (Kern et al., 2006). Locally weighted regres-

sion (Atkeson et al., 1997) is used to fit past evaluations

of the fitness function stored in a database only in a re-

gion around the location of the new parameter vector x to

be evaluated. The local models are built consecutively as

queries need to be answered and therefore are intrinsically

designed for growing training data sets as they occur in the

course of an optimization.

For every offspring to be predicted an individual model

is built. Given a set of points (xj , yj), j = 1, . . . , m, the

training criterion C is minimized w.r.t. the parameters β of

the local mode f̂ at query point q and can be written as

C(q) =
mX

j=1

»
(f̂(xj , β)− yj)

2K

„
d(xj , q)

h

«–
, (8)

where K(.) is the kernel weighting function, d(xj , q) the

distance between data point xj and q, and h is the (local)

bandwidth (cf. Kern et al., 2006). Investigations with mod-

els f̂ of different complexity revealed that local quadratic

meta models are preferable. Lower order models were not

capable of enhancing the performance of the lmm-CMA. For

the calculation of d(xj , q) we propose to utilize the metric

of the search distribution of the EA. Evolution strategies as

the CMA-ES adapt a multivariate Gaussian mutation distri-

bution N (m, C) to the (local) topography of the function,

and the covariance matrix C naturally defines a metric that

can be exploited in the calculation of d as fully weighted

Euclidean distance

d(xj , q) =
q

(xj − q)T C−1(xj − q). (9)

Because the density of the data points collected in the

course of an optimization run changes considerably, an adap-

tive choice of the bandwidth h is essential. We use a nearest

neighbor bandwidth selection, where h is set to the distance

of the kth nearest neighbor data point to q and thus the vol-

ume increases and decreases in size according to the density

of nearby data. In this way changes in scale of the distance

function d are canceled by the choice of h, giving a scale

invariant distribution of the weights to the data. k is set to

twice the number of free parameters of the local model being

k = n(n + 3) + 2 for the local quadratic models.

In lmm-CMA the local meta-models are utilized in the

framework of Evolution Control. The fraction of candidate

solutions x predicted using the meta-model is dependent

on the quality of the model. An elegant way to control

model quality without knowing the correct ranking of the

complete population is the approximate ranking procedure

(Runarsson, 2004): In every generation, the offspring are

successively evaluated and added to the training set of the

fitness function model until the (deterministic) model based

selection of the parents remains unchanged in two consec-

utive iteration cycles. This results in an adaptive control

mechanism determining the number of evaluated individu-

als in every generation. The approximate ranking procedure

for a (µ/µ, λ)-lmm-CMA reads

1. approximate: build f̂(xk), k = 1, . . . , λ based on eval-

uations in training set S

2. rank : based on f̂ generate rankingµ
0 of the µ best in-

dividuals

3. evaluate: ninit best individuals based on f̂ , add to S

4. for i := 1 to (λ− ninit)/nb do

(a) approximate: build f̂(xk), k = 1, . . . , λ based on

S
(b) rank : based on f̂ generate rankingµ

i of the µ best

individuals
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(c) if (rankingµ
i−1 == rankingµ

i ): goto 5

else: evaluate: nb next best unevaluated points

based on f̂ , add to S

5. if (i > 2): ninit = min(ninit + nb, λ− nb)

6. if (i < 2): ninit = max(nb, ninit − nb)

ninit is the number of initial evaluations performed before

the model iteration loop is entered.

Multi-Objective Evolutionary Algorithms (MOEA)

A multi-objective optimization problem can be described

by an objective vector f and a corresponding set of design

variables x. Without loss of generality we can consider the

minimization of f . Formally:

min f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ F

where x = (x1, x2, . . . , xn) ∈ X, (10)

where X ∈ Rn is the n-dimensional design space, F ∈ Rm is

the m-dimensional objective space. Here both the design and

objective space are real spaces, as they correspond to con-

tinuous variables and measured objectives for the proposed

application. A partial ordering can be applied to solutions

in the objective space F by the dominance criterion. A solu-

tion a in X is said to dominate a solution b in X (a ≻ b), if

it is superior or equal in all objectives and at least superior

in one objective. This is expressed as:

a ≻ b, if ∀ i ∈ {1, 2, . . . , m} : fi(a) ≤ fi(b) ∧
∃ j ∈ {1, 2, . . . , m} : fj(a) < fj(b) (11)

The solution a is said to be indifferent to a solution c, if nei-

ther solution is dominating the other one. When no a priori

preference is defined among the objectives, dominance is the

only way to determine, if one solution performs better than

the other (Fonseca and Fleming, 1995). The complete set

of Pareto ideal solutions represents the best solutions to a

problem. Starting from a Pareto solution, one objective can

only be improved at the expense of at least one other ob-

jective. From the Pareto definition, two issues have to be

considered by the formulation of an evolutionary optimiza-

tion algorithm for Pareto optimization. On one hand, the

algorithm must be able to converge sufficiently fast towards

the Pareto front, while on the other, it must preserve diver-

sity among its population in order to be able to spread over

the whole Pareto front. A common difficulty is the focusing

of the population on a certain part of the Pareto front, which

is known as genetic drift. In single objective optimization

this is unimportant, since convergence to a single (global)

optimum is desired.

For a multi-objective problem, a selection operator se-

lects in average the less dominated solutions from P and

places them in a parent population Pp of size µ. The re-

combination operator chooses randomly individuals from the

parent population Pp and recombines them into a child. For

the mutation operator, the variables of a child are mutated

by adding normally distributed random numbers. A ter-

mination criterion for the evolution may be the maximal

allowed number of generations.

The Strength Pareto Evolutionary Algorithm (SPEA)

of Zitzler and Thiele (1999) is a well-established Pareto-

optimization algorithm. The algorithm entails a fitness

assignment and selection mechanism based on the concept

of elitism. SPEA uses the nondominated solutions for the

fitness assignment. First, the fitness of each nondominated

solution is computed as the fraction of the population,

which it dominates. The fitness of a dominated individual

is equal to one plus the fitness of each nondominated

solution by which it is dominated. This fitness assignment

guarantees that the fitness of nondominated solutions is

always lower than the fitness of the dominated.

Elitism is a technique of preserving always the best solutions

obtained so far. In multi-objective optimization, elitism

is performed by storing the nondominated solutions in an

archive.In the selection process individuals of the current

population and of the archive are competing in a binary

tournament where contrary to the standard tournament

selection the solution with the lower fitness wins.

In order to preserve diversity in the archive and to keep

its size limited, a clustering algorithm is used. Clustering

removes solutions in areas of high density as measured in

the objective space.

The studies of Zitzler and Thiele (1999) have illustrated

that elitism improves the performance of multi-objective

evolutionary algorithms on noise-free test problems. Elitism

is inserting nondominated solutions in the selection process,

and thus increasing the selection pressure. Some researchers

state elitism as a necessity for multi-objective optimization

(Van Veldhuizen and Lamont, 2000) since information may

be lost by the stochastic selection operator. However, this

advantage is debatable for noisy objective functions.

MOEA for Noisy Applications

For optimization noisy applications like real-world prob-

lems and experimental setups, modifications are needed to

the standard multi-objective evolutionary algorithms in or-

der to increase their robustness. We propose three modifi-

cations for an extended multi-objective algorithm for noisy

environments:

1. Domination dependent lifetime: In contrast to elitism,

which may preserve nondominated solutions for an in-

finite time, a lifetime κ is assigned to each individual.

The lifetime is shortened, if the solution dominates a

major part of the archive. This limits the impact of a

solution and safeguards against outliers.

2. Re-evaluation of solutions: It is common to delete so-

lutions with expired lifetime. We re-evaluate archive

solutions with expired lifetime and add them to the

population. This allows good solutions to stay in the

evolutionary process, but their objective values will

change due to the noise in the re-evaluation.

3. Extended update of the archive: The SPEA algorithm

updates the archive always by adding the current pop-

ulation to the archive and removing the dominated

solutions. We extend the update to all solutions with

non-expired lifetime. This hinders loss of information,

since solutions which were removed by clustering or

domination may reenter the archive.

With these features NT-SPEA uses the advantage of an

archive as convergence accelerator, but it reduces the risk

induced by outliers.

The dominance-dependent lifetime reduces the impact of a

solution. An individual that dominates a large fraction of

the archive has a high chance of being selected in the selec-

tion process, but is assigned the shortest lifetime.
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While the principle of limited lifetime is a key element to re-

move outliers, the re-evaluation allows good solutions to stay

in the selection process by re-entering the archive. In the

case of an outlier, it is not likely, that the re-evaluated copy

is again an outlier with good objective values and hence it

would not re-enter the archive. On the other hand, solutions

with good design variable settings are likely be nondomi-

nated again, if the effect of noise is limited.

The extended update considers the nondominated among

all solutions with non-expired lifetime for the update of

the archive. Since the assigned lifetime differs between the

solutions, the set of nondominated solutions changes. Domi-

nated become nondominated, if the lifetime of their domina-

tor expires. This is especially important if a noisy solution

or an outlier dominates a large fraction of the archive. The

dominated are then removed from the archive. The noisy

solution or outlier is assigned a short lifetime. After the life-

time expires the removed nondominated may be re-selected

to the archive. With the original update of SPEA, their

information is lost. The Noise-Handling SPEA is given by:

1. Generate an initial population P and an empty archive

A.

2. Define a maximal lifetime κmax for individuals (in gen-

erations).

3. Evaluate the objectives of the individuals in P .

4. while termination criterion is not fulfilled do

(a) Assign lifetime: Compute for each individual in

P the fraction of the archive that it dominates.

The lifetime κ of the individual is inverse pro-

portional to the fraction

(b) Update A: Remove all solutions from A and refill

it with all solutions, whose lifetime is not expired.

(c) Then remove all dominated solutions.

(d) Limit the size of A by clustering.

(e) Fitness assignment: Assign fitness to the indi-

viduals in P and A.

(f) Selection: Use tournament selection for selecting

the parent population Pp from P ∪A.

(g) Recombination: Generate a new population P

by recombination of the individuals in Pp.

(h) Mutation: Mutate the individuals in P .

(i) Re-evaluation: Select the solutions from A with

expiring lifetime and add a copy for re-evaluation

to the population P

(j) Evaluate the objectives of the individuals in P .

(k) end while

A convergence comparison for various implementations

of SPEA has been performed on noisy and noise-free test

functions. In general, a decrease in convergence is observed

when noise is introduced. The concept of elitism is analyzed

in the presence of noise. In the absence of noise, elitism can

be used as a convergence accelerator. However, for different

types of noise, elitism can imply a significant disadvantage,

since the optimization can get misled by outliers.

The NT-SPEA overcomes the problem by introducing

dominance-dependent lifetime and accelerates the conver-

gence by using an archive. The archive is modified by the

re-evaluation of nondominated solutions and an extended

update. For the noise-free test problems, NT-SPEA shows

similar convergence to the original SPEA, which converges

best. This is a major advantage compared to a non-elitistic

and a statistical implementation of SPEA and the ESPEA

of Teich.

While NT-SPEA performs equal or superior to the best

of the other implementations for problems with normally

distributed noise, it clearly outperforms all algorithms for

problems with outliers. A further advantage is that NT-

SPEA can handle moving optima over time or changing

environmental conditions. The algorithm re-evaluates solu-

tions after a limited lifetime, therefore adapts the objective

values according to the changing values.

The algorithm is successfully applied to an automated opti-

mization of gas turbine burners. The process produces in an

automated fashion an experimental nondominated front for

minimizing pulsation and emissions of an industrial burner.

Automated optimization can be considered a supporting tool

in the design process, complementing physical understand-

ing as well as trial-and-error design.

OPTIMIZATION UNDER UNCERTAINTY

In experiments and industrial configurations we often de-

tect different results for repeated measurements of the same

operating point. The differences are attributed to noise and

unobserved factors in the setup.

Noise may occurs in various areas in the experiment: The

setting of the operating conditions is within a limited pre-

cision. In the realization, the operating condition may vary

over time and finally measurement errors occur. It is up

to the careful setup by the experimenter to keep the noise

within a limited range. We define this noise, which is present

in all measured experiments, as experimental noise. It is of-

ten modeled by a normal distribution with defined mean and

standard deviation, which define a priori knowledge of the

processes involved.

In addition, during an automated optimization cycle, an

experimental measurement may fail completely, producing

outliers, i.e. arbitrary nonphysical results. This occurs very

rarely, but may have large impact on the automated process

optimization if not recognized by a supervisor or captured

by some penalty function. Outliers cannot be described by

a statistical model with given mean and deviation, but are

best modeled by a probability of occurrence. Noise and out-

liers influence the multi-objective optimization process by

misleading the selection operation. Hence unrealistic inferior

solutions may dominate superior ones, thus delaying or com-

pletely misleading the convergence to an unrealistic Pareto

front.

Evolutionary Optimization of Experiments

Evolution Strategies (ES) were initially developed for ex-

periments four decades ago (see e.g. Box (1957) or Schwefel

(1977)). Early studies have shown that ES sample more

efficiently the search space, and that is what makes them

better suited for experimental purposes than grid search

methods (Box and Wilson (1951)). Applying evolution to

experiments implies coping with additional effects that are

usually not present in simulations. These effects include

measurement uncertainties, digital signal quantification and

uncontrollable environmental influences.

Measurement errors can have a large impact on selec-

tion operators in EAs. When the difference between two

fitness values is less than the measurement uncertainty, it
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is possible that the “better” individual only has a better

fitness value due to measurement errors and not due to its

parameter set which could actually be worse than others.

To avoid this problem, mutation step sizes must always be

larger then any uncertainty in order to get changes in the

objective function that are larger then the general measure-

ment noise. This poses a lower limit to the convergence of

the evolution strategy and an additional constraint to the

method of step size adaptation, to ensure that step sizes are

always significant. ES using recombination are more robust

against distorted selection and should therefore be favored

for experimental purposes. Digital hardware is capable of

producing or measuring signals only in discrete steps. The

optimization of acoustically driven blooming jets (Sbalzarini

et al. 2001) identified that for certain hardware such as on-

board wave form generators, these steps can be as large as

0.5% of full range, depending on the buffer size of the device.

For a wave form generator, this could mean, that parameter

vectors differing less than one such discrete step will cause

the same physical output to be produced. Besides adding

another lower limit for the mutation step size of the ES, this

quantification also calls for a feedback mechanism for the ES

with the values that have actually been produced instead of

the parameter vector requested. This requires robustness

of the ES against unpredictable changes in the parameter

vectors and dictates changes in the CMA-ES (leading to NH-

CMA-ES) that keeps track of the evolution path in order to

improve convergence.

NH-CMA ES for the optimization of combustion instabilities

The NH-CMA-ES has been used for the system identi-

fication and the online optimization of feedback controllers

applied to combustion systems (Hansen et al., 2007). The

algorithm is applied to gas turbine combustors that are sus-

ceptible to thermoacoustic instabilities resulting in imperfect

combustion and decreased lifetime. In order to mitigate

these pressure oscillations, feedback controllers sense the

pressure and command secondary fuel injectors. The con-

trollers are optimized online with the NH-CMA-ES capable

of handling noise associated with the uncertainties in the

pressure measurements. The present method is independent

of the specific noise distribution and prevents premature con-

vergence of the evolution strategy. NH-CMA-ES needs only

two additional function evaluations per generation and is

therefore particularly suitable for online optimization.

A lab scale test rig is used for the experiments. Pre-

heated air premixed with natural gas flows into a downscaled

model for the ALSTOM environmental (EV) swirl burner

that stabilizes the flame in recirculation regions near the

burner outlet plane. The pressure signal is detected by a

water-cooled microphone placed 123mm downstream of the

burner. A MOOG magnetostrictive fuel injector installed

close to the flame is used as control actuator. Two controller

types are investigated: a simple phase-shift or Gain-Delay

controller where gain and delay are optimized by the evolu-

tionary algorithm; and a model-based robust H∞ controller

where a frequency shift, gain and delay of a previously de-

signed H∞ controller (Skogestad and Postlethwaite, 1996;

Niederberger et al., 2005) are optimized by the evolutionary

algorithm.

The cost function to be minimized is the equiv-

alent continuous level of the sound pressure Leq =

10 log10(p2
s)av/p2

ref , where (p2
s)av is the mean squared pres-

sure and pref = 20µPa is the reference pressure. The sound

pressure level Leq is acquired from a measurement dur-

Figure 1: Comparison of the pressure spectra for the un-

controlled, Gain-Delay controlled and H∞ controlled plant.

Both controllers are NH-CMA-ES optimized. Top: λ =

1.875, bottom: λ = 2.1.

ing teval seconds with a given controller parameter setting.

Spectra achieved with the optimized Gain-Delay and H∞

controllers are compared to the uncontrolled plant in Fig 1.

They are shown for the plant which has been running for

several hours and is thus heated up. For λ = 1.875 (left) the

Leq of the uncontrolled plant is 148.72 dB, the Gain-Delay

controller reduces it to 146.67 dB, while the H∞ controller

reaches 146.16 dB, which is about 15% less. For λ = 2.1

the values of Leq are 159.87 dB, 147.48 dB and 147.35 dB,

respectively. Here the H∞ controller performs only slightly

better than the Gain-Delay controller, but the control signal

contains about 10% less energy.

The experiments show that the algorithm can optimize

different controller types and can cope with changing op-

erating conditions and high levels of noise. Model-based

H∞ controllers perform best, and can be improved fur-

ther through the use of the NH-CMA-ES. The optimized

solutions deviate remarkably from the originally designed

solutions and can make up for uncertainties in the model-

building and design process, as well as for time-varying plant

characteristics.

NH-SPEA for multiobjective optimization of turbomachinery

The NH-SPEA is applied to the multiobjective optimiza-

tion of the combustion process of a stationary gas turbine in

an industrial setup (Büche et al., 2004). The Pareto front is

constructed for the objectives of minimization of NOx emis-

sions and reduction of the pressure fluctuations (pulsation)

of the flame. Both objectives are conflicting affecting the

environment and the lifetime of the turbine, respectively.

We consider the optimization of a single burner in an atmo-
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Figure 2: All measured solutions of the burner optimization

run [plus symbol] and given standard burner configuration

[circular symbol]. 5 boxes mark different areas along the

nondominated front.

spheric test-rig. Preheated air enters the test-rig from the

plenum chamber and is mixed with fuel in the low-emission

burner by swirl. The burner stabilizes the combustion flame

in a predefined combustion area by a controlled vortex break-

down. The fuel is natural gas or oil and is injected through

injection holes, which are uniformly distributed along the

burner. We consider a passive control mechanism, choosing

the fuel flow rates through the injection holes of the burner

as design variables of the setup, due to the low modification

cost for the gas turbine compared to an active control sys-

tem. 8 continuous valves Vi,i=1,...,8 are used to control the

fuel rates. Each valve Vi controls the mass flow ṁi through

a set of adjacent injection holes along the burner axis.

The optimization is performed using NT-SPEA with a

population and archive size of 15 and evaluating a total of

326 different burner settings within one working-day. All

solutions are plotted in Fig. 2 in order to show the possible

decrease in NOx emissions and pulsations by the optimiza-

tion compared to the given standard burner configuration

and between the best and worst designs.

The given standard burner configuration is marked in the

figure and represents a setting with equal mass flow through

all valves. Some solutions found by the optimization pro-

cess dominate the standard configuration, i.e. are superior

in both objectives. Thus the optimization run is success-

ful, delivering improved solutions for both objectives. The

occurrence of a wide nondominated front underlines the

conflict in minimizing both objectives and just (Pareto) com-

promise solutions can be found.

EVOLUTIONARY OPTIMIZATION FOR SIMULATIONS

Evolutionary Optimization is well suited for the opti-

mization of flows that can be effectively simulated using

Direct Numerical Simulations. Care must be exercised when

the simulations involve uncertainties due to parameters such

as turbulence models as these uncertainties may interfere

with the optimization parameters. In addition as evolu-

tionary algorithms require relatively large numbers of itera-

tions novel optimizations algorithms (such as Local Learning

CMA-ES) are required in order to develop effective opti-

mization procedures. An attractive aspect of evolutionary

Figure 3: Cylinder drag reduction at Re=300 using Evolu-

tion strategies. Top: Drag coefficients for 2D without control

(——), 2D with control (- - -), 3D without control (– – –),

and3D with control (· · · ·). Bottom: Snapshots of flow past

a cylinder illustrating how the three-dimensionality of the

flow is killed after control is switched on.

algorithms is that they can be adopted as an optimization

wrapper to many flow solvers and empirical calculations.

This property in conjunction with their ineherent parallelism

provides us with a robust optimization tool.

We illustrate some of these issues through two applica-

tions: the control of cylinder wakes leading to drastic flow

and drag modifications and the optimization of anguilliform

swimmers leading to different swimming patters for the same

form having different objectives.

Cylinders

A real coded genetic algorithm is implemented for the

optimization of actuator parameters for cylinder drag min-

imization (Milano and Koumoutsakos 2002). We consider

two types of idealized actuators that are allowed either

to move steadily and tangentially to the cylinder surface

(belts), or to steadily blow/suck with a zero net mass con-

straint. The genetic algorithm we implemented has the

property of identifying minima basins, rather than single op-

timum points. The knowledge of the shape of the minimum

basin enables further insights in the system properties and

provides a sensitivity analysis in a fully automated way. The

drag minimization problem is formulated as an optimal reg-

ulation problem. By means of the clustering property of the

present genetic algorithm, a set of solutions producing drag

reduction of up to 50% is identified. A comparison between
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the two types of actuators, based on the clustering property

of the algorithm indicates that blowing/suction actuation

parameters are associated with larger tolerances when com-

pared to optimal parameters for the belt actuators. The

possibility to use few strategically placed actuators in order

to obtain a significant drag reduction was explored using the

clustering diagnostics of this method.

In a related work (Poncet et al. 2005) the optimal

belt-actuator parameters obtained by optimizing the two-

dimensional case have been employed in three dimensional

simulations, by extending the actuators across the span of

the cylinder surface. The three dimensional controlled flow

exhibits a remarkable two-dimensional character near the

cylinder surface, resulting in significant drag reduction.

Optimization of Anguiliform Swimmers

Aquatic animals are smart swimmers achieving remark-

able propulsive efficiency. Anguilliform locomotion is a par-

ticular case as the animals propel themselves forward by

propagating waves of curvature backwards along the body.

The lamprey is an animal that employs this primitive (in

an evolutionary sense) type of locomotion and has been

a popular object to study neural control of locomotion of

aquatic animals (Ekeberg 1993; Ijspeert and Kodjabachia

1999). These studies however use strongly simplified mod-

els of the fluid dynamics of the fish to learn the motion

patterns. In contrast, there exist only few studies comput-

ing fully three dimensional viscous flow around swimming

creatures, and all of them use apriori defined motion pat-

terns without any control or learning mechanisms (Liu and

Kawachi 1999; Zhu et al. 2002; Ramamurti et al. 2002).

In our ongoing work we combine control and learning of

motion patterns with a fully three dimensional instationary

viscous flow simulation of the creature freely moving in the

water. The three-dimensional geometry of the anguilliform

swimmer is constructed from spatially varying ellipsoid cross

sections. The motion pattern of the body is described by a

traveling wave of curvature of the mid-line of the body pa-

rameterized with 6 parameters.

Two different objectives have been optimized that may

correspond to biological functions such as hunting/escaping

(for the burst velocity) or migrating (for the efficient swim-

ming). We used the classical CMA-ES and the lmm-CMA

for to solve this optimization problem. The wake structures

of the present simulations are consistent with several exper-

imental observations. The fast and the efficient swimming

mode both shed a double row of vortex rings responsible

for the strong lateral jets observed in the wake and shown

in Fig. 4. The results provide quantification of the vortex

formation and shedding processes and enable the identifica-

tion of the portions of the body that are responsible for the

majority of thrust in anguilliform swimming. In burst swim-

ming the tail is responsible for the majority of the thrust,

while in efficient swimming the anterior part of the body

also contributes to the thrust.

SUMMARY

Since the doomed flight of Icarus there has been signifi-

cant progress in the bioinspired optimization of engineering

devices utilizing flows for their function. The development of

bioinspired algorithms in conjunction with the technological

advances of our times provides us with tremendous oppor-

tunities for the innovative exploration of flow phenomena.

The present article includes a summary of key algorithms

Figure 4: Self propelled anguilliform swimmers optimized

for efficient swimming (top) and fast swimming (bottom).

Isosurfaces of vorticity magnitude show the characteristic

structure of the wake largely consisting of a double row of

vortex rings aligned in swimming direction.

and certain applications from our research activities to il-

lustrate that bioinpisred algorithms could complement well

expensive flow simulations as well as noisy experiments.

Fluid mechanics was responsible for the generation of

modern day evolutionary algorithms that today permeate

areas from computer science and evolvable hardware to ar-

chitectural design and micorfluidic chips. We believe that

this dynamic interaction of fluids and bioinspired optimiza-

tion will continue to provide future generations of scientists

with a wealth of optimized flows to explore and understand

and with improved designs that may not always rely on a

complete human understanding or predetermination. Hu-

manity may soon interact with nature beyond the level of

mimesis leading to further insight and respect for it’s work-

ings.
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