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ABSTRACT

In this work, the temporal evolution of a low swirl-

number turbulent Batchelor vortex is studied using direct

numerical simulations. The physics of the evolution is inves-

tigated with an emphasis on the various mechanisms that

influence the transport of axial and angular momentum.

Two new conserved quantities are derived and these prove

to be useful in achieving a better understanding of the trans-

port process. The formation and evolution of structures that

generate mean counter-signed axial and azimuthal vortic-

ity (in an opposite sense to the initial vorticity) appears to

play a key role in momentum transport. The characteristics,

generation and evolution of the Reynolds stresses is also ad-

dressed.

INTRODUCTION

The turbulent Batchelor vortex is representative of prac-

tical tip vortices trailed from airplane wings and helicopter

rotors. This flow is characterized by mean axial and az-

imuthal vorticity distributions given by qe−r2

and re−r2

,

respectively. The swirl number q thus sets the relative mag-

nitudes of the axial and azimuthal velocities. It is well known

(for instance, Ref. [1]) that when the axial shear is strong

enough (q < 1.5), the flow is linearly unstable to helical

normal mode perturbations of a certain shape. Although

other types of instabilities [2] exist, the above instability is

known to be particularly strong, as has been observed from

non-linear [3] and turbulent [4, 5] evolution of this flow. In

the unstable range, inviscid-driven helical normal-mode in-

stabilities are seen to grow, but the non-linear interactions

with the mean flow result in a saturation (during which the

axial velocity has diminished significantly) and eventual de-

cay. The broad objective of this study is to enhance the

present understanding of the evolution process and to obtain

physical insight into the mechanisms of turbulent transport

of axial and angular momentum.

METHODOLOGY AND PROBLEM SET UP

The vorticity form of the incompressible Navier Stokes

equations is solved using a pseudo-spectral approach. A

novel way of handling the boundary conditions in such an

approach was proposed in [6] and has been previously used

for a similar application in [5]. This method can be used

for flows in which the vorticity is compact in the two un-

bounded dimensions and the third direction is periodic. In

essence, the velocity in the potential region of the flow is

treated analytically (to arbitrary order of accuracy) using a

matching procedure. In addition to accurately representing

the boundary conditions (use of periodic boundary condi-

tions in the cross-stream directions can render the vortex

centrifugally unstable), this method proves to be highly effi-

cient, since the boundaries of the computational domain can

be relatively close to the region of interest.

The initial base flow condition is given by:

vθ =
vo

√
α

r

(

1 − e−αr2

)

, vx =
vo

q
e−αr2

, (1)

where, q = 0.5 (highly unstable configuration) and vo, 1/
√

α

are reference velocity and length scales, respectively. The

Lamb’s constant α = 1.25643, such that the initial core-

radius (identified as the radial location of peak vθ) is

rco = 1. For all the plots, time is non-dimensionalized

by the ‘turnover time’ T = 2πvo/rco. An isotropic tur-

bulence field made compact in the cross-stream directions

by multiplying by a Gaussian function was added to the

base flow on maturation. The Reynolds number (defined

as Γ/ν = 2πvo/
√

α/ν) was set at 8000. A domain of size

40× 152 was discretized on a mesh of dimension 512× 1922 .

Runs with varying turbulence intensities and spectral con-

tent were performed and it was established that the qualita-

tive features of the evolution remained the same as long as

the initial intensity of the turbulence kinetic energy was less

than roughly 2% of the mean flow KE. In this paper, a rep-

resentative run of intensity 0.001% will be analyzed. This

will be referred to as Case I (Isotropic). To obtain a better

qualitative understanding of various aspects of the evolu-

tion, a calculation, termed Case E (Eigenfunction) starting

from the most unstable Eigenfunction (from linear normal

mode theory) will also be utilized. Case E is initialized at a

similar intensity as Case I and is a helically symmetric flow.

EVOLUTION

The temporal evolution of certain global quantities for

Case I is shown in fig. 1. From the KE plots, a growth phase,

a saturation phase and a decay phase are evident. Spectral

analysis revealed that most of the energy during the growth

phase was concentrated in the most unstable normal mode

(axial wavenumber ≈ 1 and azimuthal wave number ≈ −2),

a fact that was also confirmed by flow visualization. For

case E, the initial linear growth rate was found to precisely

match the results of the normal mode stability analysis. As

has been observed previously [3, 4, 5], the peak axial veloc-

ity (and hence, the azimuthal vorticity) decays more rapidly

than the peak azimuthal velocity (refer fig. 1b, in which all

the quantities are normalized by the value at t=0), resulting

in a more stable configuration (or a higher q) at later times.

Figure 1c shows that the core radius (radial location of peak
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Figure 1: Evolution of global quantities for Case I

tangential velocity) rapidly increases during the saturation

phase. As will be seen later, this corresponds to a major

change in core structure. Also shown is the ‘Dispersion ra-

dius’, which is qualitatively the edge of the turbulent region,

and quantitatively defined as the maximum radius at which

the mean vorticity is at least 0.5% of the peak vorticity. This

is an important measure of the extent of momentum transfer

and is seen to grow rapidly even during the decay phase.

Figure 2 shows part of the instantaneous flow-field at

the beginning of the decay phase. From the axial and az-

imuthal vorticity plots (figs. 2b,d), the dominant helical

structures inside the core can be seen. Outside the core,

vorticity is highly filamented. However, ωx is still predom-

inantly aligned with the structures inside the core, while

ωθ is primarily aligned in the azimuthal direction. From the

mean vorticity plots (fig. 6), it is evident that the outermost

ωx structures are generally of a negative sense, whereas, the

corresponding ωθ structures appear to be of a positive sense.

These features are seen throughout the decay process, and

their origins can be better understood if Case E is considered

(figs. 3,4) and as will be explained later, are also dynami-

cally necessary.

(a) ωx

(b) ωx

(c) ωθ

(d) ωθ

Figure 2: Axial and azimuthal vorticity iso-surfaces for Case

I at t/T = 3.4. Light surface: +0.65, Dark surface: -0.65.

Also shown is a cylinder of radius 1.5
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Figure 3: Axial vorticity contours for Case E. Negative vor-

ticity shown in dashed lines/white patch

In Case E, as the helical instability (an azimuthal ‘2’

mode) grows, the alternating positive and negative ‘lobes’

of perturbation axial vorticity induce a radial velocity field

that tends to disturb the mean axial vorticity. Initially, the

vorticity near the axis is distorted elliptically, with the major

axis aligned with the positive perturbation lobes. Subse-

quently, the stretching of the major axis of the ellipse results

in a migration of the mean vorticity toward the positive

lobes. This linear growth is maintained until a point when

enough vorticity has migrated toward the positive perturba-

tion lobes (at this instant the vortex tubes enclosing the axis

form small localized grooves, implying significant radial vor-

ticity), that the symmetry of the perturbations is lost due

to non-linear interactions with the mean flow. (Figure 3b

shows a representative instant, at which the ‘2’ mode sym-

metry is clearly lost). The orientation of the total vorticity

is such that the negative perturbation lobes are distorted

and drawn toward the center of the positive lobes. The mi-

gration of the negative perturbation lobes to a larger radius

(fig. 5) results in the generation of mean negative axial and

azimuthal vorticity at the edge of the core since the mean
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Figure 4: Azimuthal vorticity contours for Case E. Negative

vorticity shown in dashed lines/white patch
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Figure 5: Case E (Saturation): Axial vorticity con-

tours (shaded) superimposed with perturbation axial vor-

ticity contours (lines). Negative vorticity shown in dashed

lines/white patch
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Figure 6: Evolution of mean quantities for Case I. Dashes:

t/T = 2.6, Dash-Dot: t/T = 3.4, Solid: t/T = 5. Initial

condition also shown

vorticity was originally small at these locations. (figs. 3c

and 4c - beginnings of the negative axial vorticity genera-

tion can be seen in fig. 3b at {±1.5,±1}) These structures

continue to move radially outward along with a helical an-

nulus of opposite (positive) sense (at a smaller radius for

ωx and a larger radius for ωθ). The convection of these

structures is significant for momentum transport in the ra-

dial direction and their presence can be seen in both cases

(r > 2 in fig. 6, fig. 7). The presence of the mean negative

ωx near the edge of the core corresponds to a circulation

overshoot (fig. 6a). The presence of a local positive peak

of ωθ , while exaggerated in fig. 7b can also be seen in fig.

6c. In the following section, the presence of these structures

will be explained from dynamic considerations. At the latest

investigated time for Case E, similar to the findings in [3],

the negative vortical structures are convected away from the

core and an apparently stable system composed of two heli-

cal lobes is observed. In Case I however, the breakdown of

the dominant helical structures appear to drive the system

toward a stable high-q Batchelor vortex configuration.

CONSERVED QUANTITIES

It is well known [4] that the integral relations for angular

and axial momentum for mean axisymmetric flow (homoge-
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Figure 7: Evolution for Case E during the decay phase.

Dashed line is earliest shown instant and Solid line is lat-

est. Laminar solution corresponding to earliest instant also

shown

neous in the axial direction) are given by

∂

∂t

[
∫ R

0

r2vθdr

]

= −[r2v′rv′
θ
]r=R − ν

Γo

π
, and, (2)

∂

∂t

[
∫ R

0

rvxdr

]

= −[rv′rv′x]r=R (3)

In the present computations, it was confirmed that r2v′rv′
θ

and rv′rv′x were both very small at large radii, and hence,

total axial momentum is conserved and the total angular

momentum depends only on the viscosity (and decays very

slowly at large Reynolds numbers).

Presently, decomposing the instantaneous velocity field

into a laminar solution (denoted by subscript l) at that in-

stant and a ‘δ’,

{U, V,W}(x, r, θ, t) = {vx,l, 0, vθ,l}(r, t)+{u, v, w}(x, r, θ, t),

(4)

the following new relations were derived:

∂

∂t

[
∫ R

0

˜r2wdr

]

=

[

−r2ṽw + ν
˜

r3
∂

∂r

(

w

r

)

]

r=R

(5)

and,

∂

∂t

[
∫ R

0

ũrdr

]

=

[

−rũv + ν
˜

r
∂u

∂r

]

r=R

, (6)

where, ã =
∫ 2π

0
adθ. It was confirmed that the right hand

sides of the above equations were indeed zero, and therefore,

the ‘δ’ angular and axial momentum flux are conserved, and

do not appear to depend on the viscosity. These relations are

significant because they can be used to study the transport
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Figure 8: Evolution of ‘δ’ quantities for Case I. Dashes:

t/T = 2.6, Dash-Dot: t/T = 3.4, Solid: t/T = 5

of momentum within the vortex flow field. Figure 8 shows

the evolution of the afore mentioned quantities (more specifi-

cally, the LHS integrands) during the decay process. Clearly,

there is a net loss of momentum (compared to the laminar

evolution) inside the core and this is transferred to the exte-

rior. It has to be recognized that the turbulent transport of

mean angular and axial momentum is solely dependent on

the terms − ∂
∂r

r2v′rv′
θ

and − ∂
∂r

rv′rv′x, respectively.

The ‘δ’ angular momentum can be expressed as

˜r2w(r) = r

∫ r

0

˜ωx − ωx,lrdr, (7)

Then if ˜ωx(r) > ωx,l(r) + εx (a very plausible situation con-

sidering the fact that mean ωx has convected to a larger

radii from the axis) at some r = r1, then, ˜ωx(r) < ωx,l(r)

at some r = r2 > r1. (εx > 0 is related to the initial per-

turbation angular momentum). This is because the net ‘δ’

angular momentum has to be conserved and also due to the

consistency condition at r = 0 as well as the compactness of

w̃. Evidence of this can be seen from fig. 7a, in which, at

the earliest shown instant, a sudden drop in ωx (to a value

below ωx,l) is observed near the edge of the vortical region.

At later instances, the corresponding ωx,l = 0 (because lam-

inar diffusion is much slower) and hence ωx = −∂/∂rvx has

to drop to negative levels to satisfy conservation.

Similarly, conservation of axial momentum flux implies

that if ˜vx(r) < vx,l(r) − εθ (again, a possible situation

because axial velocity decays at a higher rate than the lam-

inar case) at some r = r1, then, ˜vx(r) > vx,l(r) at some

r = r2 > r1. During the decay phase, in comparison to

the laminar case, since the peak axial velocity in the core is

likely to be at smaller levels and the core radius is larger,

the deficient momentum is likely to be regained outside the

core. The requirement for compactness then assures vx = 0

at some radius, resulting in a positive ωθ . This can be seen

in fig. 6c and fig. 7b.

REYNOLDS STRESS EVOLUTION

During the linear growth stage, all the components of

the Reynolds stress are concentrated in annuli, primarily

inside the core. v′r
2 and v′x

2 peak at 0.6rc(t) while v′
θ
2

peaks around 0.3rc(t). Similar observations have been pre-

viously reported for a vortex with q = 1.0 in [4], in which

a detailed analysis of the Reynolds stress budgets is also

presented. During saturation and decay, these peaks move

toward the vortex axis. As has been observed experimen-

tally [7] and computationally [4], v′
r
2 > v′

θ
2 because the

primary production terms are of opposite sign. While the

respective production terms of the Reynolds normal stresses

peak away from the axis and dominate during the growth

phase, the pressure (strain and transport) and the turbulent

transport terms appear to be more significant during satura-

tion and decay and are more active near the vortex axis. As

a result, the normal stresses are concentrated near the axis

during decay. In the potential part of the flow, the relation

v′r
2 = v′x

2 + v′
θ
2 is approximately satisfied.

The primary Reynolds shear stress components, v′
rv′

θ
and

v′xv′r initially peak around a radius 0.6rc(t), but continue to

migrate in a radially outward direction. The respective pro-

duction terms in the Reynolds stress transport equations are:

Prθ = −srθ(v′r
2 + v′

θ
2) and Pxr = ωθ(v′x

2 + v′r
2)/2. (Note:

−srθ = −(∂vθ/∂r − vθ/r)/2 and ωθ are primarily positive.

Also, the above terms represent only the ”significant” part of

the production terms.) During the growth phase, the pro-

duction terms are clearly dominant and dependent on the

Reynolds normal stresses. During the decay phase as seen

in fig. 9a, Prθ decays rapidly inside the core and relatively

slowly outside it (in fact, there is even some growth). It was

also confirmed that the turbulent transport and pressure

terms were not significant outside the core. Therefore, the

peak v′rv′
θ

migrates outside the core (fig. 9c). This means

that angular momentum is efficiently transported radially

outward.

In contrast to Prθ, Pxr is primarily concentrated inside

the core. This is because the former depends on the mean

strain rate (which extends to r → ∞), whereas the latter de-

pends on the vorticity (which is mainly concentrated within

r < rc(t)). Accordingly, while the budget of v′
rv′

θ
outside

the core is dominated by the production terms, the radial

outward spread of v′xv′r is additionally dictated by the pres-

sure and turbulent transport terms. Since the vorticity and

Reynolds normal stresses are significant inside the core, Pxr

is dominant inside the core, and hence, there is some gen-

eration of v′xv′r near the axis. It was also observed that, in

general, the contribution of the turbulent transport terms

is larger in the Reynolds normal stress budgets than in the

shear stress budgets.

GENERATION OF V ′
RV ′

θ

As mentioned earlier, efficient transport of angular mo-

mentum is governed by the generation and transport of

v′rv′
θ
. In this section, the associated physical mechanisms are

sought for. For a qualitative picture, consider fig. 10a. The

prominent vortical features are the two positive ωx and the

two negative ωx structures. If only the positive ωx structures

were present, four v′rv′
θ

lobes (around each ωx structure) of

alternating sign will be generated. The presence of the addi-

tional negative ωx structures results in an induced velocity

field that generates positive v′
rv′θ , mainly outside the core.

A similar mechanism appears to be in play in Case I (fig.

10b), where toward the bottom left corner, the presence of

structures surrounding the mean positive ωx generate a lo-
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Figure 9: Reynolds stress and some budgets for Case I at

times t/T = {2.6, 3.4, 5}, with increasing time corresponding

to decreasing peak production

cal positive correlation of v′
rv′

θ
. Also note that the presence

of a secondary counter-rotating structure will result in an

additional strain-rate, thus strengthening Prθ.

SUMMARY

A range of issues related to the temporal evolution of an

initially unstable turbulent Batchelor vortex were addressed.

Considerable qualitative insight on the flow was obtained by

studying the non linear evolution of a single instability mode.

The deviation of the mean angular and axial momentum

from the laminar solution was shown to be conserved and

this was seen to dictate the existence and evolution of mean

counter-signed vorticity. Physical insight was provided on
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Figure 10: Representative instantaneous streamwise sections
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shown. Negative ωx shaded dark, Negative v′rv′θ shown in

dashed lines

the generation and evolution of these structures and their

role in the radial transport of momentum.
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