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ABSTRACT

Direct numerical simulation is used to study the in-

teraction of a Mach 1.5 shock wave and various types of

anisotropic turbulent flows at Reλ = 47. We compare the

interaction of isotropic, axisymmetric and sheared turbu-

lences (sometimes combined), with a specific interest for the

sheared situation. The sign and magnitude of the correlation

between the velocity and temperature fluctuations are found

to have a crucial influence on the kinetic energy amplification

across the shock. A decrease in magnitude is observed dur-

ing the interaction for the velocity cross-correlation gu′′v′′.

The balance equation of this quantity is investigated and

the terms responsible for this behaviour are identified. The

shear stress effect upon fluctuating vorticity and the dis-

sipation length scale is also presented. Thermodynamic

fluctuations are finally analyzed, showing the departure from

the isentropic state in the sheared situation compared to the

isotropic one.

INTRODUCTION

The interaction of free isotropic turbulence with a nor-

mal shock wave has been the focus of several studies in the

past ten years. The first ones were theoretical works that

relied on linear analysis and Kovasznay’s modal decomposi-

tion of turbulence (Kovasznay, 1953). They developed the

so-called Linear Interaction Analysis (LIA) (Ribner, 1953)

which was recently revisited and completed by Mahesh et

al. (1997) and Fabre et al. (2001) for instance. Experi-

mental research has also been conducted using shock tubes

and wind tunnels (see e.g. Agui et al. (2005) for a re-

view). More recently, Direct Numerical Simulations (DNS)

and Large Eddy Simulations (LES) of shock-turbulence in-

teraction began to emerge (see e.g. Jamme et al., 2002).

All the works cited above allowed to understand the main

features of shock-turbulence interaction when the upstream

turbulent flow is isotropic.

However, the influence of anisotropy on the interaction

has seldom been investigated. Mahesh et al. (1994) used

Rapid Distortion Theory (RDT) to study the response of

anisotropic turbulence to rapid homogeneous 1D compres-

sion, and Jamme et al. (2005) used DNS to characterize

the behaviour of an axisymetric turbulent flow through the

shock wave. The purpose of the present work is to investi-

gate how the presence of an idealized mean shear upstream

of the shock may modify the interaction phenomenon com-

pared to axisymmetric cases where no shear was present. We

investigate the behaviour of the main turbulent statistics of

the flow during the interaction.

NUMERICAL METHOD

We solve the full three-dimensional Navier-Stokes equa-

tions in non-dimensional conservative form using a finite

difference approach. The inviscid part is resolved using

a fifth-order Weighted Essentially Non-Oscillatory scheme

(WENO : Ponziani et al., 2003). Viscous terms are com-

puted using a sixth-order accurate compact scheme (Lele,

1992). A fourth-order Runge Kutta algorithm (Jiang & Shu,

1996) is used to advance in time.

Equations are solved on a cubic domain of size 2π in the

three directions (see Figure 1) and a grid of 176× 128× 128

is used. The mean flow is aligned with x. Periodic con-

ditions are specified in the z direction, and non-reflecting

boundary conditions of Poinsot and Lele (1992) along with

a sponge layer are used for the top and bottom boundaries

along y, as well as for the outflow where the flow is subsonic.

At the beginning of the calculation, a plane shock wave at

Mach number M1 is specified in the middle of the computa-

tional domain; the flow is steady on each side of the shock,

satisfying the Rankine-Hugoniot relations.

At each time step, velocity, pressure, temperature, and

density fields are specified at the inflow. These fields are

superpositions of a supersonic mean flow and turbulent fluc-

tuations (denoted further by a prime) in velocity, pressure,

temperature, and density. The mean velocity at the inflow

varies linearly across streamlines while the mean pressure is

uniform. The mean temperature and density vary such as

the mean Mach number is uniform :

U1(y) = U0 + S(y − ymin), V 1 = W 1 = 0,

P 1(y) = 1/(γM2
r ), T 1(y) = M2

r U2
1/M2

1 ,

where the overbar denotes the conventional Reynolds av-

erage and the subscript 1 indicates the upstream state.

The shear stress magnitude is controled by the parame-

ter S where S = ∂U1/∂y. Turbulent fluctuations are

then superposed onto the mean upstream flow and advected

through the inflow boundary using Taylor’s hypothesis. The

anisotropy of the turbulent velocity fluctuations used in the

inflow plane is typical of a turbulent shear flow. These

fluctuations come from preliminary runs of freely evolving

turbulence conducted in a cubic domain of (2π)3 discretized
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Figure 1: Flow configuration.

with an equidistant grid of 1283 points. These simulations

are initialized with a random velocity field. This field does

not satisfy the Navier-Stokes equations, but

- its mean is aligned with x and equals U1 = U0 +S(y−

ymin);

- the spectrum of the fluctuation is defined by

E(k) = 16
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,

where u0 is the rms value of any of the components of

the fluctuation and k0 = 4 the value of most energetic

wave number (linked, for this spectrum, with the value

of the Taylor microscale by k0 = 2/λ0);

- the fluctuating field (u) is the sum of a divergence-free

(rotational) field (us) and a dilatational (irrotational)

field (uc), the ratio (χ) of the dilatational to total tur-

bulent kinetic energy being freely adjustable.

The random velocity field with constant pressure and

density is used as an initial condition for the simulation

of time-evolving turbulence in the cubic domain. Periodic

boundary conditions are used in the x and z directions,

whereas non-reflecting boundary conditions with sponge lay-

ers are used along y. Time evolution is stopped after the

fluctuating fields are stabilized to a mean velocity deriva-

tive skewness (Sk = (Sk1 + Sk2 + Sk3)/3, with Skα =

(∂u′

α/∂xα)3/[(∂u′

α/∂xα)2]3/2)) of −0.45 that makes them

reasonably representative of real turbulence, and when the

desired amount of turbulent kinetic energy (to feed the in-

teraction runs) has been reached (q2/2 = 1.5 in our cases).

DNS of the interaction of a shock wave with isotropic

or axisymmetric turbulence were also conducted in order

to compare with sheared cases. The numerical procedure

was the same as the one described above for the sheared

configuration, with the three directions of the flow being

homogeneous.

RESULTS

Several simulations were conducted with the following

values of the reference parameters: Rer =
ρ
∗

r
u
∗

r
L

∗

r

µ∗

r

=

94, Mr =
u
∗

r

c∗
r

= 0.1, P r = 0.7, where (·)∗r refers to a di-

mensional reference variable. The mean Mach number is

fixed to M1 = 1.5, and the turbulence parameters in the

inflow plane are the following : Reλ = Rer
λrms

ν
= 47,

Mt = q

c
=

q
u′

i
u′

i

c
= 0.173 and χ = 0. Table 1 summarizes

Table 1: Characteristics of the different runs. The values

reported for the turbulent statistics are taken just before

shock.

Run S gu′′2
g
u′′2

q2

g
v′′2

q2

g
w′′2

q2

gu′′v′′

q2

SI 1.5 1.04 0.42 0.28 0.31 -0.14

SA1 1.5 1.10 0.44 0.27 0.30 -0.12

SA2 1.5 1.11 0.40 0.29 0.31 -0.17

I 0 1.00 0.35 0.33 0.32 0.005

A1 0 1.04 0.43 0.28 0.30 0.007

the characteristics of the different runs. They differ by the

nature of the mean flow (sheared or not), by the anisotropy

of the upstream turbulent flow and by the amount of gu′′2

immediately upstream of the shock wave.

Statistics of the flow are gathered when a statistically

steady state is established in the computational domain

(typically after one flow-through time). Turbulence sta-

tistics are then computed by averaging over the homoge-

neous direction and time. We use 120 instantaneous fields

saved during the simulation with a time sampling interval of

2τt/120, and the total size of the time sample is 2τt. Apart

from the conventional Reynolds average, we shall use Favre’s

mass-weighted average. For a given function f , it is defined

by f̃ = ρf/ρ, and the corresponding fluctuation is denoted

by f ′′.

Turbulent kinetic energy

Previous works lead to the conclusion that the amplifica-

tion of the kinetic energy behind the shock wave is strongly

dependent of the upstream anisotropic state, and that it is

clearly determined by the amount of the longitudinal normal

Reynolds stress gu′′2 upstream of the shock (see e.g. Jamme

et al., 2005). The mean flow was uniform without shear

stress is these studies.

In the present work, we first compare three runs (Run SI,

Run SA1 and Run SA2) where a mean shear has been intro-

duced. The anisotropy of the turbulence is slightly different

just before the shock for these three cases. The near-field

amplification of q2/2 behind the shock wave is found to de-

pend on the amount of the correlation gu′′T ′′ immediately

upstream of the shock. This correlation is positive in the

three cases, but its value is not the same. The more gu′′T ′′ is

high upstream, the less q2/2 is amplified behind the shock

(see Figure 2). This effect of gu′′T ′′ on the amplification fac-

tor of the turbulent kinetic energy through the shock wave

has also been highlighted by LIA when the flow is isotropic

upstream of the shock wave (Mahesh et al., 1997).

In order to get rid of the effect linked to the amount ofgu′′2, and trying to isolate the influence of the nature of the

anisotropy of the incident turbulent flow itself, we conducted

two more runs (Run I and Run A1) in which the amount ofgu′′2 is the same as in Run SI just before the shock, but not

the values of the other components of the Reynolds stress

tensor. One can see in Figure 3 that both the axisymmetric

and sheared cases show a greater amplification of q2/2 than

the isotropic case. Mahesh et al. (1996) observed a slight

decrease of q2/2 across a M1 = 1.2 shock for a sheared case,

and they attributed this trend to the fact that gu′′T ′′ > 0
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Figure 2: Evolution of q2/2 normalized by its value imme-

diately upstream of the shock wave (up) and gu′′T ′′ (down).

(—–) Run SI ; (−−−) Run SA1 ; (− · −) Run SA2.
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Figure 3: Evolution of q2/2 across the shock, curves are

normalized by their value immediately upstream of the shock

wave. (—–) Run SI ; (−−−) Run I ; (− · −) Run A1.

before the shock, which is known to inhibit the amplification

of the kinetic energy. In the present case (Run SI), we havegu′′T ′′ > 0 upstream ( gu′′T ′′ ≈ 0.04 for run SI, whereas it

is zero for runs I and A1), but q2/2 is still more amplified

in the near field compared to the isotropic situation. This

difference with Mahesh et al. (1996) may be a consequence

of the shock strength (M1 = 1.5 in our case instead of M1 =

1.2).

Reynolds stresses

Figure 4 shows that the axisymmetric case displays a

greater near-field amplification of gu′′2 than the isotropic

case, whereas the opposite is true for the sheared case.

The behaviour of gu′′v′′ is found to be same as the one
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Figure 4: Evolution of gu′′2 across the shock, curves are nor-

malized by their value immediately upstream of the shock

wave. (—–) Run SI ; (−−−) Run I ; (− · −) Run A1.
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Figure 5: Evolution of gu′′v′′ across the shock. (—–) Run SI

; (−−−) Run I ; (− · −) Run A1.

observed by Mahesh et al. (1996) : we notice a decrease of

the magnitude of gu′′v′′ across the shock wave (see Figure

5). The budget of this quantity is written in Equation (1).

This budget is presented in Figure 6. Inside the shock wave

(between the vertical dashed lines), coupling terms with the

mean flow (production terms (II) and (III)) are negligible.

Moreover, pressure-strain correlation (VI) is small compared

to pressure-diffusion (V) which is found to be responsible for

the decrease in magnitude of gu′′v′′, together with production

by the mass-flux fluctuations (IV) and turbulent diffusion

(VII). This is in contradiction with the RDT results of Ma-

hesh et al. (1994) that attributed the behaviour of gu′′v′′

through the shock wave to the pressure-strain correlation.

It should be noticed that in their analysis, neitheir dilata-

tional (compressible) effects nor non-linearities were taken

into account.

Behind the shock wave, production by the mean shear

(III) displays a constant negative contribution to the bud-

get. This term is in competition with pressure-correlation

terms (V) and (VI). In the near-field, these two terms are

negative, leading to a rapid decrease of gu′′v′′ just behind the

shock. Then the pressure-diffusion term (V) becomes posi-

tive so that the decrease of gu′′v′′ becomes smoother. This

term vanishes in the far field where the pressure-strain corre-

lation (VI) equilibrates production by the mean shear (III).

This equilibrium state (in which gu′′v′′ is constant) is typi-

cal of a turbulent homogeneous shear flow. It is also present

upstream of the shock, with a higher shear stress than down-

stream, so that terms (VI) and (III) are more important in

magnitude.

101



k0x

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
-10

-5

0

5

10

15

20

25

30

35

40

45

k0x

13 14 15 16 17 18
-3

-2

-1

0

1

2

3

Figure 6: Different terms in the gu′′v′′ budget equation -

Run SI - (up) zoom inside the shock zone; (down) evolu-

tion downstream of the shock wave. (◦ ◦ ◦) advection (I);

( ) production by the mean compression (II); (+ + +)

production by the mean shear (III);(− − −) production by

the mass-flux fluctuations (IV);(× × ×) pressure diffusion

(V); (���) pressure-strain correlation (VI); (· · · · ·) turbulent

diffusion (VII); (− · −) viscous dissipation (VIII).

ρeU ∂ gu′′v′′

∂x
+ ρeV ∂ gu′′v′′

∂y| {z }
(I)

=

−ρ gu′′v′′
∂ eU
∂x| {z }

(II)

−ρgv′′2 ∂ eU
∂y| {z }

(III)

−u′′
∂P

∂y
− v′′

∂P

∂x| {z }
(IV)

+ (1)

−
∂p′v′′

∂x
−

∂p′u′′

∂y| {z }
(V)

+ p′
�

∂u′′

∂y
+

∂v′′

∂x

�| {z }
(VI)

−
∂

∂x

�
ρ gu′′2v′′

�
−

∂

∂y

�
ρ gu′′v′′2

�| {z }
(VII)

+ u′′
∂τ2k

∂xk

+ v′′
∂τ1k

∂xk| {z }
(VIII)

Vorticity

A clear influence of the shear stress can be seen on the

streamwise component of the vorticity (cf. Figure 7). An

increase of ω′2
x in the near field behind the shock is indeed

observed for the three cases, but this trend is much more

pronounced for the sheared case. The vortex stretching by

turbulence is found to be responsible for this increase of ω′2
x ,

which means that this term is enhanced in the sheared case

(budgets not shown here).

Concerning the evolution of ω′2
y , Figure 7 shows that the
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Figure 7: Evolutions of ω′2
x (up) and ω′2

y (down) across the

shock, curves are normalized by their value immediately up-

stream of the shock wave. (—–) Run SI ; (− − −) Run I ;

(− · −) Run A1.

shear effect on the amplification is negligible as we observe

the same normalized evolution for all cases. In fact, as it has

been shown before (see e.g. Jamme et al., 2002), the mean

compression in the budget equation of vorticity is the main

contributor for the amplification of ω′2
y and ω′2

z across the

shock. As a consequence, the shear stress is not involved in

this phenomenon. However, we observe that the decay rate

of ω′2
y downstream the shock is lower for the sheared case.

Outside the shock zone, the evolutions of ω′2
x and ω′2

y depend

on the competition between the vortex stretching by turbu-

lence and the viscous term. The increased vortex stretching

by turbulence in the sheared case reduces the decay rate of

ω′2
y (and similarly for ω′2

z ) compared to the axisymmetric

and isotropic situations.

Turbulent length scale

Figure 8 displays the evolution of the dissipation length

scale lε = ρq3/ε which is widely used in turbulence mod-

elling. This scale is found to increase across the shock for

the three runs. The amplification factor is not the same for

all cases. lε is less amplified in the sheared case compared

to the isotropic situation, whereas the opposite is true for

the axisymmetric run. This amplification of the dissipation

length scale is in agreement with previous DNS of isotropic

shock-turbulence interaction at Mach 1.5 and LIA results

(see Lee et al., 1997).

Thermodynamic fluctuations

Figure 9 shows the variation of the fluctuating density,

pressure and temperature during the interaction for run SI.

Upstream and far-field downstream states are dominated by

temperature and density fluctuations (entropy mode), which
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Figure 8: Evolution of lε across the shock, curves are nor-

malized by their value immediately upstream of the shock

wave. (—–) Run SI ; (−−−) Run I ; (− · −) Run A1.
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Figure 9: Evolution of rms values of the thermodynamic

properties throughout the computational domain, Run SI.

(—–) ρ′2/ρ ; (−−−) p′2/P ; (− · −) T ′2/T .
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Figure 10: Evolution of the polytropic exponents. (−−◦−−)

npρ Run SI ; (−−×−−) npT Run SI ; (· ◦ · ◦ ·) npρ Run I ;

(· × · × ·) npT Run I.

is not true for the isotropic case (run I) where pressure fluc-

tuations dominate. In the sheared case (run SI), pressure

fluctuations are enhanced during the interaction but they

are negligible except in the near field just behind the shock.

Figure 10 displays the polytropic coefficients npρ and npT

defined in Equation (2).

npρ =
p′2/P

ρ′2/ρ
npT =

p′2/P

T ′2/T
(2)

We can see that thermodynamic fluctuations are isentropic

upstream of the shock for the isotropic case (run I), with

npρ = γ = 1.4 and npT = γ/(γ − 1) = 3.5, whereas a slight

deviation from the isentropic state is shown downstream.

For the sheared case (run SI), the flow is no more isentropic

on both sides of the shock. This is due to the presence of

a density and temperature gradient in the mean flow (cf.

Blaisdell et al., 1993).

CONCLUSION

This work aimed at characterizing the influence of

anisotropy of the upstream turbulent flow on shock-

turbulence interaction. Several types of anisotropy were

considered and combined. We compared the interaction of

isotropic, axisymmetric and sheared turbulent flows with a

Mach 1.5 shock wave, with a specific interest for the sheared

situation. The behaviour of turbulent kinetic energy and

Reynolds stresses was first investigated, showing the impor-

tance of the sign of the correlation between the velocity and

temperature fluctuations on the kinetic energy amplification

across the shock. The budget of gu′′v′′ was also reported and

allowed to identify the mechanism responsible for the de-

crease in magnitude of gu′′v′′ observed through the shock

wave. Vorticity fluctuations were seen to be affected by the

shear stress downstream of the shock, as well as the am-

plification factor of the turbulent dissipation length scale.

Thermodynamic fluctuations were finally analyzed, showing

the departure from the isentropic state in the sheared situ-

ation compared to the isotropic one.
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