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ABSTRACT 
The influence of leading and trailing edge geometry on 

the flows around four elongated cylinders was examined. In 
particular, the mean flow characteristics around the bodies 
(including the distance from the leading edge to the 
reattachment point, the boundary layers thickness at the the 
trailing edge, the speed-up at the leeward trailing edge) and 
in the wakes, particularly the details of the vortex streets, 
were examined. It was found that there is no simple scaling 
relationship linking the various vortex street parameters 
such as the spacing ratio, b/a, the vortex convection speeds, 
and vortex strengths so that there is no universal Strouhal 
number for these flows. It appears that the diffuse separated 
shear layers are the main cause of this lack of universality in 
vortex streets, so that each vortex street depends on the 
precise way it came to be formed. 

 
 

INTRODUCTION 
The Storebælt Bridge, Denmark, was the longest 

suspension bridge in the world when it opened in 1998. 
About one month before opening, it experienced large 
amplitude oscillations at a low wind speed, due to vortex 
shedding (Frandsen, 2001). The amplitudes were of 
sufficient magnitude and at such a common wind speed that 
they would eventually cause fatigue problems, as well as 
lead to significant occupant (driver) comfort issues. This led 
to an expensive retro-fit; turning vanes were welded onto 
the lower corners of the deck along the length of the span. 
This type of problem has been relatively infrequent, but 
could become more significant as bridge decks become 
longer and lighter. Geometry is one of the crucial factors 
that influence the flow characteristics and aeroelastic 
response of long-span bridges and other elongated bluff 
bodies.  Since the flow field and the vortex shedding 
activity produced by the wind-structure interaction are 
complex, the largely unknown effects of deck geometry lead 
to ad-hoc design solutions. 

Relatively few studies have been performed on 
elongated bluff bodies, where an elongated bluff body is 
defined as a cross-section with a chord length which is long 
enough so that there is reattachment on the body following 
leading edge separations. Okajima (1982) showed that, for 
rectangular cylinders, the afterbody disrupts the interaction 
of the two separated shear layers and leads to a suppression 
of the Kármán-like vortex street. Because of such effects by 
the leading edge separations and the subsequent 
reattachments on the boundary layers along the body, it is 
reasonable that there should be different flow mechanisms 

and instabilities as the elongation ratio, defined as the 
chord-to-thickness ratio (l/h), is altered. For example, 
Stokes and Welsh’s (1986) study of bodies of rectangular 
cross-section, found that there are four regimes defined by 
l/h.  In particular, they found that the first regime is for l/h < 
3.2, the body of the cylinder does not disrupt the interaction 
of the shear layers and a Kármán street exists.  However, for 
an elongation ratio within the second regime (3.2 < l/h < 
7.6), they observed that there is no Kármán street present 
and that the shear layers reattach to the body intermittently.  
As a result, the wake is disorganized in this regime. Also 
observed with increasing l/h is that the Strouhal number, 
when defined by the chord, follows a stepwise increase with 
elongation ratio. Recently, Mills et al. (2003) explained that 
the jumps in the Strouhal number are due to the number of 
vortices traveling across the body for a given elongation 
ratio. Following the work of Stokes and Welsh (1986), 
Nakamura et al. (1991) observed an impinging shear layer 
instability which arose from the interaction of the 
reattaching shear layer with the trailing edge.  They argued 
that this created a feedback which alters the vorticity 
production at the leading edge. However, Mills et al. 
proposed that the primary instability is an impinging leading 
edge vortex (ILEV) instability where the vortices formed 
from the separation at the leading edge travel along the deck 
interfering with the formation region. In any case, different 
flow instabilities clearly exist, which depend significantly 
on the body geometry. 

Thus, the objectives of the experimental program are to 
determine how the leading and trailing edge details, as well 
as elongation ratio, affect the flow around the body, the 
flow instabilities the aerodynamic loads, and the 
relationships between these. The current experiments focus 
on four different body geometries, all at the same elongation 
ratio, in order to develop a basic understanding of the 
effects of the leading and trailing edge details. Since the 
ultimate application of this work is for long-span bridge 
design, for each model the leading and trailing edge details 
are identical.   

 
 

EXPERIMENTAL SET-UP 
Model Details 

The experiments were carried out in a 0.45m x 0.45m 
cross section by 1.5m long test section of an open return 
wind tunnel at the Boundary Layer Wind Tunnel Laboratory 
(BLWTL) at the University of Western Ontario. Four 
smooth, elongated bluff bodies with distinct leading and 
trailing edge geometries were tested. Each had an 
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elongation ratio, i.e., chord-to-thickness ratio, of 7. Three of 
the models were symmetric, having leading and trailing 
edges of rectangular, triangular and semi-circular shape, as 
shown in Fig. 1.  The cross-section of the fourth model, 
which is asymmetric about the horizontal axis, resembles 
the Storebælt Bridge. 

Each cylinder was mounted horizontally in the mid-
plane of the working section, approximately 0.3m 
downstream of the inlet.   Spanning the full width of the 
working section and securely fastened to the tunnel glass 
windows on each side, the aspect ratio of all four models 
was 18. The thickness of each model was h = 0.025m so 
that the blockage ratio was 5%.  No corrections were made 
for blockage effects.  The coordinate system is aligned with 
the origin centrally located at the centerline or mid-span of 
the cylinder, as shown in Fig. 2. The x-axis is set in-line 
with the direction of the free-stream velocity, U∞, and the y-
axis is found normal to the cylinder axis and to the flow in 
the lateral direction. The tunnel speed was set at 17.8m/s, 
yielding a moderately high Reynolds number of 3x104, 
based on h. 

 
Figure 1: Definition sketch of the Rectangular, Triangular, 

Circular and Storebælt models. 
 

Pressure Measurements 
All four models had a set of 24 pressure taps, aligned in 

a ring at midspan. The reader is referred to Palombi (2006) 
for the tap locations on each model. The taps were 
connected to pressure scanners via a tubing system. The 
tubing system had a frequency response which was flat to 
beyond 200 Hz. During the experiments, the pressures were 
low pass filtered at 200 Hz, then sampled simultaneously at 
a rate of 400/sec/channel, for 150 seconds. The pressure 
time histories were integrated to give time histories of the 
sectional lift, drag and torque. 

 
Particle Image Velocimetry Measurements 

A TSI PIV system with a 120 mJ/pulse double Nd:YAG 
laser was used in this study. Olive oil was used with an in-
house Laskin nozzle to seed the flow and a 1024 x 1024 
pixel charge-coupled device (CCD) camera was used to 
capture the wake behavior.  The lens fitted to the camera 
had a focal length range of 60mm and the object distance 
was adjusted to obtain a field-of-view of approximately 9.5h 
x 9.5h.  The spatial resolution of the images captured, with a 
32 x 32 pixel interrogation window and 50% overlapping, 
was 3.68 mm. The acquired images were analyzed using 
TSI Insight® software. Standard filters were applied to 
remove erroneous vectors such as: global and local standard 
deviation and a median which resulted in about 5% of the 
vectors. The PIV frames were sampled at approximately 15 

Hz and the time delay between image pairs was set within 
the range of 12-16µs for all experiments. A total of 3000 
vectors maps were acquired for each model. 

 
 

MEAN FLOW CHARACTERISTICS 
For vortex shedding phenomena, it is well established 

that the detailed characteristics of the separated shear layers, 
and the distance between them are key factors in the 
formation of vortex streets (Roshko, 1954; Bearman, 1967). 
Thus, the relevant aspects of the mean flow for elongated 
bluff bodies are the characteristics of the boundary layers 
immediately upstream of the leeward flow separations as 
well as the formation region immediately downstream of the 
body. In this manuscript, we focus on three aspects; 
specifically, (i) the distance from the leading edge to the 
first reattachment, (ii) the boundary layer profiles at the 
leeward separation point (which is not necessarily the 
trailing edge for these geometries), and (iii) the length of the 
recirculation zone in the base region of the wake. 

Table 1 indicates the distance of the reattachment point 
from the leading edge, xR, as inferred from the pressure 
measurements. The reattachment length is significantly 
shorter for the triangular, circular and Storebælt models, 
when compared to the rectangular cylinder. Reattachment 
on the rectangular cylinder is downstream of the mid-plane, 
at approximately 2/3h from the leading edge, while for the 
triangular cylinder it is at about 1/3h, and for the circular 
model it is at about 1/7h.  The flow around the Storebælt 
model is more complex with separation at the “nose”, the 
reattachment on the angled surfaces and small subsequent 
separation bubbles at the edges prior to the surfaces 
becoming parallel with the upstream flow. As will be 
discussed further below, the drag coefficients are consistent 
with xR; earlier reattachment is associated with lower drag 
as one would expect from make bodies more streamlined. 

Plots of the mean streamwise velocity profiles near the 
point of separation for all four bodies are found in Figure 2. 
Due to the asymmetric design of the Storebælt model, 
profiles for both the upper and lower trailing edges are 
presented. Note that the origin of the vertical axis is located 
at the along the centreline, at trailing edge for the symmetric 
cross-sections (see Figure 1); however for the Storebælt 
model, the origin of the lateral positioning is fixed at the 
off-centered height where the upper and lower trailing edge 
surfaces meet. The PIV data for the rectangular model could 
not be resolved within a lateral distance of approximately 
0.25h from the solid boundary. However, it is clear that the 
rectangular model has a boundary layer, δTE, that is thickest 
at the trailing edge. The triangular, Storebælt (lower 
followed by upper trailing edge surface) and circular models 
follow in decreasing order. Table 1 presents δTE for all four 
models. 

Speed-up ratios, Uδ/U∞, from the edge of the boundary 
layer at the leeward separation point can be found in Table 
1. Slight speed-ups in mean velocities (excluding the 
rectangular cylinder) are observed, the values being much 
smaller than the values observed from other bluff bodies 
such as circular cylinders or normal flat plates. The most 
significant speed-ups are apparent at the lower trailing edge 
flange of the Storebælt model, and the semi-circular model, 
where increases of approximately 10 and 4.5 percent, 
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respectively are observed. These small speed-up values 
imply that any observed vortex streets in the wake will not 
follow the universal scaling of vortex shedding found by 
Bearman (1967), a point which will be examined in greater 
detail below. 

 
Table 1: Mean flow properties around the bodies and in the 

near wake. 
Model xR/h δTE/h Uδ/U∞ θ/h xW/h 

Rectangular 0.67 1.20 1.00 0.67 1.0 
Triangular 0.33 0.76 1.02 0.42 0.33 
Circular 0.14 0.42 1.05 0.26 0.66 

Storebaelt1 0.25 
0.35 

0.37 
0.48 

1.03 
1.11 

0.34 0.12 

 

 
Figure 2: Mean trailing edge streamwise velocity profiles. 

 
A comparison of the mean streamwise velocity profiles 

measured at x = 2h is shown in Figure 3. It is evident that 
the rectangular cylinder produces the widest wake at this 
location, with the triangular cylinder following in size. 
Interestingly, the circular and Storebælt cylinders seem to 
exhibit a similar wake width however, the circular model 
exhibits a smaller velocity defect and so has lower drag.   

The mean wake profiles presented can also give insight 
regarding the recirculation region located directly behind 
each cylinder. Because there exists a large variation in the 
streamwise velocities measured at mid-height behind the 
four cylinders, the formation lengths must be considerably 
different. Table 1 presents values for the momentum 
thickness, θ and the length of the recirculation region, xW. 
Again, xW is largest for the rectangular cylinder and the 
smallest for the Storebælt model.  

The sectional pressure drag coefficients of the four 
models are given in Table 2.  The drag coefficient is found 
to be the highest for the rectangular model, and the 
triangular model again follows second.  Contrary to what is 
inferred by the similar wake widths of the circular and 
Storebælt models previously shown in the mean wake 
velocity profiles in Fig. 3, the drag coefficients found for 
these cylinders are quite different.  It is apparent that the 
minimal loss of momentum in the mean wake flow in the 
circular model case causes it to exhibit the least drag force. 

Aerodynamic forces, the details of the recirculation 
zone and vortex shedding are all linked in the literature. It is 
generally understood that the size of the mean wake 

                                            
1 Because of the asymmetry in the Storebaelt model, where 
two numbers are present, these refer to the upper and 
lower surfaces or shear layers, as appropriate. 

recirculation region decreases in the presence of vortex 
shedding (Balachandar et al., 1997). Trends in the measured 
Strouhal frequencies, shown in Table 2, can be shown by 
the formation length theory established by Roshko (1954), 
i.e., if the scale of the formation region is reduced, the 
shedding frequency increases. Thus, Roshko argued that 
streamlining tends to increase the shedding frequency. This 
is, in part, contingent on the proximity of the shear layers, 
but the detailed results are not entirely consistent with this, 
as discussed further in the next section, where details of 
vortex shedding are examined. 

 
 

VORTEX SHEDDING 
Strouhal Numbers 

Measurements of the shedding frequency were made via 
the peak values observed in the power spectral density 
functions (PSDF) of the lift fluctuations. These frequencies 
were non-dimensionalized using the thickness of the model, 
h, and the free stream velocity, U∞, so that the Strouhal 
number is 

∞

=
U

hf
St s                (1) 

The frequencies and resulting Strouhal numbers are 
presented in Table 2. The Storebælt model was found to 
have the highest frequency measured at 198 Hz and has a 
spectral peak which is narrowband peak, while the lowest 
frequency is the rectangular model at 105 Hz. The 
rectangular model has the weakest peak, which is also quite 
broadband. The triangular and semi-circular models also 
have strong, narrowband peaks. Examination of the 
fluctuating drag shows that the rectangular cylinder has no 
peak frequencies, while the other three models exhibit the 
same narrowband peaks as for the lift fluctuations. This type 
of spectral activity for the rectangular cylinder resembles 
the observations in Parker and Welsh (1983), for similar 
experimental parameters. In particular, they observed no 
sharp spectral peaks in the wakes of rectangular plates with 
elongation ratios greater than 7.6, at a Reynolds number of 
approximately 5x104. 
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Figure 3: Mean streamwise velocities at x/h = 2. 

 
Ensemble-Averages of the Vortex Street 

In order to quantify the frequency-centred activity in the 
wakes we use a vortex identification technique of Jeong and 
Hussain (1995).  This vortex identification scheme defines a 
vortex core in incompressible flow in terms of the 
eigenvalues of the symmetric tensor Ѕ2 + Ω2: where Ѕ and Ω 
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are the symmetric and anti-symmetric parts of u∇ . In two-
dimensions, this method is identical to examining the 
invariants of the velocity gradient tensor as is done in 
critical point theory. Like all methods, this one is also 
sensitive to the presence of mean shear. Nevertheless, in 
vortex street wakes where one would assume that all of the 
mean shear is caused by the passing vortices, this is an 
effective method. 

 
Table 2: Aerodynamic and vortex shedding parameters 

determined from surface pressure measurements. 
Model CD CL’ fs St 

Rectangular 1.14 0.037 106 0.15 
Triangular 0.59 0.055 133 0.19 
Circular 0.36 0.046 164 0.24 

Storebaelt 0.41 0.030 198 0.28 
 

  

  

 
Figure 4: Ensemble-averages of vortices aligned at x/h = 2 
for the (a) triangular, (b) circular and (c) Storebælt models.  
Flow is from left to right and the convection speed is Uc = 
0.85U∞ in order to view the vortices further downstream. 

 
Once the vortex cores were identified, individual 

patterns were ensemble-averaged based on location of the 
vortex centers. In this case, vortices at x = 2h downstream 
of the trailing edge were aligned and averaged. The results 
for the triangular, semi-circular and Storebaelt models are 
shown in Figure 4. It can be observed that these wakes have 
Kármán-like vortex streets which account for the frequency 
content in the lift and drag spectra. The ensemble-averaged 
fields will be analyzed in greater detail below. 

No coherent vortices could be obtained with the vortex 
identification technique for the rectangular cylinder due to 
the relative disorder in this wake. Undoubtedly, there are 
vortices, as shown by the vorticity contours in Figure 5; 

however, the flow instability appears to be completely 
different with respect to the other models. 

 

 
Figure 5: Vorticity contours in a single PIV frame for the 

rectangular cylinder. 
 

Vortex Convection Speeds 
The streamwise velocity measured at the center of the 

ensemble-averaged vortex is defined as the vortex 
convection speed, Uc. The observed convection speeds 
found for each case vary considerably at x = 2h, as shown in 
Table 3. The triangular model has the slowest convective 
speed of approximately 0.68U∞, while the Storebælt model 
has the fastest at approximately 0.75U∞. So, the variation is 
about 10% at this location in the flow. 

The convection speeds of the vortices are not constant 
as they travel downstream. It was found that at x = 6h, the 
ensemble averaged vortices for all three flows had similar 
convection speeds, being in a range near 84-85% of the 
free-stream velocity. Note that Figure 4 illustrates the 
ensemble-averaged flow field with this convection speed 
removed from the vectors. It may be that the different 
formation locations in the flows all lead to the difference in 
Uc at x = 2h. Additionally, potential flow theory indicates 
that the spacing ratio of the vortices, b/a, is closely related 
to the vortex convection speeds (e.g., Bearman, 1967), and 
all three have different spacing ratios, as will be shown 
below. On the other hand, the boundary layers at the trailing 
edge all have different profiles, some with local speed-ups, 
as indicated in Figure 1 and Table 1. Interestingly, the ratio, 
Uc/Uδ ~ 0.7, is nearly constant for these three flows2. Since, 
by x = 6h, the convection speeds are nearly constant, this 
does not seem to play a major role in the wake dynamics, in 
contrast to what is implied by the potential flow analysis. 

 
Table 3: Ensemble-averaged properties of the vortex streets. 

Model Uc/U∞ b/a ∆A Γ o 
/U∞h 

Γ/Γo 

Rectangular n/a n/a n/a n/a n/a 
Triangular 0.68 0.39 1.31 7.48 0.44 
Circular 0.73 0.29 0.76 5.36 0.58 

Storebaelt 0.75 0.17 0.84 
1 

6.70 
4.32 

0.61 
0.38 

 
Vortex Street Spacing Ratio 

The classical description of a vortex street was first 
quantified by von Kármán. His specific anti-symmetric 
structure, exhibiting neutral stability, was characterized with 
a spacing ratio, b/a = 0.281, where b is the lateral distance 
between vortex rows and a is the inter-vortex spacing in one 
row. Experimentally, this spacing ratio has not been 

                                            
2 For the Storebaelt model, we have used the average 
value. 

(a) 

(b) 

(c) 
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justified, with various authors have observed differing b/a 
ratios ranging from 0.16 to 0.40. Figure 4 clearly shows that 
the spacing ratio is altered in the three flows examined, 
while this is quantified in Table 3. 

The street spacing ratios are consistent with the wake 
thickness and drag results presented for the three bodies. A 
connection to the proximity of the separated shear layers in 
each case can be made. The distance between the separated 
shears layers produced by the circular and Storebælt models 
appear to be comparable and are consistent with the mean 
wake profiles. The triangular model not only produces the 
widest wake of the three, it is found that the rows of vortices 
tend to diverge. 

Examining the St and b/a ratios indicates that the 
vertical spacing of the vortices is not related to the 
horizontal spacing in a simple way. Roshko (1954) 
introduced the concept of the universal Strouhal number, 
Stu, where the distance between the separated shear layers 
replaces the body thickness and the speed at the separation 
point replaces the free stream speed. There are several ways 
this can be analyzed for elongated bluff bodies. If one 
presumes that the all of the effects of the leading edge 
details are contained within the mean velocity profile at the 
separation point, then the distance between the separated 
shear layers could be represented by (2δTE + h), and the 
speed by Uδ, so that 

δ

δ
U

)h2(f
St TEs

u
+

=             (2a) 

In contrast, one could also relate the vortex street 
parameters directly into a universal Strouhal number if one 
replaces the shedding frequency, fs, as Uc/a, the separation 
between the shear layers with b, and the separation speed 
with Uδ, so that, 

a
b

U
U

U
U

St c
u

δ

∞

∞

=              (2b) 

(Bearman, 1967). These parameters are presented in Table 
4. Clearly, Equation 2(b) overcompensates for the variation 
in the Strouhal frequency so that the variation is actually 
greater than the Strouhal number indicated by Equation (1). 
This is due primarily to the very significant changes in the 
spacing ratio, b/a, with the flow details. In contrast, using 
the Equation 2(a), which are upstream (of the wake) 
parameters are a better parameter, but there is still 
significant variation (about 20% between the largest and 
smallest values), outside of experimental uncertainties. 

 
Table 4: Universal Strouhal numbers. 

Model 
δ

δ
U

)h2(f TEs +  
a
b

U
U

U
Uc

δ

∞

∞

 

Triangular 0.46 0.26 
Circular 0.40 0.20 

Storebaelt 0.48 0.12 
 

Vortex Circulation Strength and Size 
The circulation in a vortex can be estimated as: 

j,ij,ij,i
A)x( ∆∑=Γ ω                 (3) 

where ω is the vorticity and ∆A is the vortex area. The 
vortex area was found by plotting the circulation strength 
against the area of the vortex measured 2h downstream of 

the trailing edge, in the ensemble-averaged wake of each 
cylinder. The center of the ensemble-averaged vortex, 
where the maximum vorticity is found, was chosen as the 
starting point for the numerical integration. As the area of 
the integration was increased, it was observed that the 
circulation would reach a plateau, consistent with 
theoretical expectations. So, at the point that the integration 
became constant, the area of the vortices was obtained.  
These values have significant uncertainty and because of 
this, emphasis is placed on the relative magnitudes of the 
vortices for each case. Table 3 presents the relative vortex 
size, ∆A, and circulations, Γ, normalized by values obtained 
for the lower row from the Storebælt model (which were 
observed to be weakest). 

The vortices shed from the triangular model were found 
to be the largest and strongest vortices, causing the wake 
width to be the widest of the three models. The circular 
model produced the smallest vortices; however, these were 
not the weakest. A difference of the size was found amongst 
the vortices shed from the upper and lower shear layers for 
the Storebælt model. In this case, the vortices in the top row 
are relatively smaller then those in the bottom – but still not 
as small as those shed by the circular edge model. The 
asymmetry in the model plays a significant role since the 
vortices in the upper and lower rows are of different 
strengths.  It is peculiar to note that the size of the vortices 
shed at the lower corner are larger those of shed at the upper 
corner, but are found to be weaker in strength. It is believed 
that because the circulation is measured at x = 2h 
downstream of the trailing edge, the lower shear layer 
travels a longer distance from the initial point of separation. 
This leads to weaker vortices, consistent with the effects of 
asymmetry observed in other flows by Bailey et al. (2002). 

In an attempt to link the strength of the vortex street 
produced by the three shedding bodies and the fluctuating 
lift, Table 2 also contains the RMS lift coefficient values, 
CL’, found for each model. The triangular model sheds the 
strongest vortices and is consequently subjected to the 
largest fluctuating forces. In the case of the Storebælt 
model, the vortices shed from the upper shear layer are 
approximately 1.5 times stronger then those of the lower 
surface; in this case, the lift fluctuations are shown to be the 
least of the three models. 

To further investigate the differences between the three 
vortex streets, and the geometries that cause them, the effect 
of available circulation at the trailing edge needs to be 
examined. Adjacent to the upper and lower surfaces of the 
body, the shear layers are considered to be thin and are 
characterized as two-dimensional vortex sheets.  Saffman 
(1992) defined the circulation of a vortex sheet, Γo, as: 

Ldso σσ ≈=Γ ∫                (4) 

where, σ is the vortex sheet strength and s is the spatial 
coordinate in the direction along the trailing edge 
streamline. Following the analysis of Bailey et al. (2002), 
the length, L, is the length from separation to the end of the 
mean recirculation region. The vortex sheet strength is 
found as an integral of the vorticity across the vortex sheet, 
and the vorticity is defined as 

qK
n
q

s+
∂
∂

−=ω               (5) 
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where, q is the magnitude of the velocity, n is the spatial 
coordinate in the direction normal to the trailing edge 
streamline and Ks is the curvature of the streamline (Bailey 
et al., 2002).  Ks was found by plotting the mean trailing 
edge flow fields for all four cylinders and extracting a 
streamline which initiated at δ=y above the point of 
separation on the trailing edge, then extended to the end of 
the mean recirculation region in the near wake. Therefore, 
the final expression of the vortex sheet strength is provided 
in terms of the velocity differential across the vortex sheet, 

∫
=

+−∂=
δ

σ
0u

sqdnKq               (6) 

Assuming that the streamwise component of the flow 
within the direct vicinity of the upper and lower surfaces of 
the body is approximately zero, the total circulation 
available at the trailing edge is contingent on the magnitude 
of the velocity at the outer limit of the existing trailing edge 
boundary layer, the magnitude of the trailing edge 
streamline curvature and the vortex sheet length via the 
integral in Equation (4).  Bailey et al. (2002) argue that the 
shear layer strength can be effectively increased if one or all 
of the following variables are increased: (i) the velocity 
gradient across the sheet (ii) the curvature along the shear 
layer streamline and (iii) the length of the shear layer 
extending into the near wake.  The trailing edge circulation, 
Γo, also provides insight as to the amount of circulation that 
is captured by the coherent structures in the wake and how 
much is lost to the surrounding turbulence.  In Table 3 the 
ratios, Γ/Γo,, are presented in terms of the available 
circulation at the trailing edge and the circulation strength of 
the vortices measured at x = 2h, for each model. All 
cylinders seem to follow the observations made by many 
authors, which indicate that approximately 50% of the 
available circulation is entrained to the shed vortices, 
although there is significant variation in the results. 

In light of the scaling of a universal Strouhal number, 
the circulations in the wake vortices and available at the 
trailing edge are interesting. Clearly, the longer the distance 
from separation point to the end of the recirculation region 
in the wake, the lower the proportion of vorticity the ends 
up in the wake vortices. The lower row of the Storebaelt 
model has particularly low proportion of 38% because of 
the long distance from the seaparation at the lower flange 
while the triangular model has a low value as well, 
consistent with the long recirculation length in that flow. 
Over such a length, significant diffusion of the separated 
shear layer occurs, so that the vortices are relatively weaker. 

Bearman’s (1967) splitter plate experiments show that 
more diffuse shear layers lead to changes in the vortex 
spacing ratio, much like the increased b/a observed for the 
triangular model. Thus, if appears that diffused shear layers 
is the main cause of the lack of a universal Strouhal number 
for the present elongated bluff bodies. 

 
 

CONCLUSIONS 
The flow fields around four models of elongation ratio 

of 7 and Re = 30,000 were examined. The rectangular 
cylinder did not have a periodic vortex street, but did have 
coherent lift fluctuations at a Strouhal number, St = 0.15. 

The three remaining models did produce vortex streets 
which were observed to be quite sensitive to the body 
geometry. Analysis indicated that the typical characteristics 
of vortex streets including spacing ratios, b/a, vortex 
convection speeds, Uc/U∞, speed-up factors at the separation 
point, Uδ/U∞, had complex relationships such that no 
universal Strouhal number could be found for these shapes. 
This is believed to be caused by the level of diffuseness in 
the separated shear layers, such that each vortex street 
depends of the detailed path to formation and there is a lack 
of universality in vortex street wakes. 
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