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ABSTRACT

The turbulent flow in swirling jets with swirl number
large enough for vortex breakdown is investigated numeri-
cally. Three variants for the entrance boundary conditions
and disturbances are simulated starting from stagnant initial
conditions. The formation of the recirculation zone and the
associated vortical structures are documented and compared
to flow visualisations.

INTRODUCTION

Swirling flows are of importance for theoretical and prac-
tical reasons (Leibovich, (1978)): They are subject to com-
peting instability mechanisms and are able to generate a
rich variety of flow structures, which are not completely un-
derstood (Serre and Bontoux (2002), Ruith et al. (2003),
Kurosaka et al. (2006)), and swirling jets at sufficiently
high swirl numbers form a recirculation zones that have
important practical applications. Swirling jet flows at mod-
erate Reynolds and high swirl numbers are investigated using
direct numerical simulations to examine the role of the en-
trance boundary conditions and associated disturbances.

NUMERICAL METHOD

A hybrid spectral-finite difference method (Kollmann
and Roy (2000), Kollmann (2007)) is used to solve the
incompressible Navier-Stokes equations in cylindrical coor-
dinates in flow domains that can be mapped smoothly onto
the cylinder with radius unity. The discrete Fourier trans-
form Fn (FFT)

0(6;) = Fn'(B(K), @(k) = Fn(p(6;)) (1)
where §; = 2xj/N are the discrete azimuthal collocation
points, is then applicable to the azimuthal direction in the
image domain and the Navier-Stokes equations emerge as
pdes for complex-valued Fourier modes. The system of mode
equations consists of two N/2+ 1-sets for transport variables
and two N/2 + 1-sets for elliptic variables. The transport
variables are the azimuthal velocity modes ¥g(k,r, 2,t) and
the vorticity mode combination W(k, r, z,t) defined by

W = Qg — iH(K)S, (2)
where £ =0, ---, N/2 is the azimuthal wavenumber, H(0) =
0 and H(k) =1 for k # 0, and (g, {2 denote the azimuthal
and radial vorticity components. The pdes for these vari-
ables can be found in Kollmann (2007).

The first set of elliptic variables is constructed by ob-
serving, that mass balance can be eliminated, since it can
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be cast in the form
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It follows from this pde that a complex-valued streamfunc-
tion exists for each azimuthal wavenumber k such that

dlr¥(r, k,z,t)] = —ri.dr + (0, + ik{7g))dz (5)

is exact and the radial and axial velocity components can be
recovered by
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The streamfunction modes ¥ (k,r,z,t), k = 0,---, N/2 are
then governed by
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The right side indicates the appropriate choice vy, W for
the transport variables. The streamfunction modes are the
solutions of the Helmholtz pdes , that can be shown to in-
sure mass balance and satisfy the pole conditions (Boyd
(2001), Constantinesu and Lele (2002), Kollmann (2007))
for all Fourier modes due to the particular wavenumber de-
pendence of the differential operator.

The second set of elliptic variables are the pressure modes
P(k,r,z,t) for k = 1,:-+,N/2. They are the solutions of
elliptic pdes that follow from mass amd momentum balances,
details are given in Kollmann (2007). The pressure solutions
can be shown to satisfy all pole conditions.

The transport pdes are discretized using central differ-
ence operators with accuracy from 27¢ to 8t at inner points
and 3"¢ order one-sided schemes near boundaries. The con-
vective terms are discretized using upwind-biased schemes
of order 3 to 9, the solver allows the selection of central
differences with explicit numerical filters, strictly upwind-
biased schemes or skew-symmetric formulation. The latter
is applied in the present simulations (o = 0.5), it is given by

Ai(v,f) = oT(v, ) + (1 - a)Ti(va f) (8)



where f is a vector field and T} and T}, i = r, 8, z denote the
non-conservative and conservative forms of the convective
part of the time rate of change following a material point.
The time integrator is an explicit 4t"-order, 5-stage, state
space Runge-Kutta method (Hairer and Wanner (1996)).

Numerical parameters

The flow domain is the cylinder (6,r,2) € D = [0, 27] X
[0,5.5D] x [0,10D] designed for the investigation of the near
field of vortex breakdown. The simulations used the skew-
symmetric form (8) of the convective terms with either the
5th (case III) or 9t* (cases I and II) order for the upwind-
biased part and the 4t* (case III) or 8t* (cases I and II)
order central finite-difference operators, N = 128 azimuthal
Fourier modes and n, = 91, n, = 175 grid points in the
radial and axial directions. The resolution in azimuthal di-
rection required for uniform discretization in radial direction
increases linearly with r, hence N should be a linear func-
tion of r with N(0) = 5. This is achieved by increasing N
blockwise with 7 such that N is a power of two. The Pois-
son equations for the streamfunction and pressure modes
are solved with an iterative method using deferred correc-
tions and LU-decomposition of the coefficient matrix. The
deferred corrections method is designed to reduce the band-
width of the coefficient matrix.

Boundary conditions

The velocity components are prescribed at the entrance
boundary @4 (k,r,t), 93(k,r,t), 55 (k,r,t) and the conditions
for the transport and elliptic variables can be deduced from
the relations to velocity. For the streamfunction modes ¥
at the boundary are given as Dirichlet conditions according

to (), (4)

‘Ilb(k’r’ t) = —(r’ﬁg)(k:,r,t) (9)
The azimuthal velocity modes are specified directly
o(k,r,0,t) = 33(k,r,t). The mode combination W is given
at the boundary by (2)

wb = %(ﬁr +iHg) —rk — (10)

o (
rk

or

The pressure modes for kK = 1,---, N/2 are Dirichlet condi-
tions following from the transport pde for 7
ipr (8175 1

e,
? + T )

P(k,r,t) =
(k.. 2) ot Re

(11)
where Ty denotes the convective and Fy the viscous terms.
At the exit boundary convective conditions for ¥g and W
are prescribed and the streamfunction ¥ and pressure p
modes satisfy zero gradient conditions. At the upper bound-
ary Dirichlet conditions are used. The axis r = 0 is not
boundary, but kinematic conditions following from the pole
conditions are prescribed.

RESULTS

Three sets of simulation results are presented:

Case I: The swirling jet flow of Billant et al. (1998)
for the Reynolds number Re = 1000 and the swirl number
S* =1.4.

Case II: The flow of Liang and Maxworthy (2005) for the
Reynolds number Re = 1000 and the swirl number S = 1.1
with disturbances in the flow field near the entrance section.
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Case III: The flow of Liang and Maxworthy (2005) for

the same Reynolds and swirl numbers as case II but without
disturbances in the flow field.
The disturbances in the flow field for cases I and II were
generated by application of a low-pass filter (azimuthal am-
plitudes for £k > 64 are damped out) in the meridional
subdomain 0 < r < 5.5,0 < z < 0.2 to the increments
of the solution.

Simulation conditions

All simulations were started from stagnant conditions
with the axial velocity at the entrance smoothly ramped
up within At = 2.0 and the azimuthal velocity in At = 4.0
(dimensionless) time units to the asymptotic profiles. Dis-
turbances were added to the basic entrance profiles for
the azimuthal wavenumbers & > 0 and frequency of order
w = 0.2 with amplitudes less than 1% to break the symme-
try of the solution. The simulation conditions were chosen
as Re = 10% and the swirl numbers S = 1.1 as defined by
Liang & Maxworthy (2005)

QD

S=——
2v,(0,0)

(12)
where (2 is the rotation rate of the entrance pipe and v,(0, 0)

the axial velocity at the entrance, for cases II and III, and
S* = 1.4 as defined in Billant et al. (1998)

2vg(R/2, 20)

S* =
Uz (0; ZO)

(13)
where 29 = 0.4D, D = 2R being the nozzle diameter, for case
I. The entrance profiles in fig.1 for the Liang & Maxworthy
(2005) flow (lower graph) were generated by rotating the jet
pipe, whereas the profiles for the Billant et al. flow (1998)
are generated by upstream vanes. The vanes create the bulge
in the entrance profile proportional to the swirl number, the
profile shown in fig.1 corresponds to the asymptotic value
of the swirl number. The difference in these profiles is the
overlap of azimuthal and axial profiles in the outer region
near r/D = 0.5.

Figure 1: Entrance profiles for v,(r) (full lines) and vg(r)
(dot-dashed lines) for the Billant et al. flow (1998) (upper
graph) and the Liang and Maxworthy (2005) flow (lower
graph).



Results for Case |

The results for the Billant et al. (1998) flow in fig.2 and
fig.3 show that the Kelvin-Helmholtz instability is dominant
in the outer boundary layer leading first to the formation
of the conical, counterrotating shear layer and then to its
break-up into spiral, counter-rotating vortex tubes. The

y/D

Figure 2: Vorticity component Q, at z/D = 2.14 (upper
graph, full lines are positive and dashed lines negative values,
max [Q;| = 16.99) and the level surface for enstrophy (g
(lower graph, |Q| = 6.082, max |Q| = 22.52) for Re = 1000,
S* = 1.4 at t = 15.98 for the Billant et al. (1998) flow.

formation of the recirculation zone is observed at ¢t = 4.91.
The initial phase of the breakdown is dominated by the con-
vection of rotating fluid towards the axis in the wake of the
first vortex ring. Stretching leads to rapid increase in axial
vorticity and the formation of three helical vortex tubes as is
evident in fig.2. The three tubes have positive axial vorticity,
hence induce rotational motion on each other. The interac-
tion with the surrounding vorticity with opposite sense of
rotation distorts the tubes quickly and they become part of
the turbulent flow in the recirculation bubble as can be seen
in fig.3 showing enstrophy in the upper and the isolines of
Qp in a meridional plane in the lower graph at t = 17.12.

Results for case Il

The results for the Liang & Maxworthy flow (case II,
with disturbances near the entrance section) in fig.4 and fig.5
show for 0 < z/D < 1.6 the development of vortex rings in
the outer boundary layer that are interacting with the left
wall boundary and the outer flow, the dominant azimuthal
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Figure 3: Enstrophy (upper graph, max |€2| = 13.83, range
shown is [0, 12] with red indicating the highest value) and g
(lower graph, full lines are positive and dashed lines negative
values) for Re = 1000, S* = 1.4 at ¢t = 17.12 for the Billant
et al. (1998).

wavenumber in this region is k = 5. The interaction with
the wall boundary produces the vortex loops visible near the
left side of the lower graph in fig.4. The presence of longi-
tudinal/spiral vortices is evident in the cross-sectional plots
in fig. 5. The upper graph showing the isolines of the ax-
ial velocity and the lower graph the vorticity combination
W demonstrate the dominance of the azimuthal wavenum-
ber range £k = 4 — 6 in the outer shear layer. The vortex
breakdown is observed at t = 6.26.

Results for case Il

The only difference between case III and case II is the
absence of the low pass filter near the entrance section, all
other parameters are the same. The absence of these distur-
bances precludes the development of the instability of the
outer part of the conical shear layer. The evolution of
the flow shows the emergence of the conical jet as in case I
for the conditions of the Billant et al. (1998) experiment.
However, the azimuthal wavenumber k£ = 1 becomes dom-
inant and a radial, flapping motion ensues as can be seen
in fig.6. This motion folds the conical jet layers towards
the center on one side and away from it on the other side.
The latter is responsible for the creation of a helical, tubu-
lar structure that can be related to the observation of strong
helical waves in the experiment (fig.4d in Liang and Max-
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Figure 4: Enstrophy [€2| (upper graph, max|Q| = 16.97,
range shown is [0, 12] with red indicating the highest value)
and Qg (lower graph, full lines are positive and dashed lines
negative values) for Re = 1000 at ¢ = 12.96 for the Liang
and Maxworthy (2005) flow (case II).

worthy (2005) for a smaller swirl number S = 0.9). Liang
and Maxworthy (2005) base their observation on flow visual-
isation using particle seeding, hence are their visualisations
sets of streaklines. Since the flow is unsteady, streaklines
are different from streamlines and pathlines and the relation
of streaklines to enstrophy is not one-to-one since vorticity
can be modified by stretching in contrast to passive scalars.
There is no evidence of weak helical waves in the simulation
(upper graph of fig.6), but the level surface of enstrophy (up-
per graph of fig.8) for the lower level value shows a helical
tube wrapped around the conical jet.

The level surfaces of enstrophy in fig.8 indicate the pres-
ence of vortex reconnection. Weak vortex tubes are wrapped
around the stronger tubes as is evident in the upper graph
of fig.8, which is the precursor of viscous reconnection (see
Shelley et al. (1993) for a thorough analysis).

CONCLUSIONS

The results show that the entrance profiles and the dis-
turbances have a fundamental effect on the near field of the
swirling jet flow.

The simulation of the Billant et al. (1998) flow (case I)
shows that the entrance profile for v, provides additional
shear compared to the top hat profile. The formation of the
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Figure 5: Axial velocity v, (upper graph, full lines are
positive and dashed lines negative values) and the vortic-
ity mode combination W = Qg — iH (k)2 (lower graph)
for Re = 1000, S = 1.1, ¢ = 12.96 at the axial station
z/D = 1.22 for the Liang and Maxworthy (2005) flow (case
II).

recirculation zone is in the early phase dominated by vortex
stretching near the axis and the appearance of three helical
vortex tubes.

The simulation of the Liang-Maxworthy flow (2005) (case
II), where the azimuthal velocity profile extends further into
the boundary layer of the axial profile than for the Billant
et al. (1998) case and disturbances near the entrace section
are present, shows that the Rayleigh-Taylor instability of
the cylindrical boundary layer /D = 0.4 — 0.6 forms lon-
gitudinal vortex tubes with a slowly increasing azimuthal
angle. The effect of vortex stretching near the axis is less
pronounced than for case I.

The simulation of the Liang-Maxworthy (2005) flow
without the disturbances near the entrance section (case III)
does not show the instability of the outer part of the coni-
cal shear layer as observed in case II. The azimuthal mode
k = 1 becomes strong enough to generate a lateral motion
that creates strong helical structures as evident in the ex-
periment.
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Figure 7: Instantaneous photo (fig.4d from Liang and Max-
worthy (2005)) of horizontal jet slice for Re = 1000 and
S = 0.9 at 2/D = 1.0 (lower graph) and numerically simu-
lated (case III) enstrophy section at z/D = 2.38, t = 30.09,
S = 1.1, Re = 1000 (upper graph, opposite sense of rota-
tion).
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Figure 8: Level surfaces of enstrophy e = || (maxe =
17.54) for two level values: upper graph e = 0.8812 and
lower graph e = 4.0538 for Re = 1000, S = 1.1 at t = 30.09
for the Liang and Maxworthy (2005) flow (case III). The
positive z-axis is the main flow direction.
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