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ABSTRACT

To establish a good measure of mixing rate, jet mixing is

examined based on the DNS (direct numerical simulation)

data of the controlled jets. In the computation, the spatial

discretization is performed by hybrid scheme in which sixth

order compact scheme in streamwise direction and Fourier

series in cross section are adopted. The Reynolds number is

1500. The mixing properties are estimated by two measures

such as a statistical entropy and a mixedness parameter,

which are constructed based on the concentration of the pas-

sive scalar. Compared with simple measures,i.e., jet width,

centerline velocity and turbulent kinetic energy, it is found

that the statistical entropy is a good measure to describe

the mixing state in the different controlled jets and that the

fluctuating entropy enable to express the highly mixed re-

gion and correlates to the vortical structure. As well as the

statistical entropy, the mixedness parameter also has useful

properties for the estimation of mixing efficiency. These find-

ings suggest that these measures are expected to contribute

to the optimization of jet mixing.

INTRODUCTION

In order to enhance mixing or diffusion in many indus-

trial applications, jet mixing control has been examined.

The control methodology of the jet mixing is categorized

into either passive or active means. Despite the methodol-

ogy,it is indispensable to grasp the mixing state to realize

the effective jet control. From the results of liner stability

analysis, it reveals that two types of dominant mode char-

acterizing the large-scale flow structures near field of the jet

are varicose and helical mode, and that the diffusion or the

mixing is effectively controlled using these modes. Further

it is well-known that the assemble of these mode is able to

make the complex jet (Reynolds,2003). For example a pair

of helical mode having the same frequency and amplitude

causes the flapping mode. Further adding the axial mode to

them, the occurrence of bifurcating or blooming jet is experi-

mentally confirmed (Reynolds,2003). Such an active control

was also investigated using DNS(direct numerical simula-

tion) (Hilgers,2001, Silva,2002), and reported the generation

of strong diffusion.

Although the effectiveness of these control is demon-

strated so far, simple estimation by the jet width, mean

streamwise velocity, turbulence intensity and so on, are con-

ducted only and it is not well enough to evaluate the mixing

efficiency based on the reliable procedure. Also we inves-

tigate compound jets(Tsujimoto,2006) and experience that

the mixing efficiency is not determined with the order of

superiority by using the simple measure based on the ax-

isymmetric jet. Thus it is important to investigate the

appropriate measure to quantify the mixing efficiency.

When we consider the mixing states, we simply expect

that a concentration of passive scalar enable to accurately

represent the state of diffusion for the quantification of jet

mixing. Then in the present paper, we pick up as new mea-

sures, the statistical entropy (Everson,1998) and the mixed-

ness parameter (Tseng,2001) and demonstrate the validity

and usefulness of these measures compared to the conven-

tional measures.

NUMERICAL METHOD

Governing equation and discretization

Under the assumption of incompressible and isothermal

flow, the dimensionless governing equations are as follows:

∂ui
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= 0 (1)
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(hi = ǫijkωjuk, ωj : vorticity)
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The nonlinear terms are written in the rotational form ω×u

to conserve the total energy; thus, p represents the total pres-

sure. As the characteristic length and velocity, the nozzle

diameter,D and the streamwise velocity,V0 = V1 − V2 (re-

ferred to eq.(4)) are chosen for nondimensionalization. The

Reynolds number is defined as Re = V0D/ν (ν: dynamic

viscosity). A Cartesian coordinate system is employed, in

which y is streamwise direction and x, z are in the lateral di-

rections. The spatial discretization is performed by hybrid

scheme in which sixth order compact scheme (Lele, 1992)

in the streamwise direction and Fourier series in the lateral

directions are adopted. In order to remove the numerical in-

stability due to the nonlinear terms, the 2/3-rule is applied

for the lateral directions and an implicit filtering for the
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Fig.1 Coordinate system and computational domain.

streamwise direction is conducted with 6th order compact

scheme. For the time advancement, third order Adams-

Bashforth method is used. The well-known MAC method

is employed for pressure-velocity coupling, which results in

a Poisson equation for the pressure. After the Poisson equa-

tion is Fourier transformed in x, zdirections, the independent

differential equations are obtained for each wave number and

then is discretized with sixth order compact scheme. Finally

the pentadiagonal matrix are deduced for each wave num-

ber. In the present simulation code, these matrix are solved

using the LU Decomposition method. The outerflow bound-

ary condition is introduced for both momentum and energy

equations by solving simplified convective equations.

Calculation conditions

As inflow condition, the inflow velocity distribution is

determined by referring the literature (Silva, 2002).

Vb(r) =
V1 + V2

2
− V0

2
tanh

[

1

4

R

θ0

(

r

R
− R

r

)]

(4)

where V1 is the jet centerline velocity, V2 is a co-flow velocity,

V0 means V0 = V1−V2. R(= D/2) is the jet radius and θ0 is

the momentum thickness of the initial shear layer. r denotes

the radial distance from the jet centerline. In the present

simulations, jet velocity and the initial momentum thick-

ness are set to V1 = 1.075V0, V2 = 0.075V0 and R/θ0 = 20,

respectively. The inflow temperature is prescribed by the

same distribution of inlet velocity,Vb. The size of compu-

tational domain is set to Hx × Hy × Hz =7D × 15D × 7D

except for the flapping excitation case(Hx = Hz = 10D

for the flapping case). The grid number, Nx × Ny × Nz is

256 × 200 × 256. The Reynolds number is Re = 1500 and

the Prandtl number, Pr = 0.707.

Excitation types

In order to enhance the mixing using active control, three

types of excitation, i .e . axial (Va), helical (Vh) and flap-

ping (Vf ) excitation are considered. In each excitation, the

following perturbation velocity and a random perturbation

having 1% strength of the inflow velocity are superposed on

the inlet velocity, Vb.

Va = εa sin(2πStat∗)Vb (5)

Vh = εh sin(φ − 2πStht∗)Vb (6)

Vf = εf

[

sin(φ − 2πStf t∗) − sin(φ + 2πStf t∗)

]

Vb(7)

where t∗ means a nondimensionalized time, t∗ = tV0/D, and

εa,h,f is the strength of excitation. φ is the azimuthal angle

shown in Fig. 1. The Strouhal number, Sta,h,f is defined

as St = fD/V0 (where f: frequency). According to the

each excitation, it is well-known that the peculiar instability

mode is induced near field of the jet.; In the case of axial

excitation, the column of vortex rings is formed upstream,

and in the case of helical excitation, the helical-like vortical

structures appear. In the case of flapping excitation, flow

structures are distorted in one radial direction and the the

strong anisotropic mixing occurs downstream.

The frequency of instability mode associated with the

generation of large-scale structures induced by the column

instability near the end of potential core of jet, is so-called

’preferred mode’. Since the preferred mode is influenced by

the shape of nozzle or the boundary layer near the nozzle

exit, the preferred mode, Stp becomes 0.25 < Stp < 0.5

(Hussain et al.,1998). In the present simulation, the exci-

tation frequency are set to Sta = Sth = Stf = 0.4, the

strength of excitation, εa = εh = εf = 0.05.

Mixing measures based on the concentration of passive scalar

Statistical entropy. In order to quantify the mixing state,

Everson et al.(1998) pay attention the statistical entropy

based on the concentration of the passive scalar, and demon-

strate the characteristics of this measure by examining the

experimental data. In the followings, we simply explain the

content of this measure.

Boltzmann proposed the statistical entropy which is de-

fined as the logarithm of combination, W .

S = k lnW (8)

where k is Boltzmann constant. W is the combination of the

particle number in ith coarse-grained cell, Ni.

W =
N !

N1!N2! · · ·NM !
=

N !
∏

Ni!
(9)

where N is total number of particles. If N is enough large,

Stirling’s approximation,lnL! ≈ L lnL−L can be applied to

eq.(8);

S = k

[

N ln N −
M

∑

i=1

Ni lnNi

]

(10)

If the space is divide to M ’s cell and all particles exist

only one cell, Smin = 0. While, if the particles uniformly

distribute in each cell, i.e., Ni = N/M , the maximum

entropy, Smax = kN ln M is attained. Since the incompress-

ible flow is assumed in the present study, the temperature

can be related to the concentration of the passive scalar,

φ = (T − T2)/(T1 − T2). Considering the small volume

surrounding a grid point,i, ∆V (= ∆x∆y∆z), the particle

number denotes Ni = φi∆V , thus

S = k∆V

[

Φ lnΦ −
M

∑

i=1

φi ln φi

]

(11)

where Φ =
∑

φi.

Mixedness parameter. Tseng et al.(1998) defined the

mixedness parameter,Mp;

Mp =
1

V

∫

V

φ(1 − φ)dV (12)

where V is the total volume of the considering domain. For

completely unmixed state, Mpmin = 0 and for fully mixed
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(a) Normal

(b) Axial excitation

(c) Helical excitation

(d) Flapping excitation

Fig.2 Instantaneous vortex structure visualized at Q=0.2.

state Mpmax = 0.25. Compared to the statistical entropy,

it is seem that Mp is intuitively derived.

RESULTS

Structure of controlled jets

In order to visualized the vortical structure, iso-surfaces

of velocity gradient tensor, Q value are shown in Fig. 2. In

each figures, left means the side view, right the view from the

nozzle side. In Fig. 2(a), due to a Kelvin-Helmholtz insta-

bility occurred upstream, quasi-periodically vortex-ring like

structures are generated. As the vortex rings break down

downstream, then tube like vortical structures are formed.

In case of axial excitation (Fig.2(b)), depending on the ex-

citation frequency, the strong vortical structures regularly

are formed and retained for a while from upstream to down-

stream. From this figure, vortex rings do not successively

interact with each other. However as well as non-excitation,

when the vortex ring rapidly break down, the formation of

quasi-streamwise vortices is observed downstream. In case

of helical excitation (Fig. 2(c)), the helical like structures

continuously are formed from the upstream to the down-

stream. The break down of this case occurs earlier than

the above-mentioned cases, because the streamwise vortic-

ity component is included at earlier stage of the evolution.

In case of flapping excitation (Fig.2(d)), the jet markedly
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Fig.5 Distribution of turbulence kinetic energy, (a) centerline

value and (b) integrated value with eq(13).

diffuses for one direction. The reason is that after the is-

suing from the nozzle, strong hair-pin like structures are

alternately formed upstream.

The visualized flow structures of all cases are in accor-

dance with the previous DNSs( Silva,2002, Urban,1997),

therefore the present results are confirmed to be correct un-

der the giving excitation conditions.

Simple measure for jet mixing

As the measure of mixing rate, flow properties such as

centerline velocity, jet width and turbulence intensity have

been considered. Fig. 3 shows the distribution of centerline
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velocity, v̄c = v̄(0, y, 0). Corresponding to the visualized co-

herent structures, the breakdown position of potential core

in the flapping case, y/D ≈ 5 locates more upstream than

the other case. Except for the flapping case, the break down

position is shifted downstream in order of the helical, the

normal and the axial excitation. In particular, contrary to

our intuition, the decay of centerline velocity in axial exci-

tation case is shifted downstream compared to the normal

case. As might be expected, the starting position of decay of

velocity are largely delay compared to the visualized struc-

ture.

The jet half width, b0.5 is shown in Fig.4. In both the nor-

mal and the axial excitation case, the jet expands at same

rate from a downstream position (y/D = 10) at which the

ring-like vortex structures begin to break down. While in the

helical excitation case, although the half-width behaves sin-

gularly near y/d = 5 at which vortex break down occurs,

roughly saying, the jet widely expand than both normal

and axial case. In the flapping case, the jet markedly ex-

pands for one direction (z), and shrinks for the perpendicular

to the another direction(x), demonstrating anisotropic dis-

tribution. Not shown here, the shrinks of jet width in x

direction is confirmed from iso-contour of mean streamwise

velocity. Compared to the centerline velocity distribution,

the jet width enables to capture the diffusion rate, however,

if the anisotropic pattern of jet diffusion occurs, or if jets

is combined, it is difficult to uniquely define the jet width,

suggesting that the estimation using the jet width is limited

for a simplified jet.

Figures 5 show the distribution of turbulent kinetic en-

ergy (TKE), k(= 1

2
u′2

i,rms). Fig. 5(a) shows centerline

distribution of TKE, kc = k(0, y, 0). In all excitation case,

the turbulence is strongly generated by the coherent struc-

ture induced by the excitation near y/D ≈ 5. Corresponds

to the visualized structures, in the case of normal, axial

and helical excitations, turbulence generation is rapidly pro-

moted downstream as the breakdown of vortical structures

proceed. While in the flapping case, since the vortex break

down considerably proceeds than the other case, the sec-

ondary peak downstream does not appear. Fig. 5(b) show

the distribution of integrated turbulent kinetic energy de-

fined with eq.(13).

ks =

∫ Hz/2

−Hz/2

∫ Hx/2

−Hx/2

1

2
kdxdz (13)

Considering the mixing state, the flapping case should be

most enhanced, however, the amount of turbulent kinetic

energy in both helical and flapping cases are obviously less

than the normal and axial case. In general the generation

of turbulent kinetic energy is determined by the product of

mean shear and the Reynolds stresses. Since the mean shear

is more weaken if the break down is more promoted, thus the

amount of turbulence does not always increase.

These findings suggests that turbulence intensity gives

the information of the position where the the mixing is

enhanced, but not became the qualitative measure for the

mixing rate.

Evaluation the mixing measure based on the passive scalar

We evaluate the above mentioned measure,i.e., the sta-

tistical entropy and the mixedness parameter. In order to

investigate the streamwise variation of the statistical en-

tropy, S is summed over the plane perpendicular to the

streamwise direction, and S is defined as S normalized with
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Fig.6 Distribution of (a) total entropy and (b) fluctuating

entropy.
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Fig.7 Distribution of mixedness parameter.

the inflow quantity, S0. M means a grid number on x − z

plane; M=65, 536(= 256×256). From Fig.6(a) the statistical

entropy increase downstream in order of the axial, the helical

and the flapping case. These futures reflect in the increase of

randomness downstream and the mixing enhancement due

to the excitations. In particular, in the axial excitation, the

entropy increases until y/D = 2, and then became nearly

constant until y/D = 10. The reason is that the vortical

structures move downstream without the break down, and

it suggests that the aggressive formation of vortex ring does

not always contribute to the promotion of jet mixing.

Here it should be noted that the first term of r.h.s in

eq.(10) express the total number of particles, N and two or-

ders of magnitude larger than second term of r.h.s.. When

the larger the total number of particles exists, the statistical

entropy increases. Namely, this measure reflects the physical

property corresponding to the jet expansion. However if the

same number of particles are distributed between different

jets, the first terms of eq.(10) does not represent the differ-

ence concerning the mixing property, thus it seem that the

second term of eq.(10) includes the substantial properties for
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(a) Normal

(b) Axial excitation

(c) Helical excitation

(d) Flapping excitation

(e) Flapping excitation

Fig.8 Contour of ingredient of mixing measure on x-y plane,

(a)-(d) for the statistical entropy, (e) for the mixedness pa-

rameter.

mixing, despite that the order of this term is smaller than

the first one.

The second term is defined as fluctuating entropy, S′:

S′ = −
M

∑

i=1

φi lnφi (14)

As similar to the Fig.6(a), S̄′ is defined as the quantity S′

normalized with the inlet value. From Fig. 6, S̄′ and S̄ are

not quantitatively but qualitatively similar.

Fig. 7 shows the distribution of mixedness parameter

which is defined by integrating the component,φ(1 − φ) on

cross sectional (x − z)plane. Although there is a quantita-

tive difference between two measures, it is found that the

trend of the mixedness parameter behaves similar to that of

the statistical entropy. Despite that the derivation of two

measures are distinct, both parameters enable to prioritize

the efficiency for the jet mixing.

Relation between the mixing measure and the flow structure

Figures 8(a)-(d) show the iso-contour of the component

of fluctuating entropy, −φ lnφ, on the y − z plane through

the jet centerline. Also Fig.8(e) is for that of the mixed-

ness parameter. In all cases, it is found that the component

of fluctuating entropy becomes strong in the region where

the strong shear near the inlet exists and where the vortical

structures are generated, and that further downstream mix-

ing measure distribute according to the jet expansion. Also

it is clarified that except for flapping case, the mixing makes

no progress near the jet axis.

Although from Fig. 5, the turbulence near the jet axis

become strong at earlier stage of flow development, it does

not effectively contribute to the jet mixing, and the mixing

is enhanced in the region only where the entrainment of sur-

roundings are active. Further downstream, because of the

entrainment, the mixing is enhanced even in the near the

jet axis and the flow becomes more chaotic. From Fig.8(e),

we also confirm that the mixedness parameter has a similar

trend as the statistical entropy.

Since these measure are convected to the downstream,

the mixing is affected by the history of upstream and their

upstream effect is accumulated for downstream. Thus we

consider the production rate of mixing measure based on

the transport equations of mixing measure. Converting the

temperature to the scalar concentration, the transport equa-

tions of mixing measure are derived as follows:

D(−φ lnφ)

Dt
=

1

RePr

[

∇2(−φ ln φ) +
(∇φ)2

φ

]

(15)

Similar for the mixedness parameter:

Dφ(1 − φ)

Dt
=

1

RePr

[

∇2{φ(1 − φ)} + 2(∇φ)2
]

(16)

In both equations, the first term of r.h.s expresses the dif-

fusion and do not contribute to the substantial change of

mixing measure. Since the second terms are always posi-

tive value, they represent the substantial production term

of mixing measure. Note that the second terms express the

scalar dissipation, and that the generation of the mixing is

related to the region where the gradient of scalar becomes

strong.

Figures 9(a)-(d) show the iso-contour of the second terms

of r. h. s. in eq.(15), 1

ReP rφ
(∇φ)2 . Figure 9(e) shows that

of the mixedness parameter. Upstream high value of this

term distributes in relation to the high shear around vorti-

cal structures, in particular, the higher value one seems to

be relate to the region where the stretching between vortical

structures are enhanced. Further downstream the distribu-

tion seems to be chaotic as similar to Fig.8. The enhanced

production region is located locally near the beginning of

vortex break down. Also that of mixedness parameter be-

have similar to that of the statistical entropy. In order to ac-

tivate the mixing, since the gradient of scalar should become
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(a) Normal

(b) Axial excitation

(c) Helical excitation

(d) Flapping excitation

(e) Flapping excitation

Fig.9 Contour of production term of mixing measure on x-y

plane, (a)-(d) for the statistical entropy, (e) for the mixed-

ness parameter.

strong to enhance the molecular diffusion, the stretching

should be enhanced. Since these measures are in accordance

with the well-known physical properties of jet mixing, and

at the same time it is expected that the local mixing state

is comprehended to establish the control methodology.

CONCLUSIONS

We investigate the measure of jet mixing based on the

concentration of passive scalar using the DNS databases of

controlled jets. Conclusions are as follows:

1. The simple measure for mixing state, such as the cen-

terline velocity, the jet width and the turbulence inten-

sity are a rough index. However, since their measure

are constructed based on the axisymmetric jet, they

are not useful to compare the mixing efficiency for the

complex jet such as flapping case.

2. As the mixing measure based on the passive scalar,

the statistical entropy and the mixedness parameter

are investigated. As a consequence it is demonstrated

that these measures have the similar ability to correctly

evaluate the mixing efficiency between different jets.

3. From the instantaneous view of the component of these

mixing measure, these quantities and the production

terms of their transport equation also strongly corre-

late the vortical structures, suggesting that the compo-

nents of these new measures enable to detect the local

mixed state.
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