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ABSTRACT

The goal of this work is to improve the mixing prop-

erties of a coaxial jet with moderate Reynolds number by

active control. Two direct numerical simulations of coax-

ial jets are performed. First, studying a “natural” (without

deterministic control) coaxial jet, we show that the appear-

ance of counter-rotating pairs of streamwise vortices allows

ejections from the seeding regions. This initiates the turbu-

lent mixing. However spots of unmixed fluids persist at the

end of the computational domain. We use then determin-

istic perturbation to allow an improvement of the mixing

properties of the jet. The deterministic perturbation has

an azimuthal part which forces the appearance of pairs of

streamwise vortices. Finally, we found a real improvement

of the mixing properties with a good homogeneity at the end

of the computational domain due to a quicker appearance of

small scales.

INTRODUCTION

Coaxial jets are composed of an inner jet surrounded by

an annular jet. These are present in various industrial appli-

cations and are often used as an effective way of mixing two

different fluid streams (chemical engineering systems, com-

bustion devices...). The study of mixing properties of coaxial

jets has often focused on the near-field because the largest

proportion of the mixing takes place in the developing region

containing the potential cores (Champagne and Wygnanski,

1971). Moreover, Warda et al. (1999) showed that coaxial

jets with ru > 1 develop faster than with ru < 1. Conse-

quently, for fixed nozzle configuration, a coaxial jet with high

velocity ratio yields rapid mixing between the two jets. As

pointed out by Crow and Champagne (1971), the large-scale

coherent structures emerging in shear flows play a dominant

role in the turbulent transport. Therefore, several authors

have focused on the role played by coherent vortices on the

mixing in coaxial jets. Villermaux and Rehab (2000) showed

that the interface between the two streams increases with the

instability of the outer shear layer and so the vorticity thick-

ness of the outer shear layer is an important parameter. As

in plane mixing layers (Bernal and Roshko, 1986) and single

jets (Liepmann and Gharib, 1992), the coaxial jets develop

counter-rotating pairs of streamwise vortices stretched be-

tween consecutive vortex rings: these play a major role in

the mixing process. A recent numerical study (Balarac et

al., 2007) has brought to light the ejections of the species

seeded in the outer jet associated to these streamwise vor-

tices. Moreover, this study has investigated the changes in
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mixing properties implied by the modification of the up-

stream conditions. The mixing was shown to be improved

when the generation of streamwise vortices is favored.

The recent development of Micro Electro Mechanical

System (MEMS) makes possible new ways of controlling

the coaxial jets (Angele et al., 2006). These works show

that a non-axisymmetric forcing (based on micro flap actua-

tors) allows a faster development of the streamwise vortices,

and they observe that this forcing leads to mixing enhance-

ment. In these studies, the forcing was applied only on the

outer shear layer because of its domination on the jet dy-

namics. Indeed, Dahm et al. (1992) found that the vortical

motion is dominated by the vortices emerging in the outer

shear layer when the annular flow velocity is larger than

the central one. In fact, Balarac and Métais (2004) showed

that the vortices of the outer shear layer develop with a

Strouhal number corresponding to the value predicted by

the linear stability theory for the Kelvin-Helmholtz instabil-

ity of this shear layer. Conversely, they found that the inner

vortices are trapped in the free space between two consec-

utive outer vortices. The inner vortices evolution is thus

dictated by the outer vortices motion: it is the “locking”

phenomenon. Thus, large-scale structure modifications, es-

pecially in the outer mixing layer, have a large effect on the

mixing properties of coaxial jets. Similarly, in the present

work, we manipulate the jet outer vortices generation to ob-

tain mixing enhancement: we thus impose a deterministic

perturbation at the inlet. We here use direct numerical sim-

ulations (DNS).

NUMERICAL METHOD

Our numerical code solves the constant density Navier-

Stokes equations written in Cartesian coordinates using a

mixed pseudo-spectral scheme in the two transverse direc-

tion taken as periodic and a sixth-order-compact scheme in

the streamwise direction. The time advancement is assured

by a third order Runge-Kutta scheme and pressure veloc-

ity coupling is modelled by a fractional field. The mixing

is studied by considering the mixture fraction, f , of the

species seeded within the outer annular jet at the jet in-

let. Thus, f = 1 (resp. 0) if there are only species seeded

in the outer annular at the inlet (resp. if there are only

species seeded in the remainder of the upstream jet: the in-

ner jet and the coflow). The mixture fraction evolution is

given by a transport equation (convection-diffusion) which

is solved simultaneously with the Navier-Stokes equations.

For the spatial discretization of the convection term, we use

a second-order semi-discretized TVD Roe scheme.

Following the streamwise direction, the outlet boundary
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condition uses a non-reflective condition and the inlet con-

dition is given by a velocity profile with the shape:

~U(~x0, t) = ~Ucoax(~x0) + ~Unoise(~x0, t) + ~Uforc(~x0, t). (1)

~Ucoax(~x0) = (Ucoax(~x0), 0, 0) mimics a realistic experimen-

tal profile of coaxial jets. Ucoax(~x0) is constructed by two

hyperbolic tangent profiles:

Ucoax(~x0 = (0, r, φ)) =










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(2)

In Eq. (2), U1, U2 and U3 are the inner jet, the outer jet

and the coflow velocities respectively. Moreover, R1, R2 and

Rm = (R1 +R2)/2 are the inner, the outer and the averaged

radii, and θ01 and θ02 the inlet momentum thicknesses of

the inner and outer shear layers (see figure 1). The inlet
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U3 U3
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Figure 1: Sketch of the inlet velocity profile.

mixture fraction profile is also built with hyperbolic tangents

(Balarac et al., 2007). We prescribed f = 1 in the outer

annular jet and f = 0 in the remainder of the flow. In eq.(1),
~Unoise(~x0, t) is a noise superimposed on the inlet profile. It

is given by

~Unoise(~x0, t) = AUbase(~x0)~f, (3)

where A is the maximum amplitude of the incoming noise

limited to A = 3%. The noise is mainly located in the inner

and outer shear layers by the Ubase(~x0) function:

Ubase( ~x0) =











0.5 if 0.85 > r/R1

1.0 if 0.85 < r/R1 < 1.15

1.0 if 0.85 < r/R2 < 1.15

0 otherwise.

In equation (3), ~f is a random noise applied in the three

directions and designed to satisfy a given energy spectrum.

Note that the noise is imposed on the three velocity

components. More details about the inlet mean velocity

profile and the noise in coaxial jets can be found in da

Silva et al. (2003). Note that this numerical code has been

previously used in several studies of plane jet (da Silva and

Métais, 2002a), round jet (da Silva and Métais, 2002b) and

coaxial jet (Balarac and Métais, 2005; Balarac et al., 2007).

Finally, ~Uforc(~x0, t) defines the deterministic perturbation

imposed to excite the jet.

In this work, two simulations are performed. First, we

take ~Uforc(~x0, t) = 0 to have a reference case to which the

forced case can be compared. The forced case is defined

to minimize the addition of energy at the inlet. Thus the

excitation is applied only in the outer shear layer and with a

moderate amplitude. Moreover, the excitation is performed

at the preferential frequency of the outer shear layer fo and

it is defined to be always positive. This corresponds to pure

blowing without aspiration which is more realistic as far as

practical applications are concerned. Finally, we take

Uforc(~x0, t) = εUloc(~x0)(1/2 + 1/2 sin(2πfot))

×(1/2 + 1/2 sin(5φ)).
(4)

In this equation, Uloc(~x0) is a function aimed to localize

the excitation only in the outer shear layer, the maximum

amplitude is fixed by ε and is equal at 8% of U2. The

last term in eq.(4) is the azimuthal part of the forcing

with an azimuthal wave number equal to 5. The forcing is

not an axisymmetric forcing and its main goal is to allow

the early generation of streamwise vortices. In fact, this

excitation mimics the role played by 5 micro-jets placed

circumferentially around the outer diameter and blowing

with a frequency equals to fo. A sketch of this excitation is

given by the figure 2.

forc

U U12

U

Figure 2: Sketch of the azimuthal excitation with an az-

imuthal waves number equal to 8.

The flow and computational parameters are then the fol-

lowing for both simulations. The domain size is 10.8D1 ×

10.65D1 × 10.65D1 along the streamwise (x) and the two

transverse directions (y, z). D1 is the inner diameter.

231×384×384 grid points with uniform mesh size are used.

The upstream mean velocity profile is defined with a veloc-

ity ratio (ru = U2/U1) equals to 5 and a diameter ratio

(β = D2/D1) equals to 2. The initial momentum thick-

nesses are defined with D1/θ01 = D1/θ02 = 25. Finally, the

Reynolds number based on the outer jet velocity and the

inner jet diameter is Re = U2D1/ν = 3000 and the Schmidt

number is taken equal to 1.

GLOBAL VIEW OF UNFORCED JET

To have a reference case to properly compare the forced

case, we perform a simulation of a coaxial jet with the same

parameters but with Uforc = 0. This jet is without deter-

ministic perturbation. There is just a weak “white noise”

to allow a natural transition toward a developed turbulence

state and we so refer to this jet as the “natural” jet. To
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understand the modification due to the deterministic per-

turbation, we summarizes some of the results previously

obtained by Balarac et al. (2007) for this natural coaxial

jet.

Figure 3: Coherent vortices for the unforced coaxial jet

shown by isosurface of Q = 0.5(U2/D1)2 colored by the

streamwise vorticity (light grey: negative values; dark grey:

positive values). A part of the outer rings is artificially cut

to show the inner rings.

The figure 3 shows an isosurface of positive Q colored

by the streamwise vorticity. Q is the second invariant of

the velocity gradient tensor. The positive Q criterion has

been proposed by Hunt et al. (1988) and it is now known

as a good indicator of the coherent vortices. The figure 3

shows so the vortex dynamic during the transition of the jet.

First, the Kelvin-Helmholtz instability disturbs the shear

layers and leads to the Kelvin-Helmholtz rings formation.

Due to the upstream mean velocity shape, there are two

types of Kelvin-Helmholtz vortices created: between the in-

ner jet and the annular jet and between the annular jet and

the coflow. These two types turn in opposite sense. The

figure shows that the space between two consecutive Kelvin-

Helmholtz rings on the inner shear layer are the same that

between two consecutive outer rings. It is due to the “lock-

ing” phenomenon which allow to the outer rings to impose

their motion at the inner rings (Balarac and Métais, 2004).

After x/D1 ≈ 6, the second step of the transition is the

appearance of pairs of counter-rotating streamwise vortices.

These vortices appear between two consecutive rings and

they are due to secondary instability of the free shear layer.

This step leads to an important longitudinal stretching phe-

nomenon which allows the three-dimensionalization of the

flow (Balarac and Métais, 2005). Further downstream, just

before the end of the computational domain, the growth of

the small scale turbulence as well as the breakdown of the

large scale cohrent structures makes their identification very

difficult. Finally, the flow reaches a fully turbulent state

since the frequency spectra has a well defined −5/3 range

over about one decade (Balarac et al., 2007).

Figure 4 shows the evolution of the mixture fraction,

f , in the central plane of the unforced jet. After a region

only dominated by a molecular diffusion (0 < x/D1 < 4),

the turbulent mixing develops thanks to coherent vortices.

First, the Kelvin-Helmholtz vortices allow an engulfment

of the species seeded in the annular jet towards the inner

and outer shear layers. After (x/D1 > 6), the counter-

rotating streamwise vortices appearance imply ejections of

the species seeded in the outer annular jet. These ejections

allow for the inter-penetration of both streams and really ini-

tiate the turbulent mixing. The sudden increase of the rms

mixture fraction, 〈f ′2〉1/2 corresponds thus with the growth

Figure 4: Instantaneous contours of the mixture fraction in

the central plane of the unforced jet. f varies from 0 (white)

to 1 (black).

Figure 5: Downstream evolution of the rms streamwise vor-

ticity and the rms mixture fraction in both inner and outer

jets in the unforced jet. Each rms quantities is normalized

by its maximum rms value.

of the rms axial vorticity 〈ω′2
x 〉1/2 due to the streamwise vor-

tices emergence (Fig.5). At the end of the transition, large

amount of species seeded in the upstream annular jet invade

the center of the jet. Moreover the inner and outer mixing

layers merge in order to create a single mixing zone similar

to a single jet. In this region, the turbulent scale undergo

an intense turbulent mixing however spots of unmixed fluid

persist. This appear clearly on the mixture fraction PDF

at the end of the computational domain (Fig.6). Indeed,

there are high probabilities to find f = 1 close to the jet

center. Moreover, a non-marching PDF is found. A non-

marching PDF is characterized by a most probable value of

f quasi-independent of the radial position and distinct from

the mean value. This shape is produced by the persistence

of large-scale mixing. Conversely, a marching PDF is the

signature of small-scale mixing and this is characterized by

a most probable value equals to the mean value (Pickett

and Ghandhi, 2002). The PDF shape found reveals that the

mixing is not homogeneous in this region. In the following

sections, the deterministic perturbation is added to obtain

a better mixing efficiency at the end of the computational

domain. First, the flow dynamic modifications are studied.

FLOW DYNAMIC OF THE FORCED JET

Here, we investigate the flow dynamic of a coaxial jets

under the excitation given by the equation (4). First, an

instantaneous view of coherent vortices is displayed in fig-
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Figure 6: Mixture fraction PDF across the mixing layer at

x/D1 = 10. The points show the mean value of f for each

radial location.

Figure 7: Coherent vortices for the forced coaxial jet shown

by isosurface of Q = 0.5(U2/D1)2 colored by the streamwise

vorticity (light grey: negative values; dark grey: positive

values).

ure 7. We can see that there is a rapid amplification of the

Kelvin-Helmholtz instability on the outer shear layer. This

is due to the temporal part of the forcing which disturbs

the outer shear layer with the preferential frequency of this

shear layer. Thus, the outer Kelvin-Helmholtz rings are well

formed from the beginning of the jet. The figure 8 shows

that the Kelvin-Helmholtz vortices on the inner shear layer

(which is not forced) appear also sooner than in the unforced

case. This is due to the “locking” phenomenon. Indeed,

there is a dynamical domination of the outer vortices which

imposes their motion to the inner ones. However, opposed

to a purely axisymmetric forcing, the outer rings do not ex-

hibit an axisymmetric shape. Indeed, the azimuthal part of

the forcing leads to an azimuthal deformation of the tori.

Note that the inner rings stay axisymmetric (without az-

imuthal deformation) conversely to the outer ones (Fig.8).

If the outer shear layer controls the generation of the inner

Kelvin-Helmholtz instability, it does not seem that the outer

rings influence the inner rings as far as the azimuthal insta-

bilities are concerned. Finally, the azimuthal disturbance

leads to the quick appearance of 5 pairs of counter-rotating

streamwise vortices corresponding to the value of the az-

imuthal wave number. This appearance is quickly followed

by the formation of small turbulent structures and the flow

becomes turbulent.

A better comprehension of the flow dynamic modification

can be obtained by the study of the radial and azimuthal

Figure 8: Zoom of coherent vortices for the forced coaxial

jet shown by isosurface of Q = 0.5(U2/D1)2 colored by the

streamwise vorticity (light grey: negative values; dark grey:

positive values). Large part of the outer vortices are artifi-

cially cut to see the inner ones.

Figure 9: Downstream evolution of the radial and azimuthal

contributions to the turbulent kinetic energy calculated in

the outer shear layer - Eq.(7) and (8). Comparison between

the unforced and the forced jets.

Reynolds stresses contributions to the turbulent kinetic en-

ergy. Thus da Silva et al. (2003) defined the quantities Er

and Eφ by

Er(x) =

√

2π

LyLz

∫ Rm

0

〈u′2
r 〉(x, r)rdr, (5)

Eφ(x) =

√

2π

LyLz

∫ Rm

0

〈u
′2
φ
〉(x, r)rdr, (6)

for the inner shear layer and by

Er(x) =

√

2π

LyLz

∫ ∞

Rm

〈u′2
r 〉(x, r)rdr, (7)

Eφ(x) =

√

2π

LyLz

∫ ∞

Rm

〈u
′2
φ
〉(x, r)rdr. (8)

for the outer shear layer, respectively. Note that in these

equations, u′
r and u′

φ
are the radial and the azimuthal
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Figure 10: Downstream evolution of the radial and az-

imuthal contributions to the turbulent kinetic energy calcu-

lated in the inner shear layer - Eq.(5) and (6). Comparison

between the unforced and the forced jets.

component of the fluctuating velocity. Er is linked to the

development of the Kelvin-Helmholtz instabilities and the

growth of the vortex rings whereas Eφ, associated with the

azimuthal instabilities, constitutes a measure of the three-

dimensionality level. On the outer shear layer (Fig.9), we

can see that the quantities Er and Eφ begin to grow ear-

lier in the forced case than in the natural jet. Moreover,

in the first transition stage, the main contribution to the

turbulent kinetic energy comes from the radial component

and Eφ begin to grow latter. This is consistent with the

flow visualization where we can see that the azimuthal de-

formation of the outer rings grows in the beginning of the

transition. Finally, Eφ has a significant contribution from

x/D1 = 4 corresponding with the streamwise vortices emer-

gence. For the inner shear layer, figure 10 shows that Er

grows also earlier in the forced case, but Eφ keeps a be-

haviour very close to the natural case during the transition.

This confirms that the inner shear layer is influenced by the

outer Kelvin-Helmholtz instabilities but it is not influenced

by the azimuthal disturbance imposed on the outer shear

layer. This is consistent with the axisymmetric persistence

of the inner Kelvin-Helmholtz rings found above (Fig.8). Fi-

nally, we can note that in the forced case, at the end of the

computational domain, there is Er ≈ Eφ showing a three-

dimensionalization of the jet.

MIXING PROPERTIES OF THE FORCED JET

The mixing properties of the jet are also greatly influ-

enced by the deterministic forcing. Indeed, figure 11 displays

contours of the mixture fraction in the central plane of the

forced jet. The main mixing stages can be viewed. First, the

region dominated by the molecular diffusion is shorter in this

case as compared with the unforced case (Fig.4). This is due

to the temporal part of the forcing which allows a quicker

appearance of the Kelvin-Helmholtz rings implying a rapid

engulfment of the outer stream towards the inner and the

outer mixing layer. After x/D1 = 4, the streamwise vortices

appearance allows an intense ejection phenomenon. Figure

12 shows contours of the mixture fraction in a transverse

section. The ejection phenomenon is characterized by the

mushroom-type structures. Conversely to the natural jet,

these mushroom-type structures are well formed and the

number of these structures is dependent of the azimuthal

Figure 11: Instantaneous contours of the mixture fraction in

the central plane of the forced jet. f varies from 0 (white)

to 1 (black).

Figure 12: Instantaneous contours of the mixture fraction in

a transverse section (x/D1 = 4.5) for the forced jet. f varies

from 0 (white) to 1 (black).

wavenumber of the deterministic forcing. At the end of the

computational domain, the flow reaches a fully-turbulent

state and the small-scales appearance leads to a homoge-

nous mixing without spot of unmixed fluid conversely to the

unforced case.

Figure 13: Mixture fraction PDF across the mixing layer at

x/D1 = 10. The points show the mean value of f for each

radial location.

A better comparison of the mixing state between the

forced and the unforced case can be given by the mixture

fraction PDF. Figure 13 shows the mixture fraction PDF of
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the shear layer at x/D1 = 10. In this case, a marching-type

PDF is found since the most probable value of f corresponds

to the mean value at each radial location. This indicates a

small-scale mixing conversely to the unforced case. More-

over, there is no probability to find spots of unmixed species,

f = 1 contrary to the unforced case. This indicates a real

mixing improvement due to the deterministic perturbation.

CONCLUSION

The goal of the present study was to find appropriate

deterministic perturbation to control coaxial jets at mod-

erate Reynolds number to improve their mixing properties.

The forced jet dynamics and mixing properties are compared

with a “natural” jet recently studied in details by Balarac

et al. (2007). For the natural jet, the beginning of the tran-

sition is due to the appearance of Kelvin-Helmholtz rings

on the inner and outer shear layers. There is a domination

of the outer Kelvin-Helmholtz vortices which impose their

motion to the inner ones. For the mixing process, this stage

allows an engulfment of the species seeded in the annular jet

towards the inner and the outer mixing layer. Further down-

stream, counter-rotating pairs of streamwise vortices appear

between two consecutive Kelvin-Helmholtz rings. This al-

low to eject outer species. These ejections are characterized

by mushroom-type structures and they play a dominant role

in the mixing process. However, spots of unmixed fluid are

found at the end of the transition in the unforced case show-

ing that there is not yet a homogenous mixing. We have then

used a deterministic perturbation to improve the mixing.

This perturbation is applied only on the outer shear

layer because of the outer vortices domination on the flow

dynamic. Moreover, the perturbation consists of a combi-

nation between a temporal part and an azimuthal part with

an azimuthal wave number equals to 5. The temporal part

allows to disturb the outer shear layer with its preferential

frequency and the azimuthal part allows to give an azimuthal

deformation of the outer Kelvin-Helmholtz vortices. In fact

this perturbation mimics the role played by 5 microjets

placed circumferentially around the outer nozzle and ejecting

periodically. This perturbation allows a rapid development

of the outer and inner Kelvin-Helmholtz vortices implying an

efficient engulfment of the outer species. Moreover, the az-

imuthal deformation of the outer Kelvin-Helmholtz vortices

leads to the early formation of counter-rotating streamwise

vortices. These streamwise vortices are more intense and

they allow to generate intense ejection of the species seeded

in the outer jet. Note that the outer Kelvin-Helmholtz in-

stabilities disturb the inner shear layer but that the outer

azimuthal instabilities seem not influenced the inner shear

layer and the inner Kelvin-Helmholtz vortices keep their ax-

isymmetry. Finally, the mixing is more homogenous without

spot of unmixed fluid in the forced case conversely to the

“natural” case. This show a real improvement of the mixing

efficiency due to the deterministic perturbation
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