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ABSTRACT

The modification to the structure of a high aspect ratio

jet that laterally infiltrates into the cross flow of a river is

considered. This jet in cross-flow configuration is different

to that usually considered in the literature due to the large

(50:1, long side is parallel to the main cross flow direction)

aspect ratio of the side-wall jet, which can be thought of as

a large underground fissure or fracture. The cross flow river

flow is considered to have no zero-slip surfaces except for the

plane from which the side jet issues. Two large eddy simula-

tions are performed to ascertain grid dependency effects on

the mean flow field, the instantaneous vorticity fields, and

turbulence statistics. The paper also considers the tran-

sition mechanisms associated with the interaction between

the low velocity side jet as it encounters the higher velocity

cross-flow.

INTRODUCTION

The environmental impact of contaminant transport in

rivers is an emerging major issue with possible negative im-

pact on the local habitats. The literature on modelling the

flow in rivers is extensive; however, there are apparently

no publications on the application of large eddy simulation

methods to investigate the detailed turbulence structures

associated with the infiltration of groundwater from large

aspect ratio fractures into a river flow. In this paper, the

modification to the structure of a high aspect ratio jet that

laterally infiltrates into the cross flow of a river is considered.

Jets-in-cross flow have been extensively studied. The

basic configurations include round, elliptic, square and rect-

angular jets issuing into either a boundary layer, pipe or

channel cross-flow, (Yuan et al. (1999); New et al. (2003);

Plesniak and Cusano (2005)) In the case of rectangular jets,

the major axis is typically aligned normal to the direction

of the cross-flow mean velocity; and, if aligned parallel with

the cross-flow mean velocity, the aspect ratio of the jet is

normally less than 10:1 or so. Additionally, the ratio of the

jet to cross flow mean momentum is typically greater that

unity. A comprehensive review of works before 1993 can be

found in Margason (1993).

In this paper, the structure of the turbulence in a weak

high aspect ratio jet as it issues into a river-like cross flow

(velocity ratio of 0.1) is highlighted.

FLOW PARAMETERS

The flow configuration is described in the figure 1. The

basic flow arrangement is a ”low” velocity rectangular jet

of maximum initial velocity Ujet, which emerges from a

solid wall and issues into a mean flow, which is oriented

normal to the jet axis. The jet is modeled by a double

hyperbolic tangent profile in the inflow plane (O, y, z) with

a ratio ∆z/θ = 20, where θ is the momentum boundary

layer thickness at the exit of the nozzle of the jet; note that

the nozzle is not considered in the present simulation. A

uniform mean cross-flow V0 in the y direction is imposed

at the inflow plane π0. The velocity ratio between the

cross flow and the jet is Ujet/V0 = 0.1. This velocity ratio,

while considered relatively large by the environmental fluid

dynamics community, is a starting point for the current

work. This ratio will be decreased in future reports on

this preliminary work. The dimensions of the jet are

∆y × ∆z = 50 × 1, and the dimensions of the whole

simulation domain are Lx × Ly × Lz = 10 × 70 × 16.

In the z-direction, the domain is thus 10 times the jet

width, whereas in the y-direction, the domain is 1.4 times

longer than the jet. The Reynolds number, based on the

jet width ∆z and the mean flow velocity V0 is Re∆z
= 1000.
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Figure 1: Flow configuration

NUMERICAL METHOD
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The problem is modeled by a DNS/LES finite volume

code Pierce (2001) and only the main features are provided

here. The spatial discretization is performed by a second-

order finite-volume method where the velocity components

are staggered with respect to pressure in both space and

time, which ensures a kinetic energy conservation. The time

integration is similar to the Crank-Nicholson scheme but the

right-hand-sides are evaluated using variables that have been

interpolated in time to the midpoint between the solution

at times tn and tn+1. The Poisson equation is solved by

a 2D multi-grid method in each (x, y) plane whereas the z-

direction is treated in the Fourier space. The sub-grid scale

modeling is based on the dynamic approach of Germano

et al. (1991). The grid is non-uniform, with clustering of

the grid increasing inversely with distance from the wall.

Dirichlet conditions are applied on velocity components

at the inflow planes. A modified outflow convective bound-

ary conditions is applied at the outlet (Fournier et al.

(2007)). Briefly, the classical convective outflow condition

∂ui

∂t
+ Uc

∂ui

∂x
= 0 (1)

is replaced by a modified condition

∂ui

∂t
+ u

∂ui

∂x
+ v

∂ui

∂y
− ν

∂2ui

∂y2
= 0 (2)

This modified condition is used here to reduce the error

introduced by the classical outflow convective boundary con-

ditions when used for flows with steep gradients of the mean

flow (like normal velocity in boundary layers). Periodicity

is imposed in the z−direction.

GRID RESOLUTION EFFECTS

As mentioned above, the present configuration is un-

usual, and thus a grid resolution effects study was con-

sidered. Two LES simulations are presented here: a ”low

resolution” case with 512× 128× 256 control volumes and a

”high resolution” case with 1024×256×256 control volumes.

There is no a priori knowledge of the smallest scales to be

resolved for this flow, and thus the ”high resolution” case is

not the preferred DNS approach, rather LES. It is thought

that doubling the grid resolution from 16.7 million to 67.1

million control volumes would at least achieve results where

the SGS model should not interfere with resolving the major

scales of the flow. The authors continue to explore what is

required to fully resolve all scales to confirm DNS resolution.

In what follows, the effect of grid resolution is explored on

the structural features of the jet.

Vorticity structures

The figures presented below consider the vorticity mag-

nitude within the jet fluid as it enters the cross flow.

Figures 2 and 3 are snapshots of the vorticity norm re-

spectively for the low and high resolution cases.

The structures formation are very similar on these two

simulations. Particularly, the formation of rings all along

the jet exit (fig. 2-(c) and 3-(c)) is really grid independent,

and can then be considered as a particular feature of this

flow. Indeed, the appearance of these structures cannot be

related to any external forcing since no perturbation of any

kind has been applied to these simulations.

Mean Flow

(a)

(b)

(c)

(d)

(e)

Figure 2: Vorticity norm iso-surfaces ω = 1.5V0/∆z at 5

instants (t=00, 20, 40, 60 and 80 ∆z/V0) for the low reso-

lution case.

Figure (4) shows iso-contours of mean velocities in the

plane (O, x, y) (gray plane on figure 1). In all the statistical

results presented here, statistics were gathered during T ≃
250∆z/V0, from t0 ≃ 100∆z/V0 (which corresponds to the

time needed to the first perturbations to reach the outlet).

During this period of time, statistics are computed every

time steps.

Very good agreement is observed between the two simu-

lations, on 〈u〉 and 〈v〉. While a less quantitative agreement

is found on 〈w〉, the region where the mean flow is actually

three dimensional is the same on the two simulations.

Turbulence intensities and turbulence kinetic energy

Figure (5) shows iso-contours of turbulence intensities

(noted here u′, v′ and w′) in the plane (O, x, y) (gray plane

on figure 1).

Figure (6) shows iso-contours of turbulence kinetic en-

ergy k in the plane (O, x, y) (gray plane on figure 1).

As well as for the mean flow velocities, good agreement

is found for the turbulence intensities and for turbulence ki-

netic energy. In particular it is observed that the production

of turbulent fluctuation starts at the end of the bubble re-

gion located at the junction between the main flow and the

jet (y ∈ [−25;−10] in figure 4).

Conclusion on grid resolution study

From the grid independence study, it is concluded that,
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(a)

(b)

(c)

(d)

(e)

Figure 3: Vorticity norm iso-surfaces ω = 1.5V0/∆z at 5

instants (t=00, 20, 40, 60 and 80 ∆z/V0) for the high res-

olution case.

for the most part, the coarse resolution simulations have

captured most of the features of the jet as it emerges into

the cross-flow. However, the finer grid simulations provides

subtle details that could be important. These data continue

to be generated and analysed and will be presented more

completely at the meeting.

TRANSITION MECHANISMS

As mentioned above, the main flow (in the y-direction)

and the inflow-jet are laminar and in particular, no forcing

or turbulent perturbation of any kind are used in these sim-

ulation. The observed vortical features are deemed inherent

to the topology of this flow.

Figure 7 shows the vorticity norm in the plane (O, x, y)

(gray plane on figure 1).

This figure shows that this flow can partially be seen as

a quasi circular mixing layer moved from the wall by the jet.

Then the main instability mechanism is very similar to the

Kelvin-Helmholtz instability (with vortex creation that can

be seen in fig. 7-(a) and 7-(b)). This confirms the observa-

tion already made about turbulence quantities that develop

at the end of the initial ”bubble”. This feature is common to

the more classical jet in cross-flow where the jet to cross-flow

velocity ratio is higher than one. These vortices have been

called the ”shear layer vortices” by Fric and Roshko (1994).

To support this comparison, a visualization from Fric and

Roshko (1994) is provided n figure 8.

In figure 7-(d), we can observe that Kelvin-Helmholtz

〈u〉
[−0.8; 0.8]
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Figure 4: Iso-contours of the mean velocities in the plane

(O, x, y) (for each quantity, Top: low resolution; Bottom:

high resolution)
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Figure 5: Iso-contours of the turbulence intensities in the

plane (O, x, y) (for each quantity, Top: low resolution; Bot-

tom: high resolution)

instability also creates vortices further downstream. These

vortices could also transition to turbulence by themselves,

but figure 7-(e) shows that they are immersed in the tur-

bulence created upstream. The vortices generated at the

leading edge of the jet-cross-flow interface appear to have an

”knock-on” effect with upstream vortices providing a per-

turbation for those downstream. The authors continue to

explore and quantify this effect through spectral analysis

and the results will be reported later.
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Figure 6: Iso-contours of the turbulence kinetic energy in

the plane (O, x, y) (Top: low resolution; Bottom: high reso-

lution)

(a)

(b)

(c)

(d)

(e)

Figure 7: Vorticity norm (unit is V0/∆z) at 5 instants (t=10,

20, 30, 40 and 50 ∆z/V0) for the high resolution case.

Figure 8: Visualization showing the shear layer vortices is-

sued from the jet exit (from Fric and Roshko (1994)).

CONCLUSION

This preliminary investigation of a novel jet-in-cross-flow

arrangement has revealed a number of phenomena that are

believed novel; however, further study is required. First,

the transition mechanisms present very interesting three-

dimensional vortex coupling that require deeper analysis.

Second, the influence of the free surface of the cross on the

turbulence development would be of major importance and

its implementation is ongoing.

ACKNOWLEDGMENTS

The authors acknowledge the Ontario Research and De-

velopment Challenge Fund for financial support and the

computational resources of the High Performance Comput-

ing Virtual Laboratory. The computer code was generously

supplied by the Centre for Turbulence Research, Stanford

University.

*

References

G. Fournier, F. Golanski, and A. Pollard. A novel out-

flow boundary conditions for laminar flows. In AERO7,

Toronto, Canada, April 24-26, 2007.

T. F. Fric and A. Roshko. Vortical structure in the wake of

a transverse jet. J. Fluid Mech., 279:1–47, 1994.

M. Germano, U. Piomelli, P. Moin, and H. Cabot. A dy-

namic subgrid-scale eddy viscosity model. Phys. Fluids

A, 3(7):1760–1765, 1991.

R. J. Margason. Fifty years of jet in crossflow research.

Technical report, AGARD-CP-534, 1993.

T. H. New, T. T. Lim, and S. C. Luo. Elliptic jets in cross-

flow. J. Fluid Mech., 494:119–140, 2003.

C. Pierce. Progress-variable approach for large-eddy sim-

ulation of turbulent combustion. PhD thesis, Stanford

University, June 2001.

M. W. Plesniak and D. M. Cusano. Scalar mixing in a con-

fined rectangular jet in crossflow. J. Fluid Mech., 524:

1–45, 2005.

L. L. Yuan, R. L. Street, and J. H. Ferziger. Large-eddy

simulations of a round jet in crossflow. J. Fluid Mech.,

379:71–104, 1999.

872


	TSFP5 Author indexA4.pdf
	Sheet1




