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INTRODUCTION

The aim of this study is to perform numerical simula-

tions to apply feedback control to transitional boundary-

layer flows. An efficient pseudo-spectral numerical code is

used and modern control theories are incorporated into the

controller design.

Control of wall-bounded transitional and turbulent flows

is the object of the present investigation owing to the high

potential benefits. Any reduction of the skin-friction, for

example, implies relevant savings of the operational cost of

commercial aircrafts and cargo ships. Numerical simulations

and in particular direct numerical simulations (DNS) and

large-eddy simulations (LES) have provided physical insight

into the phenomena of transitional and turbulent flows, de-

spite the fact that they are limited to simple and moderate

Reynolds-number flows.

Recently, much effort is put in the combination of com-

putational fluid dynamics and control theory (Bewley, 2001

and Kim, 2003). While early attempts of flow control were

based on physical intuition or on a trial-and-error basis,

more systematic approaches are now followed. Linear feed-

back control is considered in this project. Results from the

application of linear optimal control theory confirm the im-

portance of linear mechanisms in the nonlinear flows under

consideration (Högberg and Henningson 2002). However,

in the feedback perspective, full information on the flow is

needed to compute the optimal control. This information

is extracted from wall-measurements and the flow based on

those the full flow field is estimated. The information prob-

lem is a limiting factor in the success of a control scheme,

since, as a first step, it affects the whole procedure. Investi-

gations are also be performed on this matter.

BYPASS TRANSITION

The scenario investigated is Bypass Transition in zero-

pressure-gradient boundary layers. It has been shown both

experimentally as well as theoretically that the asymptotic

solutions given by the classical stability analysis are inade-

quate to predict transition in wall-bounded shear flows. In

some cases growth of energy can be observed even if the flow

is stable. This can be explained by the fact that the oper-

ator describing the flow dynamics is non-normal. This type

of transition scenario is observed when the boundary layer

is subject to free turbulence of levels higher than 0.5–1%. In

this case the classical TS-waves scenario is bypassed.

The most dangerous perturbations are streamwise

counter rotating vortices. The vortices lift slow moving fluid

from the area near the wall and pull fast moving fluid from

the free stream above leading to the creation of alternating

regions of fast and slow moving fluid, called streaks. The

streaks grow as they travel downstream, start to oscillate

and induce regions of chaotic swirly motion. These areas are

called turbulent spots. The leading edge of the spots travel

more or less at the free stream velocity U∞ while the trailing

edge at half of it. Thus the spots become more and more

elongated and eventually start to merge with each other.

After that fully turbulent flow develops and the transition

is concluded. This flow reproduces the main features of a

turbulent flow so it can be used as a model for the control

of turbulent flows.

FEEDBACK CONTROL

Linear stability analysis can help understanding the tran-

sitional mechanisms is shear flows. However, it can also be

used as a tool to actively reduce the perturbation strength

and prevent transition. The procedure adopted here is feed-

back control based on noisy measurements (Chevalier et al.

2006). Data from the flow are used to calculate the control

signal to be applied back to the flow.

The controller is acting on the flow through blowing and

suction at the wall. The control requires knowledge of the

full velocity field so the estimator is used to reconstruct the

flow field from measurements taken on a stripe at the wall.

Control can be applied both in the real and in the estimated

flow. The combination of the estimation and the full infor-

mation control is called compensator.

Control

Here follows the description of the full information con-

troller. It is assumed that the exact state of the system is

known. The linearised form of the Navier-Stokes in wall-

normal velocity and wall-normal vorticity formulation

∂

∂t

(

v̂

η̂

)

=

(

LOS 0

LC LSQ

)(

v̂

η̂

)

(1)

will be the model for the flow. Control emerges through non

homogeneous boundary conditions.

To adopt the same formulation as in classical control

theory, the control signal is expressed in the equations as

a volume forcing by the lifting procedure. To account for

measurement errors and non-modelled dynamics, such as

non-parallel effect and nonlinearities, external excitation is
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added so that two extra forcing terms appear in the equa-

tions
∂q

∂t
= Aq + B1w + B2u (2)

where B1w is the forcing due to external excitations of

stochastic nature w and B2u is the forcing from the control

signal u. In feedback control the signal is calculated from

the state q itself so B2u = B2Kq where K is the control

gain.

The aim of the control is to minimise the kinetic energy of

the perturbation while limiting the control effort. Thus the

controller is designed so that the following objective function

is minimised

F = E(‖q‖2 + l2‖u‖2) (3)

The norm ‖q‖2 here is the kinetic energy of the perturba-

tions, ‖u‖2 is the control effort and l is the actuation penalty.

In the discrete case the solution to this optimisation

problem is given by the Riccati equation

A∗X + XA −
1

ε
XBB∗X + Q = 0 (4)

with the control gain computed by

K = −
1

l2
B∗X (5)

The Riccati equation is solved for each streamwise and span-

wise wavenumber pair (kx, kz) separately.

Estimation

The state estimation problem is mathematically similar

to the feedback control problem even though it is far away

conceptually. Measurements are taken from the wall and

the sensors responsible for the measurements include noise.

The estimator can be seen as a filter-operator which has as

input the measurements from the real flow and output the

estimated flow. It is often called Kalman filter.

In the numerical estimation problem there are two flow

fields. The ’real’ flow and the estimated flow. In general all

the quantities that correspond to the estimated flow will be

marked with a hat (̂·).

The system to be solved is

∂q̂

∂t
= Lq̂ − f (6)

where f is the feedback forcing term that will be a function

of the difference between the real and the estimated flow. It

is defined as

f = L(r − r̂) (7)

where r indicates the measurements. L is the feedback op-

erator. The measurements are extracted from each state

through the measurement operator

r = Cq and r̂ = Cq̂ (8)

The aim of the estimation problem is to minimise this error

so the objective function here is

F = E‖q̃‖2 (9)

From the equations above the mathematical similarity be-

tween the feedback control and the estimation problem is

evident. We are looking for the optimal L for which the ob-

jective function is F is minimised. The optimisation problem

Figure 1: A schematic drawing of the compensator. The real

flow is sending the measurements to the estimator while it

sends back the control signal.

again is solved numerically through a Riccati equation sim-

ilar to the one in the feedback control problem.

AP̂ + P̂A∗ − P̂C∗G−1CP̂ + M = 0 (10)

where M is the covariance matrix of B1w and G is the co-

variance matrix of the sensor noise. The estimation feedback

gain is L = −P̂C∗G−1.

Three quantities are measured on the wall, the stream-

wise and spanwise skin friction and the pressure.

The Kalman filter presented here is linear estimation and

it is the optimal case for a linear setting. The above theory

though will be applied in a highly non linear case. Thus the

performance of the estimation will be lower than the ’opti-

mal’. One alternative to that is to use the full (non-linear)

equations when solving the estimator while the gains used

are computed with the linear theory. This is the extended

Kalman filter and it is expected to be more accurate than

the standard Kalman filter.

Compensator

The compensator is a combination of the full informa-

tion control and the state estimation. The measurements

are taken from the real flow, sent to the estimator where

they are used to compute the forcing used to reproduce the

perturbations in the real flow. Then the control is turned

on. The control signal is computed for the estimated flow

and it is both applied to the estimated and the real flow.

The overall system is presented below

(

q̇
˙̂q

)

=

(

A B2K

−LC A + B2K + LC

)(

q

q̂

)

+

(

B1 0

0 −LC

)(

w

g

)

(11)

The compensator problem as it was stated here accounts

only for parallel flows. Further, it assumes that measure-

ments and blowing/suction are taken/applied continuously

over the whole domain. This theory is applied to a spatial

boundary layer and both measurements and actuation are

taken/applied on a part of the domain. Two locations need
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to be specified, one for the control and one for the estimator,

where the local velocity profiles are taken to be used in the

Orr–Sommerfeld/Squire operator. The flow is assumed to

be locally parallel around these locations in order to solve

the control and estimation problems. Once the control and

estimation gains are calculated, the actuation forcing is cut

with two smooth step functions around the chosen locations.

NUMERICAL SIMULATIONS

The simulation code (Lundbladh et al. 1999) em-

ployed for the present computations uses spectral methods

to solve the three-dimensional, time dependent, incompress-

ible Navier-Stokes equations. The algorithm uses Fourier

representation in the streamwise and spanwise directions

and Chebyshev polynomials in the wall-normal direction,

together with a pseudo-spectral treatment of the nonlinear

terms. The time advancement used is a four-step low-storage

third-order Runge-Kutta method for the nonlinear terms

and a second order Crank-Nicolson method for the linear

terms. To correctly account for the downstream boundary

layer growth a spatial technique is necessary. This require-

ment is combined with the periodic boundary condition in

the streamwise direction by the implementation of a ’fringe’.

In this region, at the downstream end of the computational

box, a forcing is smoothly raised from zero, which causes

the out-flowing disturbances to be damped and the flow is

forced to the desired inflow condition.

Free–stream turbulence generation

The boundary layer considered here is subject to exter-

nal disturbances, in particular free–stream turbulence. A

superposition of eigenmodes of the Orr-Sommerfeld/Squire

operator from the continuous spectrum is used to represent

the inflow disturbance (Brandt et al. 2004). The distur-

bances are introduced in the fringe region.

Large–eddy simulations

Since for LES the size of the scales that must be resolved

on the computational grid are much larger than in DNS, the

resolution can be smaller and thus the computational cost

is reduced significantly (typically of order 1%).

According to Schlatter et al. (2004) and Schlatter et al.

(2006) the application of LES in transitional and turbulent

flows has been found to work notably well as it has provided

some very accurate results with much lower computational

cost. In transitional flows there is considerable interaction

between the base flow and the various instability modes and

that can change the physical passing from laminar to turbu-

lent flow.

When the Navier-Stokes equations are filtered a stress

term appear which needs to be modelled. In our case this

term will be modelled with the Relaxation Term model

(ADM–RT). The relaxation term is incorporated to damp

energy from the high frequency oscillations. According to

Stolz et al. (2001) it acts only on the scales close to the

numerical cut–off and is used to model the interaction be-

tween the resolved scales and those not represented in the

numerical grid. The three–dimensional filter was used by

Schlatter (2005) to evaluate the relaxation term. The com-

plete system of LES equations for the RT model is obtained

as

∂ūi

∂t
+

∂ūiūj

∂xj

= −
∂p̄

∂xi

+
1

Re

∂2ūi

∂xj∂xj

−XHN ∗ ūi (12)

Table 1: Turbulence intensity (Tu), Resolution and box di-

mensions for the simulations. The box dimensions include

the fringe region and are made dimensionless with respect

to δ∗
0
.

Method Tu xl × yl × zl nx × ny × nz

% δ∗
0

(resolution)

DNS 4.7 1000 × 60 × 50 1024 × 121 × 72

LES 4.7 1000 × 60 × 50 256 × 121 × 36

LES 4.0 2000 × 60 × 180 512 × 121 × 128

LES 3.0 2000 × 60 × 50 512 × 121 × 36

Table 2: Control penalties, blowing and suction strip and

location of the base flow target profile.

Control penalties l

r2

102

0

Rexstart
5.3 × 104

Rexend
1.4 × 105

target profile location 9 × 104

HN here is the corresponding high pass filter.

RESULTS

Based on the theory and numerics presented in the pre-

vious sections, simulations of feedback control in a flat-plate

boundary layer subject to free stream turbulence are per-

formed. The parameters of the configuration are chosen so

that the flow is transitional. The simulations presented here

were performed with LES, while DNS results from earlier

studies were used to validate the LES.

The parameters defining the problem are the Reynolds

number, the intensity of the free-stream turbulence and the

size of the computational box. The Reynolds number can

be defined by means of the free stream velocity and the

boundary layer displacement thickness δ∗ or the distance

from the leading edge x. The inflow Reynolds number is de-

fined by the displacement thickness of the boundary layer at

the inflow boundary of the computational domain Reδ∗ was

chosen 300. All the quantities are made non dimensional

with the displacement thickness δ∗, and the free-stream ve-

locity.

For the case of Tu = 4.7% the length of the computa-

tional box needed to capture all the transition process is

1000, whereas at Tu = 3.0% and Tu = 4.0% it is 2000.

LES & DNS comparison

Since LES is used, the first step is to validate the method

by comparing some LES results with DNS. The DNS sim-

ulation was performed by Brandt and Henningson (2004).

The simulations are relative to full information control with

Tu = 4.7%. The parameters of the control, the control

penalties, the region of blowing and suction and the base

flow target profile are shown in table 2.

In figure 2 the wall-normal maximum of the streamwise

velocity perturbation is shown for the uncontrolled case,

DNS of full information control and LES of the same config-

uration. The results are obtained by averaging in time and

in the spanwise direction. This quantity is selected since

it indicates the growth of the streaks inside the boundary
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Figure 2: Wall normal maximum urms. nocontrol; —

,DNS; -·- ,LES; - - -.

Table 3: Study cases v.s control region. The initial and final

location of control region are given in Rex.

Start Finish

(Rex) (Rex)

Case1 (no control) — —

Case2 5.3 × 104 1.4 × 105

Case3 5.3 × 104 1.9 × 105

Case4 5.3 × 104 2.3 × 105

layer. It can be seen that using LES-(ADM-RT) gives very

similar results to the DNS simulations. In both cases control

is reducing the streak growth equally. The rest of the results

presented here are thus produced with LES.

Full information control

The first step of applying control theory to a boundary

layer subject to free–stream turbulence is to design a rea-

sonably good full information controller. This can be used

as reference for the compensation, since the best possible

performance is expected when the whole flow field is exactly

known. The simulated flow for this case was subject to free-

stream turbulence of intensity Tu = 4.7%. A study on the

effect of the control strip length on the quality of the control

is performed. Case1 is the reference case where no control

is applied, whereas in Case2, Case3 and Case4 blowing and

suction is applied at the wall through a strip of different

length. The values used are reported in table 3.

In figure 3-(a) the wall-normal maximum of the stream-

wise velocity perturbation is shown. As it can be seen from

this figure the control is able to reduce the streak growth as

long as it is active and this implies a delay of the transition

location. It can also be seen that the longer the control re-

gion the later the transition occurs. However downstream

of the control region, the urms grows rapidly to the same

amplitude for all control lengths. In figure 3-(b) the friction

coefficient is displayed for the three cases; also the values

for a laminar and turbulent boundary layer are reported for

comparison. It can be seen that for Case2 the friction coef-

ficient is rising after the control region to values similar to

the uncontrolled case (Case1), while in Case3 and Case4 it

remains lower at the end of the computational domain.

The perturbation kinetic energy production is considered

to characterise the effect of the blowing/suction at the wall.

It is noted that negative production is achieved for a very

short distance at the beginning of the control interval. The
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Figure 3: (a)Wall normal maximum urms, (b) friction coef-

ficient. Case1; — ,Case2; - - - ,Case3; -·- ,Case4; · · ·
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Figure 4: Wall normal profiles of Turbulent production at

Rex = 3.6× 104. Case1; — ,Case2; - - - ,Case3; -·- ,Case4;

· · ·

production is plotted for Rex = 3.6 × 104 in figure 4. The

decrease of production in the middle of the boundary layer is

accompanied by an increase closer to the wall, where blowing

and suction are active. As a consequence, the streamwise

component of the perturbation velocity, the most relevant

component, is characterised by a double-peak profile. The

decrease of the turbulent production is due to a decrease of

the Reynolds stress −uv, being the mean velocity U only

slightly changed by the control. The wall normal profiles of

urms can be seen in figure 5.

State estimation

When tuning the estimator the parameters that define

the strength of the forcing that is applied to the system, the

sensor noise parameters, needs to be determined. The opti-

mal set of values were chosen after performing several tests.
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Figure 5: Wall normal profiles of urms at Rex = 3.6 × 104.

Case1; — ,Case2; - - - ,Case3; -·- ,Case4; · · ·

Note that a relatively large value of the pressure sensor is

needed to achieve good estimation. This actually limits the

use of this measurement and can be explained by the fact

that the pressure at the wall appear to be more sensitive

to the free-stream turbulence than to the streaks inside the

boundary layer. Further, at these high levels of perturba-

tion, estimation is found to work better if the forcing is active

only on the largest relevant scales. The estimation problem

is applied to the case of Tu = 3.0% and Tu = 4.0%.

Two different criteria were used to determine the per-

formance of the estimator. The first was by looking at the

instantaneous velocity field: One example of this compari-

son can be seen in figure 6. The second, more systematic

way, was by calculating the estimation error given by

ε =

∫

Ξ
(q − q̂)dΞ
∫

Ξ
(q)dΞ

(13)

where Ξ is the region selected to evaluate the estimation

error. In this case the region used is a plane parallel to the

wall at height y = 2, comprising the whole measurement

strip.

Figure 6: Instantaneous streamwise velocity fields. The up-

per is the real flow and the lower the estimated flow. The

measurement strip is indicated with two vertical lines.

In figure 7 the wall-normal maximum of the streamwise

velocity perturbation is shown for both the real and the es-

timated flow for the two different turbulence intensities. For

the real flow one can see the streaks forming and growing.

However, for the case of Tu = 3.0% the box is not long

enough for transition to turbulence to occur. It can be seen

that in the estimated flow the streaks decay downstream of

the measurement region.

In figure 8 the wall normal profiles of urms are shown. It

can be seen that the streaks are a bit weaker in the estimated

flow than in the real flow. Perturbations in the free stream

are not reproduced in the estimator. The estimation is more

accurate closer to the wall.

1 2 3 4 5

x 10
5

0

0.05

0.1

0.15

Rex

m
a
x

y
u

r
m

s

Figure 7: Wall normal maximum of urms. Real flow; (——)

and Estimated flow; ( –·–·–) for Tu = 3.0% and Real flow;

(– – –) and Estimated flow; ( · · ·· · ·) for Tu = 4.0%.
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Figure 8: Wall normal profile of urms at Rex = 3.0 × 105.

Real flow; (——) and Estimated flow; ( –·–·–) for Tu = 3.0%

and Real flow; (– – –) and Estimated flow; ( · · ·· · ·) for Tu =

4.0%.

Table 4: Cases studied.

Case Description Marker

Case1 Real flow with no control – – –

Case2 Estimated flow with no control –·–·–

Case3 Real flow with compensator ——–

Case4 Estimated flow with full information

control

· · ·· · ·

Case5 Real flow with full information control –?–?–

Compensator

The final stage is combining the full information con-

troller and the estimator into the compensator. The proce-

dure requires first the estimator to run for a while without

the control so that there is time for convergence. After this

initial time the control is turned on. The estimation strip

is the same as the one found as optimal in the previous

paragraph while the control strip was chosen to start at

Rex = 3.0 × 105 and finish at Rex = 5.4 × 105. In the

following figures five different cases are presented. In table

4 it can be seen to which case each line in the plots corre-

sponds to. The compensator is applied only for the 3.0%

turbulence intensity.

In figure 9 the wall-normal maximum of the streamwise

velocity perturbation is shown. The full information control

effectivelly reduces the streaks amplitude while in the com-
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Figure 9: Wall normal maximum urms. Case1; – – – ,Case2;

–·– ,Case3; ——, Case4; · · ·, Case5; –?–.

pensated flow, that reduction is not so effective. In principle

in the estimated flow full information control is applied and

it can be seen that the control works very satisfactorily as

the streaks are completely damped and the flow is almost

fully laminar.
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Figure 10: Wall normal profiles of Turbulent production at

Rex = 3.3 × 105. Case1; – – – ,Case2; –·– ,Case3; ——,

Case4; · · ·, Case5; –?–.

The perturbation kinetic energy production is consid-

ered to characterise the effect of the blowing/suction at the

wall. The production is plotted within the control region

at Rex = 3.3 × 105. From this plot it can be seen that

the turbulence production increases near the wall while it

decreases farther up in the boundary layer. In the compen-

sator a slight reduction over the whole profile is observed.

In the estimated flow the production is reduced almost to

zero. The wall normal profiles of urms are depicted in figure

11.

CONCLUSIONS

Feedback control is applied to boundary-layer flows sub-

ject to high levels of free stream turbulence where the bypass

transition occurs. In this specific application linear parallel

theory is used to control a highly nonlinear spatial transi-

tional flow. From the results presented, it can be seen that

control is able to delay the growth of the streaks, which

is responsible, through their secondary instabilities, for the

considered bypass transition scenario. However the effec-

tiveness of the measurment based estimator is limiting the

performance of the control. Further, Brandt and Henning-

son (2004) observed that, if too strong localised blowing is

applied, turbulent spots are induced by local instabilities
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Figure 11: Wall normal profiles of urms at Rex = 3.3× 105.

Case1; – – – ,Case2; –·– ,Case3; ——, Case4; · · ·, Case5;

–?–.

due to wall-normal inflectional profiles. An improvement of

the transition delay can therefore be expected by limiting

the blowing at the wall. The results further show that large-

eddy simulations can be used as an efficient tool for both

model reduction and studing the performance of a control

strategy.
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